Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 7 Limits Miscellaneous Exercise 7 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

I.

Question 1.
If \(\lim _{x \rightarrow 2} \frac{x^{n}-2^{n}}{x-2}=80\) then find the value of n.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q1

II. Evaluate the following Limits:

Question 1.
\(\lim _{x \rightarrow a} \frac{(x+2)^{\frac{5}{3}}-(a+2)^{\frac{5}{3}}}{x-a}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q1

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 2.
\(\lim _{x \rightarrow 0} \frac{(1+x)^{n}-1}{x}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q2
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q2.1

Question 3.
\(\lim _{x \rightarrow 2}\left[\frac{(x-2)}{2 x^{2}-7 x+6}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q3

Question 4.
\(\lim _{x \rightarrow 1}\left[\frac{x^{3}-1}{x^{2}+5 x-6}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q4

Question 5.
\(\lim _{x \rightarrow 3}\left[\frac{x-3}{\sqrt{x-2}-\sqrt{4-x}}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q5
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q5.1

Question 6.
\(\lim _{x \rightarrow 4}\left[\frac{3-\sqrt{5+x}}{1-\sqrt{5-x}}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q6

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 7.
\(\lim _{x \rightarrow 0}\left[\frac{5^{x}-1}{x}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q7

Question 8.
\(\lim _{x \rightarrow 0}\left(1+\frac{x}{5}\right)^{\frac{1}{x}}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q8

Question 9.
\(\lim _{x \rightarrow 0}\left[\frac{\log (1+9 x)}{x}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q9

Question 10.
\(\lim _{x \rightarrow 0} \frac{(1-x)^{5}-1}{(1-x)^{3}-1}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q10

Question 11.
\(\lim _{x \rightarrow 0}\left[\frac{a^{x}+b^{x}+c^{x}-3}{x}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q11

Question 12.
\(\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2}{x^{2}}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q12

Question 13.
\(\lim _{x \rightarrow 0}\left[\frac{x\left(6^{x}-3^{x}\right)}{\left(2^{x}-1\right) \cdot \log (1+x)}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q13
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q13.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 14.
\(\lim _{x \rightarrow 0}\left[\frac{a^{3 x}-a^{2 x}-a^{x}+1}{x^{2}}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q14

Question 15.
\(\lim _{x \rightarrow 0}\left[\frac{\left(5^{x}-1\right)^{2}}{x \cdot \log (1+x)}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q15
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q15.1

Question 16.
\(\lim _{x \rightarrow 0}\left[\frac{a^{4 x}-1}{b^{2 x}-1}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q16

Question 17.
\(\lim _{x \rightarrow 0}\left[\frac{\log 100+\log (0.01+x)}{x}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q17

Question 18.
\(\lim _{x \rightarrow 0}\left[\frac{\log (4-x)-\log (4+x)}{x}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q18
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q18.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 19.
Evaluate the limit of the function if exist at x = 1 where,
\(f(x)= \begin{cases}7-4 x & x<1 \\ x^{2}+2 & x \geq 1\end{cases}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q19

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 7 Limits Ex 7.4 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4

I. Evaluate the following:

Question 1.
\(\lim _{x \rightarrow 0}\left[\frac{9^{x}-5^{x}}{4^{x}-1}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4 Q1(i)

Question 2.
\(\lim _{x \rightarrow 0}\left[\frac{5^{x}+3^{x}-2^{x}-1}{x}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4 Q1(ii)

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4

Question 3.
\(\lim _{x \rightarrow 0}\left[\frac{\log (2+x)-\log (2-x)}{x}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4 Q1(iii)
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4 Q1(iii).1

II. Evaluate the following:

Question 1.
\(\lim _{x \rightarrow 0}\left[\frac{3^{x}+3^{-x}-2}{x^{2}}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4 Q2(i)

Question 2.
\(\lim _{x \rightarrow 0}\left[\frac{3+x}{3-x}\right]^{\frac{1}{x}}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4 Q2(ii)

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4

Question 3.
\(\lim _{x \rightarrow 0}\left[\frac{\log (3-x)-\log (3+x)}{x}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4 Q2(iii)
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4 Q2(iii).1

III. Evaluate the following:

Question 1.
\(\lim _{x \rightarrow 0}\left[\frac{a^{3 x}-b^{2 x}}{\log (1+4 x)}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4 Q3(i)
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4 Q3(i).1

Question 2.
\(\lim _{x \rightarrow 0}\left[\frac{\left(2^{x}-1\right)^{2}}{\left(3^{x}-1\right) \cdot \log (1+x)}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4 Q3(ii)
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4 Q3(ii).1

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4

Question 3.
\(\lim _{x \rightarrow 0}\left[\frac{15^{x}-5^{x}-3^{x}+1}{x^{2}}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4 Q3(iii)

Question 4.
\(\lim _{x \rightarrow 2}\left[\frac{3^{\frac{x}{2}}-3}{3^{x}-9}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4 Q3(iv)
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4 Q3(iv).1

IV. Evaluate the following:

Question 1.
\(\lim _{x \rightarrow 0}\left[\frac{(25)^{x}-2(5)^{x}+1}{x^{2}}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4 Q4(i)

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4

Question 2.
\(\lim _{x \rightarrow 0}\left[\frac{(49)^{x}-2(35)^{x}+(25)^{x}}{x^{2}}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.4 Q4(ii)

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.3

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 7 Limits Ex 7.3 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.3

I. Evaluate the following limits:

Question 1.
\(\lim _{x \rightarrow 0}\left[\frac{\sqrt{6+x+x^{2}}-\sqrt{6}}{x}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.3 Q1 (i)

Question 2.
\(\lim _{y \rightarrow 0}\left[\frac{\sqrt{1-y^{2}}-\sqrt{1+y^{2}}}{y^{2}}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.3 Q1 (ii)

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.3

Question 3.
\(\lim _{x \rightarrow 2}\left[\frac{\sqrt{2+x}-\sqrt{6-x}}{\sqrt{x}-\sqrt{2}}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.3 Q1 (iii)
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.3 Q1 (iii).1

II. Evaluate the following limits:

Question 1.
\(\lim _{x \rightarrow a}\left[\frac{\sqrt{a+2 x}-\sqrt{3 x}}{\sqrt{3 a+x}-2 \sqrt{x}}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.3 Q2 (i)

Question 2.
\(\lim _{x \rightarrow 2}\left[\frac{x^{2}-4}{\sqrt{x+2}-\sqrt{3 x-2}}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.3 Q2 (ii)

III. Evaluate the following limits:

Question 1.
\(\lim _{x \rightarrow 1}\left[\frac{x^{2}+x \sqrt{x}-2}{x-1}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.3 Q3 (i)

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.3

Question 2.
\(\lim _{x \rightarrow 0}\left[\frac{\sqrt{1+x^{2}}-\sqrt{1+x}}{\sqrt{1+x^{3}}-\sqrt{1+x}}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.3 Q3 (ii)

Question 3.
\(\lim _{x \rightarrow 4}\left[\frac{x^{2}+x-20}{\sqrt{3 x+4}-4}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.3 Q3 (iii)

Question 4.
\(\lim _{x \rightarrow 2}\left[\frac{x^{3}-8}{\sqrt{x+2}-\sqrt{3 x-2}}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.3 Q3 (iv)

IV. Evaluate the following limits:

Question 1.
\(\lim _{y \rightarrow 2}\left[\frac{2-y}{\sqrt{3-y}-1}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.3 Q4 (i)

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.3

Question 2.
\(\lim _{z \rightarrow 4}\left[\frac{3-\sqrt{5+z}}{1-\sqrt{5-z}}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.3 Q4 (ii)

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.2

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 7 Limits Ex 7.2 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.2

I. Evaluate the following limits:

Question 1.
\(\lim _{z \rightarrow 2}\left[\frac{z^{2}-5 z+6}{z^{2}-4}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.2 I Q1

Question 2.
\(\lim _{x \rightarrow-3}\left[\frac{x+3}{x^{2}+4 x+3}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.2 I Q2
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.2 I Q2.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.2

Question 3.
\(\lim _{y \rightarrow 0}\left[\frac{5 y^{3}+8 y^{2}}{3 y^{4}-16 y^{2}}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.2 I Q3

Question 4.
\(\lim _{x \rightarrow-2}\left[\frac{-2 x-4}{x^{3}+2 x^{2}}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.2 I Q4

II. Evaluate the following limits:

Question 1.
\(\lim _{u \rightarrow 1}\left[\frac{u^{4}-1}{u^{3}-1}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.2 II Q1

Question 2.
\(\lim _{x \rightarrow 3}\left[\frac{1}{x-3}-\frac{9 x}{x^{3}-27}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.2 II Q2

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.2

Question 3.
\(\lim _{x \rightarrow 2}\left[\frac{x^{3}-4 x^{2}+4 x}{x^{2}-1}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.2 II Q3

III. Evaluate the following limits:

Question 1.
\(\lim _{x \rightarrow-2}\left[\frac{x^{7}+x^{5}+160}{x^{3}+8}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.2 III Q1
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.2 III Q1.1

