Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Balbharti Maharashtra State Board 11th Chemistry Important Questions Chapter 16 Chemistry in Everyday Life Important Questions and Answers.

Maharashtra State Board 11th Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 1.
Write a note on nutrients.
Answer:
Nutrients:

  • Nutrients are obtained from food and are used as a source of energy by the body.
  • The main nutrients obtained from food are carbohydrates, lipids, proteins, vitamins, minerals and water. Most nutrients are organic macromolecules.
  • Along with providing energy, these nutrients also regulate various body functions like growth, repair of damaged body tissues, etc.

The following table consists of different types of nutrients and their major sources.

Type of nutrient Sources
Carbohydrates Grains, fruits, vegetables, etc.
Proteins Meat, fish. eggs, dairy products, pulses, etc.
Lipids Dairy products, vegetable oil, animal fats, etc.
Vitamins Grains, fruits, vegetables, meat, fish, eggs, dairy products, pulses, etc.

Question 2.
What happens when proteins and carbohydrates present in foods are digested in presence of enzymes?
Answer:

  • Proteins and carbohydrates are organic polymeric macromolecules.
  • When food is digested in presence of enzymes, the polymeric carbohydrates and proteins break down into monomers, i.e., glucose and α-amino acids, respectively.

Question 3.
Quality of food changes on shelving. Explain.
Answer:

  • Enzymes are naturally present in all food materials.
  • Quality of food changes on shelving mostly due to enzyme action, chemical reactions with the environment and due to the action of microorganisms.

Question 4.
Give two beneficial effects of shelving of food in day to day life.
Answer:

  • Setting of milk into curd.
  • Raising flour dough to make bread.

[Note: These changes are brought about by action of microorganisms.]

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 5.
How are the chemical reactions of foodstuff with the environment controlled during storage?
Answer:

  • Primarily the oxygen and microorganisms in air are responsible for adverse effects on stored food.
  • The exposure of stored food to atmosphere is minimized by storing them in air tight container, evacuation or filling the container with N2 gas.
  • Rate of a chemical reaction decreases with lowering of temperature. Thus, refrigeration is useful for controlling chemical reaction of foodstuff with environment.
  • The reactions of foodstuff with environment are catalysed by enzymes. Due to boiling, the enzymes become denatured and the reactions are controlled.

Question 6.
What is the main aim of food preservation and food processing methods?
Answer:
Food preservation and food processing methods aim at prevention of undesirable changes and attempt to bring about desirable changes in food.

Question 7.
The melting points of unsaturated fats are lower. Give reason.
Answer:

  • The long carbon chains of unsaturated fatty acids contain one or more C=C double bonds which produces one or more ‘kinks’ in the chain. This prevent the molecules from packing closely together.
  • Also, the van der Waals forces between the unsaturated chains are weak.

Hence, the melting points of unsaturated fats are lower.

Question 8.
i. What are natural fats? Comment on their melting points.
ii. Explain how unsaturation affects the melting point and crystalline nature of fats.
Answer:
i. Natural fats are mixtures of triglycerides. They do not have sharp melting points and melt over a range of temperatures.

ii. Effect of unsaturation:

  • The more unsaturated the fat (i.e., the presence of C=C bonds), lower is its melting point.
  • Also, they will be less crystalline in nature.

Note: Naturals fats and their physical states

Mainly saturated fats Mainly monounsaturated fats Mainly polyunsaturated fats
Coconut fat/oil, butterfat, lard, margarine, Vanaspati ghee Olive oil, peanut oil, canola oil Safflower oil, sunflower oil, soybean oil, com oil, fish oil
Solid Liquid Liquid

Note: Molecular shapes of fats (A schematic representation):
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 1

Question 9.
Write a note on cis and trans form of unsaturated fats.
Answer:
Due to the presence of C=C double bonds, unsaturated fats can have two geometrical isomers, i.e., cis form and transform.
i. Cis form:

  • In the cis form of an unsaturated fatty acid, the two hydrogens on the two double bonded carbons are on the same side of the double bond.
  • It is the most common form of unsaturated fats.
  • Cis fats do not cause deposition of cholesterol in blood vessels and thus, decrease the chance of developing coronary heart disease.

ii. Transform:

  • In the transform of an unsaturated fatty acid, the two hydrogens on the two double bonded carbons are on the opposite sides of the double bond.
  • Trans fats are difficult to metabolize and may get deposited to dangerous levels in fatty tissues.
  • Large amount of trans unsaturated fats, increase the tendency of cholesterol getting deposited in the blood vessels leading to increased risk of cardiovascular disease.