Question 2.
\(\lim _{y \rightarrow \frac{1}{2}}\left[\frac{1-8 y^{3}}{y-4 y^{3}}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.2 III Q2

Question 3.
\(\lim _{v \rightarrow \sqrt{2}}\left[\frac{v^{2}+v \sqrt{2}-4}{v^{2}-3 v \sqrt{2}+4}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.2 III Q3
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.2 III Q3.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.2

Question 4.
\(\lim _{x \rightarrow 3}\left[\frac{x^{2}+2 x-15}{x^{2}-5 x+6}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.2 III Q4

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.1

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 7 Limits Ex 7.1 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.1

I. Evaluate the following limits:

Question 1.
\(\lim _{x \rightarrow 3}\left[\frac{\sqrt{x+6}}{x}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.1 I Q1

Question 2.
\(\lim _{x \rightarrow 2}\left[\frac{x^{-3}-2^{-3}}{x-2}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.1 I Q2

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.1

Question 3.
\(\lim _{x \rightarrow 5}\left[\frac{x^{3}-125}{x^{5}-3125}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.1 I Q3

Question 4.
If \(\lim _{x \rightarrow 1}\left[\frac{x^{4}-1}{x-1}\right]=\lim _{x \rightarrow a}\left[\frac{x^{3}-a^{3}}{x-a}\right]\), find all possible values of a.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.1 I Q4

II. Evaluate the following limits:

Question 1.
\(\lim _{x \rightarrow 7}\left[\frac{(\sqrt[3]{x}-\sqrt[3]{7})(\sqrt[3]{x}+\sqrt[3]{7})}{x-7}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.1 II Q1
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.1 II Q1.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.1

Question 2.
If \(\lim _{x \rightarrow 5}\left[\frac{x^{k}-5^{k}}{x-5}\right]=500\), find all possible values of k.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.1 II Q2

Question 3.
\(\lim _{x \rightarrow 0}\left[\frac{(1-x)^{8}-1}{(1-x)^{2}-1}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.1 II Q3
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.1 II Q3.1

III. Evaluate the following limits:

Question 1.
\(\lim _{x \rightarrow 0}\left[\frac{\sqrt[3]{1+x}-\sqrt{1+x}}{x}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.1 III Q1
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.1 III Q1.1

Question 2.
\(\lim _{y \rightarrow 1}\left[\frac{2 y-2}{\sqrt[3]{7+y}-2}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.1 III Q2

Question 3.
\(\lim _{z \rightarrow a}\left[\frac{(z+2)^{\frac{3}{2}}-(a+2)^{\frac{3}{2}}}{z-a}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.1 III Q3

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.1

Question 4.
\(\lim _{x \rightarrow 5}\left[\frac{x^{3}-125}{x^{2}-25}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.1 III Q4
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Ex 7.1 III Q4.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Miscellaneous Exercise 6

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 6 Determinants Miscellaneous Exercise 6 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 6 Determinants Miscellaneous Exercise 6

Question 1.
Evaluate:
(i) \(\left|\begin{array}{ccc}
2 & -5 & 7 \\
5 & 2 & 1 \\
9 & 0 & 2
\end{array}\right|\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Miscellaneous Exercise 6 Q1(i)
= 2(4 – 0) + 5(10 – 9) + 7(0 – 18)
= 2(4) + 5(1) + 7(-18)
= 8 + 5 – 126
= -113

(ii) \(\left|\begin{array}{ccc}
1 & -3 & 12 \\
0 & 2 & -4 \\
9 & 7 & 2
\end{array}\right|\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Miscellaneous Exercise 6 Q1(ii)
= 1(4 + 28) + 3(0 + 36) + 12(0 – 18)
= 1(32) + 3(36) + 12(-18)
= 32 + 108 – 216
= -76

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Miscellaneous Exercise 6

Question 2.
Find the value(s) of x, if
(i) \(\left|\begin{array}{ccc}
1 & 4 & 20 \\
1 & -2 & -5 \\
1 & 2 x & 5 x^{2}
\end{array}\right|=0\)
Solution:
\(\left|\begin{array}{ccc}
1 & 4 & 20 \\
1 & -2 & -5 \\
1 & 2 x & 5 x^{2}
\end{array}\right|=0\)
∴ 1(-10x2 + 10x) – 4(5x2 + 5) + 20(2x + 2) = 0
∴ -10x2 + 10x – 20x2 – 20 + 40x + 40 = 0
∴ -30x2 + 50x + 20 = 0
∴ 3x2 – 5x – 2 = 0 ……[Dividing throughout by (-10)]
∴ 3x2 – 6x + x – 2 = 0
∴ 3x(x – 2) + 1(x – 2) = 0
∴ (x – 2) (3x + 1) = 0
∴ x – 2 = 0 or 3x + 1 = 0
∴ x = 2 or x = \(-\frac{1}{3}\)

(ii) \(\left|\begin{array}{ccc}
1 & 2 x & 4 x \\
1 & 4 & 16 \\
1 & 1 & 1
\end{array}\right|=0\)
Solution:
\(\left|\begin{array}{ccc}
1 & 2 x & 4 x \\
1 & 4 & 16 \\
1 & 1 & 1
\end{array}\right|=0\)
∴ 1(4 – 16) – 2x(1 – 16) + 4x(1 – 4) = 0
∴ 1(-12) – 2x(-15) + 4x(-3) = 0
∴ -12 + 30x – 12x = 0
∴ 18x = 12
∴ x = \(\frac{2}{3}\)

Question 3.
By using properties of determinants, prove that \(\left|\begin{array}{ccc}
x+y & y+z & z+x \\
z & x & y \\
1 & 1 & 1
\end{array}\right|=0\).
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Miscellaneous Exercise 6 Q3

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Miscellaneous Exercise 6

Question 4.
Without expanding the determinants, show that
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Miscellaneous Exercise 6 Q4
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Miscellaneous Exercise 6 Q4.1
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Miscellaneous Exercise 6 Q4.2
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Miscellaneous Exercise 6 Q4.3
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Miscellaneous Exercise 6 Q4.4
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Miscellaneous Exercise 6 Q4.5

Question 5.
Solve the following linear equations by Cramer’s Rule.
(i) 2x – y + z = 1, x + 2y + 3z = 8, 3x + y – 4z = 1
Solution:
Given equations are
2x – y + z = 1
x + 2y + 3z = 8
3x + y – 4z = 1
D = \(\left|\begin{array}{ccc}
2 & -1 & 1 \\
1 & 2 & 3 \\
3 & 1 & -4
\end{array}\right|\)
= 2(-8 – 3) – (-1)(-4 – 9) + 1(1 – 6)
= 2(-11) + 1(-13) + 1(-5)
= -22 – 13 – 5
= -40 ≠ 0
Dx = \(\left|\begin{array}{ccc}
1 & -1 & 1 \\
8 & 2 & 3 \\
1 & 1 & -4
\end{array}\right|\)
= 1(-8 – 3) – (-1)(-32 – 3) + 1(8 – 2)
= 1(-11) + 1(-35) + 1(6)
= -11 – 35 + 6
= -40
Dy = \(\left|\begin{array}{ccc}
2 & 1 & 1 \\
1 & 8 & 3 \\
3 & 1 & -4
\end{array}\right|\)
= 2(-32 – 3) – 1(-4 – 9) + 1(1 – 24)
= 2(-35) – 1(-13) + 1(-23)
= -70 + 13 – 23
= -80
Dz = \(\left|\begin{array}{ccc}
2 & -1 & 1 \\
1 & 2 & 8 \\
3 & 1 & 1
\end{array}\right|\)
= 2(2 – 8) – (-1)(1 – 24) + 1(1 – 6)
= 2(-6) + 1(-23) + 1(-5)
= -12 – 23 – 5
= -40
By Cramer’s Rule,
x = \(\frac{D_{x}}{D}=\frac{-40}{-40}\) = 1
y = \(\frac{\mathrm{D}_{y}}{\mathrm{D}}=\frac{-80}{-40}\) = 2
z = \(\frac{\mathrm{D}_{z}}{\mathrm{D}}=\frac{-40}{-40}\) = 1
∴ x = 1, y = 2 and z = 1 are the solutions of the given equations.

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Miscellaneous Exercise 6

(ii) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=-2\), \(\frac{1}{x}-\frac{2}{y}+\frac{1}{z}=3\), \(\frac{2}{x}-\frac{1}{y}+\frac{3}{z}=-1\)
Solution:
Let \(\frac{1}{x}\) = p, \(\frac{1}{y}\) = q, \(\frac{1}{z}\) = r
The given equations become
p + q + r = -2
p – 2q + r = 3
2p – q + 3r = -1
D = \(\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & -2 & 1 \\
2 & -1 & 3
\end{array}\right|\)
= 1(-6 + 1) – 1(3 – 2) + 1(-1 + 4)
= -5 – 1 + 3
= -3
Dp = \(\left|\begin{array}{rrr}
-2 & 1 & 1 \\
3 & -2 & 1 \\
-1 & -1 & 3
\end{array}\right|\)
= -2(-6 + 1) – 1(9 + 1) + 1(-3 – 2)
= 10 – 10 – 5
= -5
Dq = \(\left|\begin{array}{ccc}
1 & -2 & 1 \\
1 & 3 & 1 \\
2 & -1 & 3
\end{array}\right|\)
= 1(9 + 1) + 2(3 – 2) + 1(-1 – 6)
= 10 + 2 – 7
= 5
Dr = \(\left|\begin{array}{rrr}
1 & 1 & -2 \\
1 & -2 & 3 \\
2 & -1 & -1
\end{array}\right|\)
= 1(2 + 3) – 1(-1 – 6) – 2(-1 + 4)
= 5 + 7 – 6
= 6
By Cramer’s Rule,
p = \(\frac{\mathrm{D}_{\mathrm{p}}}{\mathrm{D}}=\frac{-5}{-3}=\frac{5}{3}\)
q = \(\frac{\mathrm{D}_{y}}{\mathrm{D}}=\frac{-80}{-40}\) = 2
r = \(\frac{D_{2}}{D}=\frac{-40}{-40}\) = 1
∴ x = \(\frac{3}{5}\), y = \(\frac{-3}{5}\), z = \(\frac{-1}{2}\) are the solutions of the given equations.

(iii) x – y + 2z = 7, 3x + 4y – 5z = 5, 2x – y + 3z = 12
Solution:
Given equations are
x – y + 2z = 1
3x + 4y – 5z = 5
2x – y + 3z = 12
D = \(\left|\begin{array}{ccc}
1 & -1 & 2 \\
3 & 4 & -5 \\
2 & -1 & 3
\end{array}\right|\)
= 1(12 – 5) – (-1)(9 + 10) + 2(-3 – 8)
= 1(7) + 1(19) + 2(-11)
= 7 + 19 – 22
= 4 ≠ 0
Dx = \(\left|\begin{array}{ccc}
7 & -1 & 2 \\
5 & 4 & -5 \\
12 & -1 & 3
\end{array}\right|\)
= 7(12 – 5) – (-1)(15 + 60) + 2(-5 – 48)
= 7(7)+ 1(75) +2(-53)
= 49 + 75 – 106
= 18
Dy = \(\left|\begin{array}{ccc}
1 & 7 & 2 \\
3 & 5 & -5 \\
2 & 12 & 3
\end{array}\right|\)
= 1(15 + 60) – 7(9 + 10) + 2(36 – 10)
= 1(75) – 7(19) + 2(26)
= 75 – 133 + 52
= -6
Dz = \(\left|\begin{array}{ccc}
1 & -1 & 7 \\
3 & 4 & 5 \\
2 & -1 & 12
\end{array}\right|\)
= 1(48 + 5) – (-1)(36 – 10) + 7(-3 – 8)
= 1(53)+ 1(26) + 7(-11)
= 53 + 26 – 77
= 2
By Cramer’s Rule,
x = \(\frac{\mathrm{D}_{x}}{\mathrm{D}}=\frac{18}{4}=\frac{9}{2}\)
y = \(\frac{D_{y}}{D}=\frac{-6}{4}=\frac{-3}{2}\)
z = \(\frac{D_{z}}{D}=\frac{2}{4}=\frac{1}{2}\)
∴ x = \(\frac{9}{2}\), y = \(\frac{-3}{2}\) and z = \(\frac{1}{2}\) are the solutions of the given equations.

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Miscellaneous Exercise 6

Question 6.
Find the value(s) of k, if the following equations are consistent.
(i) 3x + y – 2 = 0, kx + 2y – 3 = 0 and 2x – y = 3
Solution:
Given equations are
3x + y – 2 = 0
kx + 2y – 3 = 0
2x – y = 3 i.e. 2x – y – 3 = 0
Since, these equations are consistent.
∴ \(\left|\begin{array}{rrr}
3 & 1 & -2 \\
k & 2 & -3 \\
2 & -1 & -3
\end{array}\right|=0\)
∴ 3(-6 – 3) – 1(-3k + 6) – 2(-k – 4) = 0
∴ 3(-9) – 1 (-3k + 6) – 2(-k – 4) = 0
∴ -27 + 3k – 6 + 2k + 8 = 0
∴ 5k – 25 = 0
∴ k = 5

(ii) kx + 3y + 4 = 0, x + ky + 3 = 0, 3x + 4y + 5 = 0
Solution:
Given equations are
kx + 3y + 4 = 0
x + ky + 3 = 0
3x + 4y + 5 = 0
Since, these equations are consistent.
∴ \(\left|\begin{array}{lll}
\mathrm{k} & 3 & 4 \\
1 & \mathrm{k} & 3 \\
3 & 4 & 5
\end{array}\right|=0\)
∴ k(5k – 12) – 3(5 – 9) + 4(4 – 3k) = 0
∴ 5k2 – 12k + 12 + 16 – 12k = 0
∴ 5k2 – 24k + 28 = 0
∴ 5k2 – 10k – 14k + 28 = 0
∴ 5k(k – 2) – 14(k – 2) = 0
∴ (k – 2) (5k – 14) = 0
∴ k – 2 = 0 or 5k – 14 = 0
∴ k = 2 or k = \(\frac{14}{5}\)

Question 7.
Find the area of triangles whose vertices are
(i) A(-1, 2), B(2, 4), C(0, 0)
Solution:
Here, A(x1, y1) ≡ A(-1, 2), B(x2, y2) ≡ B(2, 4), C(x3, y3) ≡ C(0, 0)
Area of a triangle = \(\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|\)
∴ A(∆ABC) = \(\frac{1}{2}\left|\begin{array}{ccc}
-1 & 2 & 1 \\
2 & 4 & 1 \\
0 & 0 & 1
\end{array}\right|\)
= \(\frac{1}{2}\) [-1(4 – 0) – 2(2 – 0) + 1(0 – 0)]
= \(\frac{1}{2}\) (-4 – 4)
= \(\frac{1}{2}\) (-8)
= -4
Since, area cannot be negative.
∴ A(∆ABC) = 4 sq.units

(ii) P(3, 6), Q(-1, 3), R(2, -1)
Solution:
Here, P(x1, y1) ≡ P(3, 6), Q(x2, y2) ≡ Q(-1, 3), R(x3, y3) ≡ R(2, -1)
Area of a triangle = \(\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|\)
A(∆PQR) = \(\frac{1}{2}\left|\begin{array}{ccc}
3 & 6 & 1 \\
-1 & 3 & 1 \\
2 & -1 & 1
\end{array}\right|\)
= \(\frac{1}{2}\) [3(3 + 1) – 6(-1 – 2) + 1(1 – 6)]
= \(\frac{1}{2}\) [3(4) – 6(-3) + 1(-5)]
= \(\frac{1}{2}\) (12 + 18 – 5)
∴ A(∆PQR) = \(\frac{25}{2}\) sq.units

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Miscellaneous Exercise 6

(iii) L(1, 1), M(-2, 2), N(5, 4)
Solution:
Here, L(x1, y1) ≡ L(1, 1), M(x2, y2) ≡ M(-2, 2), N(x3, y3) ≡ N(5, 4)
Area of a triangle = \(\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|\)
A(∆LMN) = \(\frac{1}{2}\left|\begin{array}{rrr}
1 & 1 & 1 \\
-2 & 2 & 1 \\
5 & 4 & 1
\end{array}\right|\)
= \(\frac{1}{2}\) [1(2 – 4) -1(-2 – 5) + 1(-8 – 10)]
= \(\frac{1}{2}\) [1(-2) – 1(-7) + 1(-18)]
= \(\frac{1}{2}\) (-2 + 7 – 18)
= \(\frac{-13}{2}\)
Since, area cannot be negative.
∴ A(∆LMN) = \(\frac{13}{2}\) sq.units

Question 8.
Find the value of k,
(i) if the area of ∆PQR is 4 square units and vertices are P(k, 0), Q(4, 0), R(0, 2).
Solution:
Here, P(x1, y1) ≡ P(k, 0), Q(x2, y2) ≡ Q(4, 0), R(x3, y3) ≡ R(0, 2)
A(∆PQR) = 4 sq.units
Area of a triangle = \(\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|\)
∴ ±4 = \(\frac{1}{2}\left|\begin{array}{lll}
k & 0 & 1 \\
4 & 0 & 1 \\
0 & 2 & 1
\end{array}\right|\)
∴ ±4 = \(\frac{1}{2}\) [k(0 – 2) – 0 + 1(8 – 0)]
∴ ±8 = -2k + 8
∴ 8 = -2k + 8 or -8 = -2k + 8
∴ -2k = 0 or 2k = 16
∴ k = 0 or k = 8

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Miscellaneous Exercise 6

(ii) if area of ∆LMN is \(\frac{33}{2}\) square units and vertices are L(3, -5), M(-2, k), N(1, 4).
Solution:
Here, L(x1, y1) ≡ L(3, -5), M(x2, y2) ≡ M(-2, k), N(x3, y3) ≡ N(1, 4)
A(∆LMN) = \(\frac{33}{2}\) sq.units
Area of a triangle = \(\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|\)
∴ \(\pm \frac{33}{2}=\frac{1}{2}\left|\begin{array}{ccc}
3 & -5 & 1 \\
-2 & \mathrm{k} & 1 \\
1 & 4 & 1
\end{array}\right|\)
∴ ±\(\frac{33}{2}\) = \(\frac{1}{2}\) [3(k – 4) – (-5) (-2 – 1) + 1(-8 – k)]
∴ ±33 = 3k – 12 – 15 – 8 – k
∴ 33 = 2k – 35
∴ 2k – 35 = 33 or 2k – 35 = -33
∴ 2k = 68 or 2k = 2
∴ k = 34 or k = 1