[Note: Transform occurs only in animal fats and processed unsaturated fats.]

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 10.
In which form, fats are used to transport cholesterol in the body?
Answer:
Fats in the form of lipoprotein are used to transport cholesterol in the body.

Question 11.
Give reason: Excessive low-density lipoprotein (LDL) increases the risk of cardio vascular diseases.
Answer:
Excessive low-density lipoprotein (LDL) increases the risk of cardio vascular diseases because it causes deposition of cholesterol in blood vessels.

Question 12.
What does the term omega represent in unsaturated fatty acids? Explain with the help of an example.
Answer:
i. Omega denotes the last carbon of the carbon chain in unsaturated fatty acids.
ii. Depending upon the position of the double bond, there are several omega fatty acids such as omega-3 and omega-6 fatty acids.
iii. These names are given for the position of the double bond in a long carbon chain of the unsaturated fatty acid.
iv. Omega-3 fatty acids have C = C bond between the third and fourth carbon from the end of a carbon chain.
e.g. Linolenic acid (9,12,15-octadecatrienoic acid).
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 2

Question 13.
Do omega-3 and omega-6 fats have same effect on the body? Discuss the effects.
Answer:
No, omega-3 and omega-6 fats have different effects on the body.
Omega-3 fats are found to raise the high density lipoprotein, HDL (good cholesterol) level of blood whereas omega-6 fats are considered to increase the risk of high blood pressure.

Question 14.
State TRUE or FALSE. Correct the false statement.
i. Fats are triglycerides of fatty acids.
ii. Linolenic acid is an omega-3 fatty acid having four C = C double bonds in its structure.
iii. Omega-6 fats are considered to increase the risk of high blood pressure.
Answer:
i. True
ii. False
Linolenic acid is an omega-3 fatty acid having three C = C double bonds in its structure.
iii. True

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 15.
Name few sources of omega-3 fatty acids.
Answer:
Foods like walnuts, flaxseeds, chia seeds, soybean, cod liver oil are rich source of omega-3 fatty acids.

Question 16.
Draw the structure of vitamin E (tocopherol).
Answer:
Structure of vitamin E (tocopherol):
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 3

Question 17.
Give the sources of vitamin E.
Answer:
Vitamin E can be obtained from foods such as wheat germ, nuts, seeds, green leafy vegetables and oils like safflower oil.

Question 18.
What are synthetic antioxidants? Give an example.
Answer:
Synthetic antioxidant:

  • Synthetic antioxidants are chemicals that are synthesized in the laboratory and used as a substitute for natural antioxidants.
  • They delay the onset of oxidant or slow down the rate of oxidation of foodstuff.
  • They are added as additives to increase the shelf life of packed foods.
  • Common structural units found in synthetic antioxidants are phenolic -OH group and tertiary butyl group.
    e.g. BHT, which is 3,5-di-tert-butyl-4-hydroxytoluene.

Question 19.
Write a short note on BHT.
Answer:
1. BHT (butylated hydroxytoluene) is a synthetic antioxidant.
2. It is used as an additive to increase the shelf life of packed foods.
3. Structure of BHT contains a phenolic – OH group (which is responsible for its antioxidant properties) and tertiary butyl group.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 4
IUPAC name: 3,5-Di-tert-butyl-4-hydroxytoluene

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 20.
Define the term: Drug
Answer:
A chemical which interacts with biomolecules such as carbohydrates, lipids, proteins and nuclei acids and produces a biological response is called drug.

Question 21.
i. Which type of drug is used as medicine?
ii. What does a medicine contain?
iii. What are medicines used for?
Answer:
i. A drug having therapeutic and useful biological response is used as medicine.
ii. A medicine contains a drug as its active ingredient. Besides, it contains some additional chemicals which make the drug suitable for its use as medicine.
iii. Medicines are used in diagnosis, prevention and treatment of a disease.
[Note: Drugs being foreign substances in a body, often give rise to undesirable, adverse side effects.]

Question 22.
Explain the following terms:
i. Drug design
ii. Generic medicines
Answer:
i. Drug design is an important branch of medicinal chemistry which aims at synthesis of new molecules having better biological response. Now-a-days, there is an increasing trend in drug design to take cognizance of traditional medical knowledge such as Ayurvedic medicine or natural materials to discover new drugs.

ii. The drug manufacturing companies usually have a patent for drugs which are sold with the brand name. After the expiry of patent, the drug can be sold in the name of its active ingredient. These are called generic medicines.

Question 23.
What are analgesics? Explain their mode of action.
Answer:
Analgesics:

  • Drugs which give relief from pain are called analgesics.
    e.g. Aspirin, paracetamol
  • Most of the analgesics are anti-inflammatory drugs, which kill pain by reducing inflammation or swelling.

Question 24.
Mention the medicinal properties of salicylic acid.
Answer:
Salicylic acid has pain-killing and fever reducing properties.

Question 25.
i. What is aspirin? Write its use.
ii. Mention its side effect.
Answer:
i. Aspirin is acetyl derivative of salicylic acid.
It is widely used as an analgesic.
ii. It has a fewer side effects than salicylic acid. However, it retains stomach irritating side effects of salicylic acid.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 26.
Draw the structure of salicylic acid and write its IUPAC name.
Answer:
Structure of salicylic acid:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 5
IUPAC name: 2-Hydroxybenzoic acid

Question 27.
Draw structures of following analgesics and write their molecular formula,
i. Aspirin
ii. Paracetamol
Answer:
i. Structure and molecular formula of aspirin:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 6

ii. Structure and molecular formula of paracetamol:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 7

Question 28.
What are antimicrobial drugs?
Answer:
Any drug that inhibits or kills microbial cells that include bacteria, fungi and viruses, are called antimicrobial drugs.

Question 29.
Give a brief classification of antimicrobials.
Answer:
Antimicrobials are classified into the following three categories:
i. Disinfectants:

  • Disinfectants are non-selective antimicrobials, which kill a wide range of microorganisms including bacteria.
  • Disinfectants are used on non-living surfaces. For example, floors, instruments, sanitary ware, etc.

ii. Antiseptics:
Antiseptics are used to sterilise surfaces of living tissue when the risk of infection is very high, such as during surgery or on wounds.

iii. Antibiotics:
Antibiotics are a type of antimicrobial designed to target bacterial infections within or on the body.

Question 30.
Name the ingredients present in dettol.
Answer:
Chloroxylenol is the active ingredient of dettol. The other ingredients of dettol are isopropyl alcohol, pine oil, castor oil soap, caramel and water.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 31.
State whether the following statements are TRUE or FALSE. Correct the statement, if false.
i. A concentrated solution of boric acid is used as an antiseptic for eyes.
ii. Iodoform is a powerful antiseptic.
iii. The active ingredient present in dettol is chloroxylenol.
Answer:
i. False
A dilute aqueous solution of boric acid is used as an antiseptic for eyes.
ii. True
iii. True

Question 32.
Instead of phenol, it’s chloro derivatives are used as antiseptics. Explain.
Answer:

  • A dilute aqueous solution of phenol has antiseptic properties but it is found to be corrosive in nature.
  • Many chloro derivatives of phenol are more potent antiseptic and have less corrosive effects than phenol, if used in lower concentrations.

Thus, instead of phenol it’s chloro derivatives are used as antiseptics.

Question 33.
Draw the structures of the following compounds and name the class of antimicrobials to which they belong.
i. Thymol
ii. p-Chloro-o-benzylphenol
iii. 2,4,6-Trichlorophenol
Answer:
i. Thymol: It is an antiseptic.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 8
ii. p-Chloro-o-benzylphenol: It is a disinfectant. OH
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 9
iii. 2,4,6-Trichlorophenol: It is an antiseptic.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 10

Question 34.
What are antibiotics?
Answer:
Antibiotics are drugs which are purely synthetic or obtained from microorganisms like bacteria, fungi or moulds.
e.g. Salvarsan, Prontosil

Question 35.
Name the first effective drug used in treatment of syphilis.
Answer:
Salvarsan was the first effective drug used in treatment of syphilis.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 36.
Name the following:
i. An effective diazo antibacterial drug.
ii. One example of a sulpha drug.
Answer:
i. Prontosil
ii. Sulphapyridine

Question 37.
Name the diazo antibacterial, which gets converted to sulphanilamide in the body.
Answer:
Prontosil is an effective diazo antibacterial, which gets converted to a simpler compound, sulphanilamide, in the body.

Question 38.
Draw the structure of the following:
i. An azodye
ii. Prontosil
iii. Sulphapyridine
iv. Sulphanilamide
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 11
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 12

Question 39.
Draw the general structure of penicillin.
Answer:
General structure of penicillin:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 13

Question 40.
Draw the structure of chloramphenicol.
Answer:
Structure of chloramphenicol:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 14

Question 41.
Give classification of antibiotics.
Answer:
Antibiotics can be of three types, which are as given below:

  • Broad spectrum antibiotics: They are effective against wide range of bacteria.
  • Narrow spectrum antibiotics: They are effective against one group of bacteria.
  • Limited spectrum antibiotics: They are effective against a single organism.