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 6 Determinants Ex 6.3 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3

Question 1.
Solve the following equations using Cramer’s Rule.
(i) x + 2y – z = 5, 2x – y + z = 1, 3x + 3y = 8
Solution:
Given equations are
x + 2y – z = 5
2x – y + z = 1
3x + 3y = 8 i.e. 3x + 3y + 0z = 8
∴ D = \(\left|\begin{array}{ccc}
1 & 2 & -1 \\
2 & -1 & 1 \\
3 & 3 & 0
\end{array}\right|\)
= 1(0 – 3) – 2(0 – 3) – 1(6 + 3)
= -3 + 6 – 9
= -6
Dx = \(\left|\begin{array}{ccc}
5 & 2 & -1 \\
1 & -1 & 1 \\
8 & 3 & 0
\end{array}\right|\)
= 5(0 – 3) – 2(0 – 8) + (-1)(3 + 8)
= -15 + 16 – 11
= -10
Dy = \(\left|\begin{array}{ccc}
1 & 5 & -1 \\
2 & 1 & 1 \\
3 & 8 & 0
\end{array}\right|\)
= 1(0 – 8) – 5(0 – 3) + 1(16 – 3)
= -8 + 15 – 13
= -6
Dz = \(\left|\begin{array}{ccc}
1 & 2 & 5 \\
2 & -1 & 1 \\
3 & 3 & 8
\end{array}\right|\)
= 1(-8 – 3) – 2(16 – 3) + 5(6 + 3)
= -11 – 26 + 45
= 8
By Cramer’s Rule,
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3 Q1(i)
x = \(\frac{5}{3}\), y = 1 and z = \(\frac{-4}{3}\) are the solutions of the given equations.

Check:
We can check if our answer is right or wrong.
In order to do so, substitute the values of x, y and z in the given equations.
x = \(\frac{5}{3}\), y = 1 and z = \(\frac{-4}{3}\) satisfy the given equations.
If either one of the equations is not satisfied, then our answer is wrong.
If x = \(\frac{5}{3}\), y = 1 and z = \(\frac{-4}{3}\) are the solutions of the given equations.
L.H.S. = x + 2y – z
= \(\frac{5}{3}+2-\frac{4}{3}\)
= \(\frac{7}{3}\)
≠ R.H.S.
L.H.S. = 2x – y + z
= \(\frac{10}{3}-1+\frac{4}{3}\)
= \(\frac{11}{3}\)
≠ R.H.S.
L.H.S. = 3x + 3y
= 5 + 3
= 8
= R.H.S.

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3

(ii) 2x – y + 6z = 10, 3x + 4y – 5z = 11, 8x – 7y – 9z = 12
Solution:
Given equations are
2x – y + 6z = 10
3x + 4y – 5z = 11
8x – 7y – 9z = 12
∴ D = \(\left|\begin{array}{ccc}
2 & -1 & 6 \\
3 & 4 & -5 \\
8 & -7 & -9
\end{array}\right|\)
= 2(-36 – 35) – (-1)(-27 + 40) + 6(-21 – 32)
= -142 + 13 – 318
= -447
Dx = \(\left|\begin{array}{ccc}
10 & -1 & 6 \\
11 & 4 & -5 \\
12 & -7 & -9
\end{array}\right|\)
= 10(-36 – 35) – (-1)(-99 + 60) + 6(-77 – 48)
= -710 – 39 – 750
= -1499
Dy = \(\left|\begin{array}{ccc}
2 & 10 & 6 \\
3 & 11 & -5 \\
8 & 12 & -9
\end{array}\right|\)
= 2(-99 + 60) – 10(-27 + 40) + 6(36 – 88)
= -78 – 130 – 312
= -520
Dz = \(\left|\begin{array}{ccc}
2 & -1 & 10 \\
3 & 4 & 11 \\
8 & -7 & 12
\end{array}\right|\)
= 2(48 + 77) – (-1)(36 – 88) + 10(-21 – 32)
= 250 – 52 – 530
= -332
By Cramer’s Rule,
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3 Q1(ii)
∴ x = \(\frac{1499}{447}\), y = \(\frac{520}{447}\) and z = \(\frac{332}{447}\) are the solutions of the given equations.

(iii) 11x – y – z = 31, x – 6y + 2z = -26, x + 2y – 7z = -24
Solution:
Given equations are
11x – y – z = 31
x – 6y + 2z = -26
x + 2y – 7z = -24
D = \(\left|\begin{array}{ccc}
11 & -1 & -1 \\
1 & -6 & 2 \\
1 & 2 & -7
\end{array}\right|\)
= 11(42 – 4) – (-1)(-7 – 2) + (-1)(2 + 6)
= 418 – 9 – 8
= 401
Dx = \(\left|\begin{array}{ccc}
31 & -1 & -1 \\
-26 & -6 & 2 \\
-24 & 2 & -7
\end{array}\right|\)
= 31(42 – 4) – (-1)(182 + 48) + (-1)(-52 – 144)
= 1178 + 230 + 196
= 1604
Dy = \(\left|\begin{array}{ccc}
11 & 31 & -1 \\
1 & -26 & 2 \\
1 & -24 & -7
\end{array}\right|\)
= 11(182 + 48) – 31(-7 – 2) + (-1)(-24 + 26)
= 2530 + 279 – 2
= 2807
Dz = \(\left|\begin{array}{ccc}
11 & -1 & 31 \\
1 & -6 & -26 \\
1 & 2 & -24
\end{array}\right|\)
= 11(144 + 52) – (-1)(-24 + 26) + 31(2 + 6)
= 2156 + 2 + 248
= 2406
By Cramer’s Rule,
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3 Q1(iii)
∴ x = 4, y = 7 and z = 6 are the solutions of the given equations.

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3

(iv) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=-2\), \(\frac{1}{x}-\frac{2}{y}+\frac{1}{z}=3\), \(\frac{2}{x}-\frac{1}{y}+\frac{3}{z}=-1\)
Solution:
Let \(\frac{1}{x}\) = p, \(\frac{1}{y}\) = q, \(\frac{1}{z}\) = r
The given equations become
p + q + r = -2
p – 2q + r = 3
2p – q + 3r = -1
D = \(\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & -2 & 1 \\
2 & -1 & 3
\end{array}\right|\)
= 1(-6 + 1) – 1(3 – 2) + 1(-1 + 4)
= -5 – 1 + 3
= -3
Dp = \(\left|\begin{array}{rrr}
-2 & 1 & 1 \\
3 & -2 & 1 \\
-1 & -1 & 3
\end{array}\right|\)
= -2(-6 + 1) – 1(9 + 1) + 1(-3 – 2)
= 10 – 10 – 5
= -5
Dq = \(\left|\begin{array}{ccc}
1 & -2 & 1 \\
1 & 3 & 1 \\
2 & -1 & 3
\end{array}\right|\)
= 1(9 + 1) + 2(3 – 2) + 1(-1 – 6)
= 10 + 2 – 7
= 5
Dr = \(\left|\begin{array}{rrr}
1 & 1 & -2 \\
1 & -2 & 3 \\
2 & -1 & -1
\end{array}\right|\)
= 1(2 + 3) – 1(-1 – 6) – 2(-1 + 4)
= 5 + 7 – 6
= 6
By Cramer’s Rule,
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3 Q1(iv)
∴ x = \(\frac{3}{5}\), y = \(\frac{-3}{5}\), z = \(\frac{-1}{2}\) are the solutions of the given equations.

(v) \(\frac{2}{x}-\frac{1}{y}+\frac{3}{z}=4, \frac{1}{x}-\frac{1}{y}+\frac{1}{z}=2, \frac{3}{x}+\frac{1}{y}-\frac{1}{z}=2\)
Solution:
Let \(\frac{1}{x}\) = p, \(\frac{1}{y}\) = q, \(\frac{1}{z}\) = r
The given equations become
2p – q – 3r = 4
p – q + r = 2
3p + q – r = 2
D = \(\left|\begin{array}{ccc}
2 & -1 & 3 \\
1 & -1 & 1 \\
3 & 1 & -1
\end{array}\right|\)
= 2(1 – 1) – (-1)(-1 – 3) + 3(1 + 3)
= 0 – 4 + 12
= 8
Dp = \(\left|\begin{array}{ccc}
4 & -1 & 3 \\
2 & -1 & 1 \\
2 & 1 & -1
\end{array}\right|\)
= 4(1 – 1) – (-1)(-2 – 2) + 3(2 + 2)
= 0 – 4 + 12
= 8
Dq = \(\left|\begin{array}{ccc}
2 & 4 & 3 \\
1 & 2 & 1 \\
3 & 2 & -1
\end{array}\right|\)
= 2(-2 – 2) – 4(-1 – 3) + 3(2 – 6)
= -8 + 16 – 12
= -4
Dr = \(\left|\begin{array}{ccc}
2 & -1 & 4 \\
1 & -1 & 2 \\
3 & 1 & 2
\end{array}\right|\)
= 2(-2 – 2) – (-1)(2 – 6) + 4(1 + 3)
= -8 – 4 + 16
= 4
By Cramer’s Rule,
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3 Q1(v)
∴ x = 1, y = -2 and z = 2 are the solutions of the given equations.

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3

Question 2.
An amount of ₹ 5,000 is invested in three plans at rates 6%, 7% and 8% per annum respectively. The total annual income from these investments is ₹ 350. If the total annual income from first two investments is ₹ 70 more than the income from the third, find the amount invested in each plan by using Cramer’s Rule.
Solution:
Let the amount of each investment be ₹ x, ₹ y and ₹ z.
According to the given conditions,
x + y + z = 5000
6%x + 7%y + 8%z = 350
∴ \(\frac{6}{100} x+\frac{7}{100} y-\frac{8}{100} z=350\)
∴ 6x + 7y + 8z = 35000
6%x + 7%y = 8%z + 70
∴ \(\frac{6}{100} x+\frac{7}{100} y=\frac{8}{100} z+70\)
∴ 6x + 7y = 8z + 7000
∴ 6x + 7y – 8z = 7000
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3 Q2
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3 Q2.1
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3 Q2.2
∴ Amounts of investments are ₹ 1750, ₹ 1500, and ₹ 1750.

Check:
First condition:
1750 + 1500 + 1750 = 5000
Second condition:
6% of 1750 + 7% of 1500 + 8% of 1750
= 105 + 105 + 140
= 350
Third condition:
Combined income = 105 + 105
= 210
= 140 + 70
Thus, all the conditions are satisfied.

Question 3.
Show that the following equations are consistent.
2x + 3y + 4 = 0, x + 2y + 3 = 0, 3x + 4y + 5 = 0
Solution:
Given equations are
2x + 3y + 4 = 0
x + 2y + 3 = 0
3x + 4y + 5 = 0
∴ \(\left|\begin{array}{lll}
2 & 3 & 4 \\
1 & 2 & 3 \\
3 & 4 & 5
\end{array}\right|\)
= 2(10 – 12) – 3(5 – 9) + 4(4 – 6)
= 2(-2) – 3(-4) + 4(-2)
= -4 + 12 – 8
= 0
∴ The given equations are consistent.

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3

Question 4.
Find k, if the following equations are consistent.
(i) x + 3y + 2 = 0, 2x + 4y – k = 0, x – 2y – 3k = 0
Solution:
Given equations are
x + 3y + 2 = 0
2x + 4y – k = 0
x – 2y – 3k = 0
Since, these equations are consistent.
∴ \(\left|\begin{array}{ccc}
1 & 3 & 2 \\
2 & 4 & -k \\
1 & -2 & -3 k
\end{array}\right|=0\)
∴ 1(-12k – 2k) – 3(-6k + k) + 2(-4 – 4) = 0
∴ -14k + 15k – 16 = 0
∴ k – 16 = 0
∴ k = 16
Check:
If the value of k satisfies the condition for the given equations to be consistent, then our answer is correct.
Substitute k = 16 in the given equation.
\(\left|\begin{array}{ccc}
1 & 3 & 2 \\
2 & 4 & -16 \\
1 & -2 & -48
\end{array}\right|\)
= 1(-192 – 32) – 3(-96 + 16) + 2(-4 – 4)
= 0
Thus, our answer is correct.

(ii) (k – 2)x + (k – 1)y = 17, (k – 1)x + (k – 2)y = 18, x + y = 5
Solution:
Given equations are
(k – 2)x + (k – 1)y = 17
(k – 1)x + (k – 2)y = 18
x + y = 5
Since, these equations are consistent.
∴ \(\left|\begin{array}{ccc}
k-2 & k-1 & -17 \\
k-1 & k-2 & -18 \\
1 & 1 & -5
\end{array}\right|=0\)
Applying R1 → R1 – R2, we get
\(\left|\begin{array}{ccc}
-1 & 1 & 1 \\
k-1 & k-2 & -18 \\
1 & 1 & -5
\end{array}\right|=0\)
∴ -1(-5k + 10 + 18) – 1(-5k + 5 + 18) + 1(k – 1 – k + 2) = 0
∴ -1(-5k – 28) – 1(- 5k + 23) + 1(1) = 0
∴ 5k – 28 + 5k – 23 – 1 = 0
∴ 10k – 50 = 0
∴ k = 5

Question 5.
Find the area of the triangle whose vertices are:
(i) (4, 5), (0, 7), (-1, 1)
Solution:
Here, A(x1, y1) ≡ A(4, 5), B(x2, y2) ≡ B(0, 7), C(x3, y3) ≡ C(-1, 1)
Area of a triangle = \(\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|\)
∴ A(ΔABC) = \(\frac{1}{2}\left|\begin{array}{ccc}
4 & 5 & 1 \\
0 & 7 & 1 \\
-1 & 1 & 1
\end{array}\right|\)
= \(\frac{1}{2}\) [4(7 – 1) – 5(0 + 1) + 1(0 + 7)]
= \(\frac{1}{2}\) (24 – 5 + 7)
= 13 sq.units.

(ii) (3, 2), (-1, 5), (-2, -3)
Solution:
Here, A(x1, y1) ≡ A(3, 2), B(x2, y2) = B(-1, 5), C(x3, y3) ≡ C(-2, -3)
Area of a triangle = \(\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|\)
∴ A(ΔABC) = \(\frac{1}{2}\left|\begin{array}{ccc}
3 & 2 & 1 \\
-1 & 5 & 1 \\
-2 & -3 & 1
\end{array}\right|\)
= \(\frac{1}{2}\) [3(5 + 3) – 2(-1 + 2) + 1(3 + 10)]
= \(\frac{1}{2}\) (24 – 2 + 13)
= \(\frac{35}{2}\) sq. units

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3

(iii) (0, 5), (0, -5), (5, 0)
Solution:
Here, A(x1, y1) ≡ A(0, 5), B(x2, y2) ≡ B(0, -5), C(x3, y3) ≡ C(5,0)
Area of a triangle = \(\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|\)
∴ A(ΔABC) = \(\frac{1}{2}\left|\begin{array}{ccc}
0 & 5 & 1 \\
0 & -5 & 1 \\
5 & 0 & 1
\end{array}\right|\)
= \(\frac{1}{2}\) [0(-5 – 0) – 5(0 – 5) + 1(0 + 25)]
= \(\frac{1}{2}\) (0 + 25 + 25)
= \(\frac{50}{2}\)
= 25 sq.units

Question 6.
Find the value of k, if the area of the triangle with vertices at A(k, 3), B(-5, 7), C(-1, 4) is 4 square units.
Solution:
Here, A(x1, y1) ≡ A(k, 3), B(x2, y2) ≡ B(-5, 7), C(x3, y3) ≡ C(-1, 4)
A(ΔABC) = 4 sq.units
Area of a triangle = \(\frac{1}{2}\left|\begin{array}{lll}
x_{b} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|\)
∴ \(\frac{1}{2}\left|\begin{array}{ccc}
k & 3 & 1 \\
-5 & 7 & 1 \\
-1 & 4 & 1
\end{array}\right|\) = ±4
∴ k(7 – 4) – 3(-5 + 1) + 1(-20 + 7) = ±8
∴ 3k + 12 – 13 = ±8
∴ 3k – 1 = ±8
∴ 3k – 1 = 8 or 3k – 1 = -8
∴ 3k = 9 or 3k = -7
∴ k = 3 or k = \(\frac{-7}{3}\)

Check:
For k = 3,
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3 Q6
Thus, our answer is correct.

Question 7.
Find the area of the quadrilateral whose vertices are A(-3, 1), B(-2, -2), C(4, 1), D(2, 3).
Solution:
A(-3, 1), B(-2, -2), C(4, 1), D(2, 3)
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3 Q7
A(ABCD) = A(ΔABC) + A(ΔACD)
= \(\frac{21}{2}\) + 7
= \(\frac{35}{2}\) sq.units.

Question 8.
By using determinant, show that the following points are collinear.
P(5, 0), Q(10, -3), R(-5, 6)
Solution:
Here, P(x1, y1) ≡ P(5, 0), Q(x2, y2) ≡ Q(10, -3), R(x3, y3) ≡ R(-5, 6)
If A(ΔPQR) = 0, then the points P, Q, R are collinear.
∴ A(ΔPQR) = \(\frac{1}{2}\left|\begin{array}{ccc}
5 & 0 & 1 \\
10 & -3 & 1 \\
-5 & 6 & 1
\end{array}\right|\)
= \(\frac{1}{2}\) [5(-3 – 6) – 0(10 + 5) + 1(60 – 15)]
= \(\frac{1}{2}\) (-45 + 0 + 45)
= 0
∴ A(ΔPQR) = 0
∴ Points P, Q and R are collinear.