[Note: Antibiotics can be synthetic, semisynthetic or of microbial origin.]

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 42.
State the disadvantage of broad spectrum antibiotics.
Answer:
The disadvantage of broad spectrum antibiotics is that they also kill the useful bacteria in the alimentary canal.

Question 43.
Complete the following table.

Plant Medicinal property Active ingredient
Cinnamon Antimicrobial for cold ————
———— ———— Eugenol
Citrus fruits Antioxidant ————
Wintergreen ———— ————
Indian gooseberry (amla) Antidiabetic, antimicrobial, antioxidant Vitamin C, Gallic acid

Answer:

Plant Medicinal property Active ingredient
Cinnamon Antimicrobial for cold Cinnamaldehyde
Clove Antimicrobial and analgesic Eugenol
Citrus fruits Antioxidant Vitamin C (ascorbic acid)
Wintergreen Analgesic Methyl salicylate
Indian gooseberry (amla) Antidiabetic, antimicrobial, antioxidant Vitamin C, Gallic acid

Question 44.
Draw the structures of following:
i. Curcumin
ii. Methyl salicylate
iii. Cinnamaldehyde
iv. Eugenol
v. Vitamin C
vi. Gallic acid
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 15
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 16
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 17

Question 45.
What are cleansing agents?
Answer:
Cleansing agents are substances which are used to remove stain, dirt or clutter on surfaces.

Question 46.
What are the different types of cleansing agents?
Answer:
Commercially cleansing agents are of the following two main types, depending on their chemical composition:

  • Soaps
  • Synthetic detergents

[Note: Cleansing agents may be natural or synthetically developed.]

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 47.
What are soaps? How soaps are prepared?
Answer:
Soaps:
i. Soaps are sodium or potassium salts of long chain fatty acids.
ii. They are obtained by alkaline hydrolysis of natural oils and fats with NaOH or KOH. This is called saponification reaction.
iii. Chemically, oils are triesters of long chain fatty acids and propane-1,2,3-triol (commonly known as glycerol or glycerin).
iv. Saponification of oil produces soap and glycerol as shown in the reaction below:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 18

Question 48.
Give reason: Potassium soaps can be used for bathing purpose.
Answer:

  • The quality of soap depends upon the nature of oil and alkali used.
  • Potassium soaps (toilet soaps) are prepared by using better grades of oil and KOH. Therefore, they are soft to skin.
  • Also, care is taken to remove excess of alkali which may otherwise cause skin irritation.

Hence, potassium soaps can be used for bathing purpose.

Question 49.
Laundry soaps are made using which alkali?
Answer:
Laundry soaps are made using alkali NaOH (sodium hydroxide).

Question 50.
Give examples of fillers used in making of laundry soaps.
Answer:
Laundry soaps contain fillers like sodium rosinate (a lathering agent), sodium silicate, borax, sodium and trisodium phosphate.

Question 51.
Explain why soaps become inactive in hard water.
Answer:
i. Soaps form scum in hard water and become inactive.
ii. This is because, hard water contains dissolved salts of calcium and magnesium. Soaps react with these salts to form insoluble calcium and magnesium salts of fatty acids.
iii. This insoluble substance is termed as scum which sticks to the fabric.
iv. Reaction of soap with calcium salt (CaCl2) from hard water is given below:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 19

Question 52.
Which chemical can be used for softening of hard water? Why?
Answer:

  • Washing soda (Na2CO3) can be used for softening of hard water.
  • This is because, washing soda precipitates the dissolved calcium salts as carbonate and helps the soap action by softening of water.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Question 53.
i. What are synthetic detergents?
ii. Mention their different types.
Answer:
i. Synthetic detergents are manmade cleansing agents designed to use in soft water as well as in hard water.
ii. There are three types of synthetic detergents which are as follows:

  • Anionic detergents
  • Cationic detergents
  • Nonionic detergents

Question 54.
Complete the following table:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 20
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 21

Question 55.
Give an example of detergent used as:
i. Additive in toothpaste
ii. Used as germicide
Answer:
i. Additive in toothpaste: Sodium lauryl sulphate, CH3(CH2)10CH2O\(\mathrm{SO}_{3}^{-}\)Na+
ii. Used as germicide: Ethyltrimethylammonium bromide, [CH3(CH5)15 – N+(CH3)3]Br.

Question 56.
Explain cleansing mechanism of soaps and detergents.
Answer:
i. Soaps and detergents bring about cleansing of dirty, greasy surfaces by the same mechanism.
ii. Dirt is held at the surface by means of oily matter, and therefore cannot get washed with water.
iii. The molecules of soaps and detergent have two parts. One part is polar called head and the other part is long nonpolar chain of carbons called tail.
iv. The hydrophilic polar head can dissolve in water which is a polar solvent, while the hydrophobic nonpolar tail dissolve in oil/fat/grease.
v. The molecules of soap/detergent are arranged around the oily droplet such that the nonpolar tail points towards the central oily drop while the polar head is directed towards the water.
vi. Thus, micelles of soap/detergent are formed surrounding the oil drops, which are removed in the washing process.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 22

Question 57.
Compound “X” having the following structure is used as synthetic antioxidant to increase the shelf life of packed foods.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 23
i. What is the molecular formula of compound “X”?
ii. Identify the structural unit responsible for antioxidant activity of “X”.
iii. Give one example of a compound with structure, similar to compound “X”, which is commonly used as synthetic antioxidant.
iv. Give the IUPAC name of compound “X”.
Answer:
i. Molecular formula: C11H16O2
ii. Structural unit responsible for antioxidant activity of compound “X” is phenolic -OH group.
iii. Butylated hydroxytoluene (BHT) is commonly used synthetic antioxidant similar to compound “X”.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 24
iv. The IUPAC name of compound “X” is 2-tert-butyl-4-methoxyphenol.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

Multiple Choice Questions

1. BHT as a food additive act as …………….
(A) antioxidant
(B) flavouring agent
(C) colouring agent
(D) emulsifier
Answer:
(A) antioxidant

2. The structure of antioxidant BHT is …………….
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 25
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 26
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 27

3. The molecular formula of aspirin is …………….
(A) C8H8O3
(B) C9H8O4
(C) C9H10O4
(D) C9H8O3
Answer:
(B) C9H8O4

4. Aspirin is a/an …………….
(A) antibiotic
(B) analgesic
(C) antimicrobial
(D) disinfectant
Answer:
(B) analgesic

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

5. The CORRECT structure of the drug paracetamol is …………….
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 28
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 29

6. Which of the following is used as a weak antiseptic for eyes?
(A) Tincture of iodine
(B) Dilute solution of dettol
(C) Iodoform
(D) Dilute aqueous solution of boric acid
Answer:
(D) Dilute aqueous solution of boric acid

7. The structure of thymol is …………….
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 30
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life 31

8. Salvarsan is arsenic containing drug which was first used for the treatment of …………….
(A) syphilis
(B) typhoid
(C) ulcer
(D) dysentery
Answer:
(A) syphilis

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

9. The linkage present in salvarsan is …………….
(A) -N = N –
(B) – As = As –
(C) -S – S –
(D) – O – O –
Answer:
(B) – As = As –

10. Which of following contains – N = N – in its structure?
(A) Chloramphenicol
(B) Sulphapyridine
(C) Salvarsan
(D) Prontosil
Answer:
(D) Prontosil

11. Which of the following contains – As = As – linkage?
(A) Salvarsan
(B) Prontosil
(C) Sulphanilamide
(D) Sulphapyridine
Answer:
(A) Salvarsan

12. Which of the following element is NOT present in penicillin?
(A) O
(B) S
(C) P
(D) N
Answer:
(C) P

13. Methyl salicylate having analgesic properties is obtained from which of the following plant?
(A) Clove
(B) Indian gooseberry
(C) Wintergreen
(D) Cinnamon
Answer:
(C) Wintergreen

Maharashtra Board Class 11 Chemistry Important Questions Chapter 16 Chemistry in Everyday Life

14. Hydrolysis of oil by aqueous alkali is called …………….
(A) esterification
(B) saponification
(C) acetylation
(D) carboxylation
Answer:
(B) saponification

15. Sodium lauryl sulphate is an example of …………….
(A) soap
(B) cationic detergent
(C) anionic detergent
(D) nonionic detergent
Answer:
(C) anionic detergent

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 6 Differential Equations Ex 6.3 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3

Question 1.
In each of the following examples verify that the given expression is a solution of the corresponding differential equation.
(i) xy = log y + c; \(\frac{d y}{d x}=\frac{y^{2}}{1-x y}\)
Solution:
xy = log y + c
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q1 (i)
Hence, xy = log y + c is a solution of the D.E.
\(\frac{d y}{d x}=\frac{y^{2}}{1-x y^{\prime}}, x y \neq 1\)

(ii) y = (sin-1x)2 + c; (1 – x2) \(\frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=2\)
Solution:
y = (sin-1 x)2 + c …….(1)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q1 (ii)
Differentiating again w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q1 (ii).1