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3

Question 9.
The sum of three numbers is 15. If the second number is subtracted from the sum of first and third numbers, then we get 5. When the third number is subtracted from the sum of twice the first number and the second number, we get 4. Find the three numbers.
Solution:
Let the three numbers be x, y and z.
According to the given conditions,
x + y + z = 15
x + z – y = 5 i.e. x – y + z = 5
2x + y – z = 4
D = \(\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 1 \\
2 & 1 & -1
\end{array}\right|\)
= 1(1 – 1) – 1 (-1 – 2) + 1(1 + 2)
= 1(0) – 1(-3) + 1(3)
= 0 + 3 + 3
= 6 ≠ 0
Dx = \(\left|\begin{array}{ccc}
15 & 1 & 1 \\
5 & -1 & 1 \\
4 & 1 & -1
\end{array}\right|\)
= 15(1 – 1) – 1(-5 – 4) + 1(5 + 4)
= 15(0) – 1(-9) + 1(9)
= 0 + 9 + 9
= 18
Dy = \(\left|\begin{array}{ccc}
1 & 15 & 1 \\
1 & 5 & 1 \\
2 & 4 & -1
\end{array}\right|\)
= 1(-5 – 4) – 15(-1 – 2) + 1(4 – 10)
= 1(-9) – 15(-3) + 1(-6)
= -9 + 45 – 6
= 30
Dz = \(\left|\begin{array}{ccc}
1 & 1 & 15 \\
1 & -1 & 5 \\
2 & 1 & 4
\end{array}\right|\)
= 1(-4 – 5) – 1(4 – 10) + 15(1 + 2)
= 1(-9) – 1(-6) + 15(3)
= -9 + 6 + 45
= 42
By Cramer’s Rule,
x = \(\frac{D_{x}}{D}=\frac{18}{6}\) = 3
y = \(\frac{D_{y}}{D}=\frac{30}{6}\) = 5
z = \(\frac{D_{z}}{D}=\frac{42}{6}\) = 7
∴ The three numbers are 3, 5 and 7.

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.2

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 6 Determinants Ex 6.2 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.2

Question 1.
Without expanding, evaluate the following determinants.
(i) \(\left|\begin{array}{lll}
1 & a & b+c \\
1 & b & c+a \\
1 & c & a+b
\end{array}\right|\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.2 Q1(i)

(ii) \(\left|\begin{array}{ccc}
2 & 3 & 4 \\
5 & 6 & 8 \\
6 x & 9 x & 12 x
\end{array}\right|\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.2 Q1(ii)

(iii) \(\left|\begin{array}{lll}
2 & 7 & 65 \\
3 & 8 & 75 \\
5 & 9 & 86
\end{array}\right|\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.2 Q1(iii)

Question 2.
Using properties of determinants, show that \(\left|\begin{array}{ccc}
a+b & a & b \\
a & a+c & c \\
b & c & b+c
\end{array}\right|\) = 4abc
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.2 Q2

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.2

Question 3.
Solve the following equation.
\(\left|\begin{array}{ccc}
x+2 & x+6 & x-1 \\
x+6 & x-1 & x+2 \\
x-1 & x+2 & x+6
\end{array}\right|=0\)
Solution:
\(\left|\begin{array}{ccc}
x+2 & x+6 & x-1 \\
x+6 & x-1 & x+2 \\
x-1 & x+2 & x+6
\end{array}\right|=0\)
Applying R2 → R2 – R1 and R3 → R3 – R1, we get
\(\left|\begin{array}{ccc}
x+2 & x+6 & x-1 \\
4 & -7 & 3 \\
-3 & -4 & 7
\end{array}\right|=0\)
∴ (x + 2)(-49 + 12) – (x + 6)(28 + 9) + (x – 1)(-16 – 21) = 0
∴ (x + 2) (-37) – (x + 6) (37) + (x – 1) (-37) = 0
∴ -37(x + 2 + x + 6 + x – 1) = 0
∴ 3x + 7 = 0
∴ x = \(\frac{-7}{3}\)

Question 4.
If \(\left|\begin{array}{lll}
4+x & 4-x & 4-x \\
4-x & 4+x & 4-x \\
4-x & 4-x & 4+x
\end{array}\right|=0\), then find the values of x.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.2 Q4
∴ (12 – x)[1(4x2 – 0) – (4 – x)(0 – 0) + (4 – x)(0 – 0)] = 0
∴ (12 – x)(4x2) = 0
∴ x2(12 – x) = 0
∴ x = 0 or 12 – x = 0
∴ x = 0 or x = 12

Question 5.
Without expanding determinants, show that
\(\left|\begin{array}{ccc}
1 & 3 & 6 \\
6 & 1 & 4 \\
3 & 7 & 12
\end{array}\right|+4\left|\begin{array}{lll}
2 & 3 & 3 \\
2 & 1 & 2 \\
1 & 7 & 6
\end{array}\right|=10\left|\begin{array}{lll}
1 & 2 & 1 \\
3 & 1 & 7 \\
3 & 2 & 6
\end{array}\right|\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.2 Q5
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.2 Q5.1

Question 6.
Without expanding determinants, find the value of
(i) \(\left|\begin{array}{lll}
10 & 57 & 107 \\
12 & 64 & 124 \\
15 & 78 & 153
\end{array}\right|\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.2 Q6(i)

(ii) \(\left|\begin{array}{lll}
2014 & 2017 & 1 \\
2020 & 2023 & 1 \\
2023 & 2026 & 1
\end{array}\right|\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.2 Q6(ii)

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.2

Question 7.
Without expanding determinants, prove that
(i) \(\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=\left|\begin{array}{lll}
b_{1} & c_{1} & a_{1} \\
b_{2} & c_{2} & a_{2} \\
b_{3} & c_{3} & a_{3}
\end{array}\right|=\left|\begin{array}{lll}
c_{1} & a_{1} & b_{1} \\
c_{2} & a_{2} & b_{2} \\
c_{3} & a_{3} & b_{3}
\end{array}\right|\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.2 Q7(i)
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.2 Q7(i).1

(ii) \(\left|\begin{array}{lll}
1 & y z & y+z \\
1 & z x & z+x \\
1 & x y & x+y
\end{array}\right|=\left|\begin{array}{lll}
1 & x & x^{2} \\
1 & y & y^{2} \\
1 & z & z^{2}
\end{array}\right|\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.2 Q7(ii)
In 1st determinant, taking (x + y + z) common from C3 and in 2nd determinant, taking \(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\) common from R1, R2, R3 respectively, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.2 Q7(ii).1

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 6 Determinants Ex 6.1 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1

Question 1.
Evaluate the following determinants:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q1
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q1.1
Solution:
(i) \(\left|\begin{array}{cc}
4 & 7 \\
-7 & 0
\end{array}\right|\)
= 4(0) – (-7)(7)
= 0 + 49
= 49

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q1.2
= 3(0 – 63) – 5(0 – 27) + 2(7 – 24)
= 3(-63) + 5 (-27) + 2(-17)
= – 189 – 135 – 34
= -358

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q1.3
= 1(2 – 10) – i(-i – 15) + 3(-2i – 6)
= -8 + i2 + 15i – 6i – 18
= i2 – 26 + 9i
= -1 – 26 + 9i …[∵ i2 = -1]
= -27 + 9i

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q1.4
= 5(32 – 16) – 5(40 – 20) + 5(20 – 20)
= 5(16) – 5(20) + 5(0)
= 80 – 100
= -20

(v) \(\left|\begin{array}{cc}
2 \mathrm{i} & 3 \\
4 & -\mathrm{i}
\end{array}\right|\)
= 2i(-i) – 3(4)
= -2i2 – 12
= -2(-1) – 12 …[∵ i2 = -1]
= 2 – 12
= -10

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q1.5
= 3(1 + 6) + 4(1 + 4) + 5(3 – 2)
= 3(7)+ 4(5) + 5(1)
= 21 + 20 + 5
= 46

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q1.6
= a(bc – f2) – h(hc – gf) + g(hf – gb)
= abc – af2 – h2c + fgh + fgh – g2b
= abc + 2fgh – af2 – bg2 – ch2

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q1.7
= 0 – a(0 + bc) – b(-ac – 0)
= -a(bc) – b(-ac)
= -abc + abc
= 0

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1

Question 2.
Find the value(s) of x, if
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q2
Solution:
(i) \(\left|\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right|=\left|\begin{array}{cc}
x & 3 \\
2 x & 5
\end{array}\right|\)
∴ 10 – 12 = 5x – 6x
∴ -2 = -x
∴ x = 2

Check:
We can check if our answer is right or wrong.
In order to do so, substitute x = 2 in the given determinant.
For x = 2,
L.H.S. = \(\left|\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right|\)
= 10 – 12
= -2
R.H.S. =\(\left|\begin{array}{cc}
x & 3 \\
2 x & 5
\end{array}\right|\)
= \(\left|\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right|\)
= 10 – 12
= -2
Thus, our answer is correct.