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3

(iii) y = e-x + Ax + B; \(e^{x} \frac{d^{2} y}{d x^{2}}=1\)
Solution:
y = e-x + Ax + B
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q1 (iii)
∴ \(e^{x} \frac{d^{2} y}{d x^{2}}=1\)
Hence, y = e-x + Ax + B is a solution of the D.E.
\(e^{x} \frac{d^{2} y}{d x^{2}}=1\)

(iv) y = xm; \(x^{2} \frac{d^{2} y}{d x^{2}}-m x \frac{d y}{d x}+m y=0\)
Solution:
y = xm
Differentiating twice w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q1 (iv)
This shows that y = xm is a solution of the D.E.
\(x^{2} \frac{d^{2} y}{d x^{2}}-m x \frac{d y}{d x}+m y=0\)

(v) y = a + \(\frac{b}{x}\); \(x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=0\)
Solution:
y = a + \(\frac{b}{x}\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q1 (v)
Differentiating again w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q1 (v).1
Hence, y = a + \(\frac{b}{x}\) is a solution of the D.E.
\(x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=0\)

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3

(vi) y = eax; x \(\frac{d y}{d x}\) = y log y
Solution:
y = eax
log y = log eax = ax log e
log y = ax …….(1) ……..[∵ log e = 1]
Differentiating w.r.t. x, we get
\(\frac{1}{y} \cdot \frac{d y}{d x}\) = a × 1
∴ \(\frac{d y}{d x}\) = ay
∴ x \(\frac{d y}{d x}\) = (ax)y
∴ x \(\frac{d y}{d x}\) = y log y ………[By (1)]
Hence, y = eax is a solution of the D.E.
x \(\frac{d y}{d x}\) = y log y.

Question 2.
Solve the following differential equations.
(i) \(\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q2 (i)

(ii) log(\(\frac{d y}{d x}\)) = 2x + 3y
Solution:
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q2 (ii)

(iii) y – x \(\frac{d y}{d x}\) = 0
Solution:
y – x \(\frac{d y}{d x}\) = 0
∴ x \(\frac{d y}{d x}\) = y
∴ \(\frac{1}{x} d x=\frac{1}{y} d y\)
Integrating both sides, we get
\(\int \frac{1}{x} d x=\int \frac{1}{y} d y\)
∴ log |x| = log |y| + log c
∴ log |x| = log |cy|
∴ x = cy
This is the general solution.

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3

(iv) sec2x . tan y dx + sec2y . tan x dy = 0
Solution:
sec2x . tan y dx + sec2y . tan x dy = 0
∴ \(\frac{\sec ^{2} x}{\tan x} d x+\frac{\sec ^{2} y}{\tan y} d y=0\)
Integrating both sides, we get
\(\int \frac{\sec ^{2} x}{\tan x} d x+\int \frac{\sec ^{2} y}{\tan y} d y=c_{1}\)
Each of these integrals is of the type
\(\int \frac{f^{\prime}(x)}{f(x)} d x\) = log |f(x)| + c
∴ the general solution is
∴ log|tan x| + log|tan y | = log c, where c1 = log c
∴ log |tan x . tan y| = log c
∴ tan x . tan y = c
This is the general solution.

(v) cos x . cos y dy – sin x . sin y dx = 0
Solution:
cos x . cos y dy – sin x . sin y dx = 0
\(\frac{\cos y}{\sin y} d y-\frac{\sin x}{\cos x} d x=0\)
Integrating both sides, we get
∫cot y dy – ∫tan x dx = c1
∴ log|sin y| – [-log|cos x|] = log c, where c1 = log c
∴ log |sin y| + log|cos x| = log c
∴ log|sin y . cos x| = log c
∴ sin y . cos x = c
This is the general solution.

(vi) \(\frac{d y}{d x}\) = -k, where k is a constant.
Solution:
\(\frac{d y}{d x}\) = -k
∴ dy = -k dx
Integrating both sides, we get
∫dy = -k∫dx
∴ y = -kx + c
This is the general solution.

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3

(vii) \(\frac{\cos ^{2} y}{x} d y+\frac{\cos ^{2} x}{y} d x=0\)
Solution:
\(\frac{\cos ^{2} y}{x} d y+\frac{\cos ^{2} x}{y} d x=0\)
∴ y cos2y dy + x cos2x dx = 0
∴ \(x\left(\frac{1+\cos 2 x}{2}\right) d x+y\left(1+\frac{\cos 2 y}{2}\right) d y=0\)
∴ x(1 + cos 2x) dx + y(1 + cos 2y) dy = 0
∴ x dx + x cos 2x dx + y dy+ y cos 2y dy = 0
Integrating both sides, we get
∫x dx + ∫y dy + ∫x cos 2x dx + ∫y cos 2y dy = c1 ……..(1)
Using integration by parts
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q2 (vii)
Multiplying throughout by 4, this becomes
2x2 + 2y2 + 2x sin 2x + cos 2x + 2y sin 2y + cos 2y = 4c1
∴ 2(x2 + y2) + 2(x sin 2x + y sin 2y) + cos 2y + cos 2x + c = 0, where c = -4c1
This is the general solution.

(viii) \(y^{3}-\frac{d y}{d x}=x^{2} \frac{d y}{d x}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q2 (viii)

(ix) 2ex+2y dx – 3 dy = 0
Solution:
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q2 (ix)

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3

(x) \(\frac{d y}{d x}\) = ex+y + x2 ey
Solution:
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q2 (x)
∴ 3ex + 3e-y + x3 = -3c1
∴ 3ex + 3e-y + x3 = c, where c = -3c1
This is the general solution.

Question 3.
For each of the following differential equations, find the particular solution satisfying the given condition:
(i) 3ex tan y dx + (1 + ex) sec2y dy = 0, when x = 0, y = π
Solution:
3ex tan y dx + (1 + ex) sec2y dy = 0
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q3 (i)

(ii) (x – y2x) dx – (y + x2y) dy = 0, when x = 2, y = 0
Solution:
(x – y2x) dx – (y + x2y) dy = 0
∴ x(1 – y2) dx – y(1 + x2) dy = 0
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q3 (ii)
When x = 2, y = 0, we have
(1 + 4)(1 – 0) = c
∴ c = 5
∴ the particular solution is (1 + x2)(1 – y2) = 5.

(iii) y(1 + log x) \(\frac{d x}{d y}\) – x log x = 0, y = e2, when x = e
Solution:
y(1 + log x) \(\frac{d x}{d y}\) – x log x = 0
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q3 (iii)
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q3 (iii).1

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3

(iv) (ey + 1) cos x + ey sin x \(\frac{d y}{d x}\) = 0, when x = \(\frac{\pi}{6}\), y = 0
Solution:
(ey + 1) cos x + ey sin x \(\frac{d y}{d x}\) = 0
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q3 (iv)
\(\int \frac{f^{\prime}(x)}{f(x)} d x\) = log|f(x)| + c
∴ from (1), the general solution is
log|sin x| + log|ey + 1| = log c, where c1 = log c
∴ log|sin x . (ey + 1)| = log c
∴ sin x . (ey + 1) = c
When x = \(\frac{\pi}{4}\), y = 0, we get
\(\left(\sin \frac{\pi}{4}\right)\left(e^{0}+1\right)=c\)
∴ c = \(\frac{1}{\sqrt{2}}\)(1 + 1) = √2
∴ the particular solution is sin x . (ey + 1) = √2

(v) (x + 1) \(\frac{d y}{d x}\) – 1 = 2e-y, y = 0, when x = 1
Solution:
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q3 (v)
This is the general solution.
Now, y = 0, when x = 1
∴ 2 + e0 = c(1 + 1)
∴ 3 = 2c
∴ c = \(\frac{3}{2}\)
∴ the particular solution is 2 + ey = \(\frac{3}{2}\) (x + 1)
∴ 2(2 + ey) = 3(x + 1).

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3

(vi) cos(\(\frac{d y}{d x}\)) = a, a ∈ R, y (0) = 2
Solution:
cos(\(\frac{d y}{d x}\)) = a
∴ \(\frac{d y}{d x}\) = cos-1 a
∴ dy = (cos-1 a) dx
Integrating both sides, we get
∫dy = (cos-1 a) ∫dx
∴ y = (cos-1 a) x + c
∴ y = x cos-1 a + c
This is the general solution.
Now, y(0) = 2, i.e. y = 2,
when x = 0, 2 = 0 + c
∴ c = 2
∴ the particular solution is
∴ y = x cos-1 a + 2
∴ y – 2 = x cos-1 a
∴ \(\frac{y-2}{x}\) = cos-1a
∴ cos(\(\frac{y-2}{x}\)) = a

Question 4.
Reduce each of the following differential equations to the variable separable form and hence solve:
(i) \(\frac{d y}{d x}\) = cos(x + y)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q4 (i)
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q4 (i).1

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3

(ii) (x – y)2 \(\frac{d y}{d x}\) = a2
Solution:
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q4 (ii)
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q4 (ii).1

(iii) x + y \(\frac{d y}{d x}\) = sec(x2 + y2)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q4 (iii)
Integrating both sides, we get
∫cos u du = 2 ∫dx
∴ sin u = 2x + c
∴ sin(x2 + y2) = 2x + c
This is the general solution.