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q2.1
∴ 2(9 – 20) – 1 (-3 – 0) + (x + 1) (5 – 0) = 0
∴ 2(-11) – 1(-3) + (x + 1)(5) = 0
∴ -22 + 3 + 5x + 5 = 0
∴ 5x = 14
∴ x = \(\frac{14}{5}\)

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q2.2
∴ (x – 1)[(x – 2)(x – 3) – 0] – x(0 – 0) + (x – 2)(0 – 0) = 0
∴ (x – 1)(x – 2)(x – 3) = 0
∴ x – 1 = 0 or x – 2 = 0 or x – 3 = 0
∴ x = 1 or x = 2 or x = 3

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1

Question 3.
Solve the following equations.
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q3
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q3.1
∴ x(x2 – 4) – 2(2x – 4) + 2(4 – 2x) = 0
∴ x(x2 – 4) – 2(2x – 4) – 2(2x – 4) = 0
∴ x(x + 2)(x – 2) – 4(2x – 4) = 0
∴ x(x + 2)(x – 2) – 8(x – 2) = 0
∴ (x – 2)[x(x + 2) – 8] = 0
∴ (x – 2)(x2 + 2x – 8) = 0
∴ (x – 2)(x2 + 4x – 2x – 8) = 0
∴ (x – 2)(x + 4)(x – 2) = 0
∴ (x – 2)2 (x + 4) = 0
∴ (x – 2)2 = 0 or x + 4 = 0
∴ x – 2 = 0 or x = -4
∴ x = 2 or x = -4

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q3.2
∴ 1(-10x2 – 10x) – 4(5x2 – 5) + 20(2x + 2) = 0
∴ -10x2 – 10x – 20x2 + 20 + 40x + 40 = 0
∴ -30x2 + 30x + 60 = 0
∴ x2 – x – 2 = 0 …..[Dividing throughout by (-30)]
∴ x2 – 2x + x – 2 = 0
∴ (x – 2)(x + 1) = 0
∴ x – 2 = 0 or x + 1 = 0 x = 2 or x = -1

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1

Question 4.
Find the value of x, if
\(\left|\begin{array}{ccc}
x & -1 & 2 \\
2 x & 1 & -3 \\
3 & -4 & 5
\end{array}\right|\) = 29
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q4
∴ x(5 – 12) + 1(10x + 9) + 2(-8x – 3) = 29
∴ -7x + 10x + 9 – 16x – 6 = 29
∴ -13x + 3 = 29
∴ -13x = 26
∴ x = -2

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1

Question 5.
Find x and y if \(\left|\begin{array}{ccc}
4 i & i^{3} & 2 i \\
1 & 3 i^{2} & 4 \\
5 & -3 & i
\end{array}\right|\) = x + iy, where i = √-1.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.1 Q5
= 4i(-3i + 12) + i(i – 20) + 2i(-3 + 15)
= -12i2 + 48i + i2 – 20i + 24i
= -11i2 + 52i
= -11(-1) + 52i …..[∵ i2 = -1]
= 11 + 52i
Comparing with x + iy, we get
x = 11, y = 52

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 5 Locus and Straight Line Miscellaneous Exercise 5 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5

Question 1.
Find the slopes of the lines passing through the following points:
(i) (1, 2), (3, -5)
(ii) (1, 3), (5, 2)
(iii) (-1, 3), (3, -1)
(iv) (2, -5), (3, -1)
Solution:
(i) Let A = (1, 2) = (x1, y1) and B = (3, -5) = (x2, y2) say.
Slope of line AB = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-5-2}{3-1}=\frac{-7}{2}\)

(ii) Let C = (1, 3) = (x1, y1) and D = (5, 2) = (x2, y2) say.
Slope of line CD = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-3}{5-1}=\frac{-1}{4}\)

(iii) Let E = (-1, 3) = (x1, y1) and F = (3, -1) = (x2, y2) say.
Slope of line EF = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-1-3}{3-(-1)}=\frac{-4}{4}\) = -1

(iv) Let P = (2, -5) = (x1, y1) and Q = (3, -1) = (x2, y2) say.
Slope of line PQ = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-1-(-5)}{3-2}\) = \(\frac{-1+5}{1}\) = 4

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5

Question 2.
Find the slope of the line which
(i) makes an angle of 120° with the positive X-axis.
(ii) makes intercepts 3 and -4 on the axes.
(iii) passes through the points A(-2, 1) and the origin.
Solution:
(i) θ = 120°
Slope of the line = tan 120°
= tan (180° – 60°)
= -tan 60° …..[tan(180° – θ) = -tan θ]
= -√3

(ii) Given, x-intercept of line is 3 and y-intercept of line is -4
∴ The line intersects X-axis at (3, 0) and Y-axis at (0, -4).
∴ The line passes through (3, 0) = (x1, y1) and (0, -4) = (x2, y2) say.
∴ Slope of line = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-4-0}{0-3}=\frac{-4}{-3}=\frac{4}{3}\)

(iii) Required line passes through O(0, 0) = (x1, y1) and A(-2, 1) = (x2, y2) say.
Slope of line OA = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-0}{-2-0}=\frac{1}{-2}\) = \(\frac{-1}{2}\)

Question 3.
Find the value of k:
(i) if the slope of the line passing through the points (3, 4), (5, k) is 9.
(ii) the points (1, 3), (4, 1), (3, k) are collinear.
(iii) the point P(1, k) lies on the line passing through the points A(2, 2) and B(3, 3).
Solution:
(i) Let P(3, 4), Q(5, k).
Slope of PQ = 9 …….[Given]
∴ \(\frac{\mathrm{k}-4}{5-3}\) = 9
∴ \(\frac{\mathrm{k}-4}{2}\) = 9
∴ k – 4 = 18
∴ k = 22

(ii) The points A(1, 3), B(4, 1) and C(3, k) are collinear.
∴ Slope of AB = Slope of BC
∴ \(\frac{1-3}{4-1}=\frac{k-1}{3-4}\)
∴ \(\frac{-2}{3}=\frac{\mathrm{k}-1}{-1}\)
∴ 2 = 3k – 3
∴ k = \(\frac{5}{3}\)

(iii) Given, point P(1, k) lies on the line joining A(2, 2) and B(3, 3).
∴ Slope of AB = Slope of BP
∴ \(\frac{3-2}{3-2}=\frac{3-k}{3-1}\)
∴ 1 = \(\frac{3-k}{2}\)
∴ 2 = 3 – k
∴ k = 1

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5

Question 4.
Reduce the equation 6x + 3y + 8 = 0 into slope-intercept form. Hence, find its slope.
Solution:
Given equation is 6x + 3y + 8 = 0, which can be written as
3y = -6x – 8
∴ y = \(\frac{-6 x}{3}-\frac{8}{3}\)
∴ y = -2x – \(\frac{8}{3}\)
This is of the form y = mx + c with m = -2
∴ y = -2x – \(\frac{8}{3}\) is in slope-intercept form with slope = -2

Question 5.
Verify that A(2, 7) is not a point on the line x + 2y + 2 = 0.
Solution:
Given equation is x + 2y + 2 = 0.
Substituting x = 2 and y = 7 in L.H.S. of given equation, we get
L.H.S. = x + 2y + 2
= 2 + 2(7) + 2
= 2 + 14 + 2
= 18
≠ R.H.S.
∴ Point A does not lie on the given line.

Question 6.
Find the X-intercept of the line x + 2y – 1 = 0.
Solution:
Given equation of the line is x + 2y – 1 = 0
To find the x-intercept, put y = 0 in given equation of the line
∴ x + 2(0) – 1 = 0
∴ x + 0 – 1 = 0
∴ x = 1
∴ X-intercept of the given line is 1.
Alternate method:
Given equation of the line is x + 2y – 1 = 0
i.e. x + 2y = 1
∴ \(\frac{x}{1}+\frac{y}{\frac{1}{2}}=1\)
Comparing with \(\frac{x}{\mathrm{a}}+\frac{y}{\mathrm{~b}}=1\), we get a = 1
X-intercept of the line is 1.

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5

Question 7.
Find the slope of the line y – x + 3 = 0.
Solution:
Equation of given line is y – x + 3 = 0
i.e. y = x – 3
Comparing with y = mx + c, we get
m = Slope = 1

Question 8.
Does point A(2, 3) lie on the line 3x + 2y – 6 = 0? Give reason.
Solution:
Given equation is 3x + 2y – 6 = 0.
Substituting x = 2 and y = 3 in L.H.S. of given equation, we get
L.H.S. = 3x + 2y – 6
= 3(2)+ 2(3) – 6
= 6
≠ R.H.S.
∴ Point A does not lie on the given line.

Question 9.
Which of the following lines passes through the origin?
(a) x = 2
(b) y = 3
(c) y = x + 2
(d) 2x – y = 0
Solution:
Any line passing through origin is of the form y = mx or ax + by = 0.
Here in the given option, 2x – y = 0 is in the form ax + by = 0.

Question 10.
Obtain the equation of the line which is:
(i) parallel to the X-axis and 3 units below it.
(ii) parallel to the Y-axis and 2 units to the left of it.
(iii) parallel to the X-axis and making an intercept of 5 on the Y-axis.
(iv) parallel to the Y-axis and making an intercept of 3 on the X-axis.
Solution:
(i) Equation of a line parallel to X-axis is y = k.
Since, the line is at a distance of 3 units below X-axis.
∴ k = -3
∴ the equation of the required line is y = -3
i.e., y + 3 = 0.

(ii) Equation of a line parallel to Y-axis is x = h.
Since, the line is at a distance of 2 units to the left of Y-axis.
∴ h = -2
∴ the equation of the required line is x = -2
i.e., x + 2 = 0.

(iii) Equation of a line parallel to X-axis with y-intercept ‘k’ is y = k.
Here, y-intercept = 5
∴ the equation of the required line is y = 5.

(iv) Equation of a line parallel to Y-axis with x-intercept ‘h’ is x = h.
Here, x-intercept = 3
∴ the equation of the required line is x = 3.

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5

Question 11.
Obtain the equation of the line containing the point:
(i) (2, 3) and parallel to the X-axis.
(ii) (2, 4) and perpendicular to the Y-axis.
(iii) (2, 5) and perpendicular to the X-axis.
Solution:
(i) Equation of a line parallel to X-axis is of the form y = k.
Since, the line passes through (2, 3).
∴ k = 3
∴ the equation of the required line is y = 3.

(ii) Equation of a line perpendicular to Y-axis
i.e., parallel to X-axis, is of the form y = k.
Since, the line passes through (2, 4).
∴ k = 4
∴ the equation of the required line is y = 4.

(iii) Equation of a line perpendicular to X-axis
i.e., parallel to Y-axis, is of the form x = h.
Since, the line passes through (2, 5).
∴ h = 2
∴ the equation of the required line is x = 2.

Question 12.
Find the equation of the line:
(i) having slope 5 and containing point A(-1, 2).
(ii) containing the point (2, 1) and having slope 13.
(iii) containing the point T(7, 3) and having inclination 90°.
(iv) containing the origin and having inclination 90°.
(v) through the origin which bisects the portion of the line 3x + 2y = 2 intercepted between the co-ordinate axes.
Solution:
(i) Given, slope (m) = 5 and the line passes through A(-1, 2).
Equation of the line in slope point form is y – y1 = m(x – x1)
∴ the equation of the required line is y – 2 = 5(x + 1)
∴ y – 2 = 5x + 5
∴ 5x – y + 7 = 0

(ii) Given, slope (m) = 13 and the line passes through (2, 1).
Equation of the line in slope point form is y – y1 = m(x – x1)
∴ the equation of the required line is y – 1 = 13(x – 2)
∴ y – 1 = 13x – 26
∴ 13x – y = 25.

(iii) Given, Inclination of line = θ = 90°
∴ the required line is parallel to Y-axis (or lies on the Y-axis.)
Equation of a line parallel to Y-axis is of the form x = h.
Since, the line passes through (7, 3).
∴ h = 7
∴ the equation of the required line is x = 7.

(iv) Given, Inclination of line = θ = 90°
∴ the required line is parallel to Y-axis (or lies on the Y-axis.)
Equation of a line parallel to Y-axis is of the form x = h.
Since, the line passes through origin (0, 0).
∴ h = 0
∴ the equation of the required line is x = 0.

(v) Given equation of the line is 3x + 2y = 2.
∴ \(\frac{3 x}{2}+\frac{2 y}{2}=1\)
∴ \(\frac{x}{\frac{2}{3}}+\frac{y}{1}=1\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5 Q12(v)
This equation is of the form \(\frac{x}{\mathrm{a}}+\frac{y}{\mathrm{~b}}=1\), with
a = \(\frac{2}{3}\), b = 1
∴ the line 3x + 2y = 2 intersects the X-axis at A(\(\frac{2}{3}\), 0) and Y-axis at B(0, 1).
Required line is passing through the midpoint of AB.
∴ Midpoint of AB = \(\left(\frac{\frac{2}{3}+0}{2}, \frac{0+1}{2}\right)=\left(\frac{1}{3}, \frac{1}{2}\right)\)
∴ Required line passes through (0, 0) and \(\left(\frac{1}{3}, \frac{1}{2}\right)\).
Equation of the line in two point form is
\(\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}\)
∴ the equation of the required line is
\(\frac{y-0}{\frac{1}{2}-0}=\frac{x-0}{\frac{1}{3}-0}\)
∴ 2y = 3x
∴ 3x – 2y = 0

Question 13.
Find the equation of the line passing through the points A(-3, 0) and B(0, 4).
Solution:
Since, the required line passes through the points A(-3, 0) and B(0, 4).
Equation of the line in two point form is
\(\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}\)
Here, (x1, y1) = (-3, 0) and (x2, y2) = (0, 4)
∴ the equation of the required line is
∴ \(\frac{y-0}{4-0}=\frac{x-(-3)}{0-(-3)}\)
∴ \(\frac{y}{4}=\frac{x+3}{3}\)
∴ 4x + 12 = 3y
∴ 4x – 3y + 12 = 0

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5

Question 14.
Find the equation of the line:
(i) having slope 5 and making intercept 5 on the X-axis.
(ii) having an inclination 60° and making intercept 4 on the Y-axis.
Solution:
(i) Since, the x-intercept of the required line is 5.
∴ it passes through (5, 0).
Also, slope(m) of the line is 5
Equation of the line in slope point form is y – y1 = m(x – x1)
∴ the equation of the required line is y – 0 = 5(x – 5)
∴ y = 5x – 25
∴ 5x – y – 25 = 0

(ii) Given, Inclination of line = θ = 60°
∴ Slope of the line (m) = tan θ
= tan 60°
= √3
and the y-intercept of the required line is 4.
∴ it passes through (0, 4).
Equation of the line in slope point form is y – y1 = m(x – x1)
∴ the equation of the required line is y – 4 = √3(x – 0)
∴ y – 4 = √3x
∴ √3x – y + 4 = 0

Question 15.
The vertices of a triangle are A(1, 4), B(2, 3), and C(1, 6). Find equations of
(i) the sides
(ii) the medians
(iii) Perpendicular bisectors of sides
(iv) altitudes of ∆ABC
Solution:
Vertices of ∆ABC are A(1, 4), B(2, 3), and C(1, 6)
(i) Equation of the line in two-point form is
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5 Q15(i)
Since, both the points A and C have same x co-ordinates i.e. 1
∴ the points A and C lie on a line parallel to Y-axis.
∴ the equation of side AC is x = 1.

(ii) Let D, E, and F be the midpoints of sides BC, AC, and AB respectively of ∆ABC.
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5 Q15(ii)
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5 Q15(ii).1

(iii) Slope of side BC = \(\left(\frac{6-3}{1-2}\right)=\left(\frac{3}{-1}\right)\) = -3
∴ Slope of perpendicular bisector of BC is \(\frac{1}{3}\) and the line passes through \(\left(\frac{3}{2}, \frac{9}{2}\right)\)
∴ Equation of the perpendicular bisector of side BC is \(\left(y-\frac{9}{2}\right)=\frac{1}{3}\left(x-\frac{3}{2}\right)\)
∴ \(\frac{2 y-9}{2}=\frac{1}{3}\left(\frac{2 x-3}{2}\right)\)
∴ 3(2y – 9) = (2x – 3)
∴ 2x – 6y + 24 = 0
∴ x – 3y + 12 = 0
Since, both the points A and C have the same x co-ordinates i.e. 1
∴ the points A and C lie on the line x = 1.
AC is parallel to Y-axis and therefore, the perpendicular bisector of side AC is parallel to X-axis.
Since, the perpendicular bisector of side AC passes through E(1, 5).
∴ the equation of the perpendicular bisector of side AC is y = 5.
Slope of side AB = \(\left(\frac{3-4}{2-1}\right)\) = -1
∴ Slope of perpendicular bisector of AB is 1 and the line passes through \(\left(\frac{3}{2}, \frac{7}{2}\right)\).
∴ Equation of the perpendicular bisector of side AB is \(\left(y-\frac{7}{2}\right)=1\left(x-\frac{3}{2}\right)\)
∴ \(\frac{2 y-7}{2}=\frac{2 x-3}{2}\)
∴ 2y – 7 = 2x – 3
∴ 2x – 2y + 4 = 0
∴ x – y + 2 = 0

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5

(iv) Let AX, BY and CZ be the altitudes through the vertices A, B, and C respectively of ∆ABC.
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5 Q15(iv)
Slope of BC = -3
∴ Slope of AX = \(\frac{1}{3}\) …..[∵ AX ⊥ BC]
Since, altitude AX passes through (1, 4) and has slope \(\frac{1}{3}\)
∴ equation of altitude AX is y – 4 = \(\frac{1}{3}\)(x – 1)
∴ 3y – 12 = x – 1
∴ x – 3y + 11 = 0
Since, both the points A and C have the same x co-ordinates i.e. 1
∴ the points A and C lie on the line x = 1.
AC is parallel to Y-axis and therefore, altitude BY is parallel to X-axis.
Since, the altitude BY passes through B(2, 3).
∴ the equation of altitude BY is y = 3.
Also, slope of AB = -1
∴ Slope of CZ = 1 …..[∵ CZ ⊥ AB]
Since, altitude CZ passes through (1, 6) and has slope 1
∴ equation of altitude CZ is y – 6 = 1(x – 1)
∴ y – 6 = x – 1
∴ x – y + 5 = 0