(iv) cos2(x – 2y) = 1 – 2 \(\frac{d y}{d x}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q4 (iv)
Integrating both sides, we get
∫dx = ∫sec2u du
∴ x = tan u + c
∴ x = tan(x – 2y) + c
This is the general solution.

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3

(v) (2x – 2y + 3) dx – (x – y + 1) dy = 0, when x = 0, y = 1
Solution:
(2x – 2y + 3) dx – (x – y + 1) dy = 0
∴ (x – y + 1) dy = (2x – 2y + 3) dx
∴ \(\frac{d y}{d x}=\frac{2(x-y)+3}{(x-y)+1}\) ………(1)
Put x – y = u, Then \(1-\frac{d y}{d x}=\frac{d u}{d x}\)
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.3 Q4 (v)
∴ u – log|u + 2| = -x + c
∴ x – y – log|x – y + 2| = -x + c
∴ (2x – y) – log|x – y + 2| = c
This is the general solution.
Now, y = 1, when x = 0.
∴ (0 – 1) – log|0 – 1 + 2| = c
∴ -1 – o = c
∴ c = -1
∴ the particular solution is
(2x – y) – log|x – y + 2| = -1
∴ (2x – y) – log|x – y + 2| + 1 = 0

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 6 Differential Equations Ex 6.2 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2

Question 1.
Obtain the differential equation by eliminating the arbitrary constants from the following equations:
(i) x3 + y3 = 4ax
Solution:
x3 + y3 = 4ax ……..(1)
Differentiating both sides w.r.t. x, we get
3x2 + 3y2 \(\frac{d y}{d x}\) = 4a × 1
∴ 3x2 + 3y2 \(\frac{d y}{d x}\) = 4a
Substituting the value of 4a in (1), we get
x3 + y3 = (3x2 + 3y2 \(\frac{d y}{d x}\)) x
∴ x3 + y3 = 3x3 + 3xy2 \(\frac{d y}{d x}\)
∴ 2x3 + 3xy2 \(\frac{d y}{d x}\) – y3 = 0
This is the required D.E.

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2

(ii) Ax2 + By2 = 1
Solution:
Ax2 + By2 = 1
Differentiating both sides w.r.t. x, we get
A × 2x + B × 2y \(\frac{d y}{d x}\) = 0
∴ Ax + By \(\frac{d y}{d x}\) = 0 ……..(1)
Differentiating again w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q1 (ii)
Substituting the value of A in (1), we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q1 (ii).1
This is the required D.E.

Alternative Method:
Ax2 + By2 = 1 ……..(1)
Differentiating both sides w.r.t. x, we get
A × 2x + B × 2y \(\frac{d y}{d x}\) = 0
∴ Ax + By \(\frac{d y}{d x}\) = 0 ……….(2)
Differentiating again w.r.t. x, we get,
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q1 (ii).2
The equations (1), (2) and (3) are consistent in A and B.
∴ determinant of their consistency is zero.
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q1 (ii).3
This is the required D.E.

(iii) y = A cos(log x) + B sin(log x)
Solution:
y = A cos(log x) + B sin (log x) ……. (1)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q1 (iii)

(iv) y2 = (x + c)3
Solution:
y2 = (x + c)3
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q1 (iv)
This is the required D.E.

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2

(v) y = Ae5x + Be-5x
Solution:
y = Ae5x + Be-5x ……….(1)
Differentiating twice w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q1 (v)
This is the required D.E.

(vi) (y – a)2 = 4(x – b)
Solution:
(y – a)2 = 4(x – b)
Differentiating both sides w.r.t. x, we get
2(y – a) . \(\frac{d}{d x}\)(y – a) = 4 \(\frac{d}{d x}\)(x – b)
∴ 2(y – a) . (\(\frac{d y}{d x}\) – 0) = 4(1 – 0)
∴ 2(y – a) \(\frac{d y}{d x}\) = 4
∴ (y – a) \(\frac{d y}{d x}\) = 2 ……..(1)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q1 (vi)
This is the required D.E.

(vii) y = a + \(\frac{a}{x}\)
Solution:
y = a + \(\frac{a}{x}\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q1 (vii)
Substituting the value of a in (1), we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q1 (vii).1
This is the required D.E.

(viii) y = c1e2x + c2e5x
Solution:
y = c1e2x + c2e5x ………(1)
Differentiating twice w.r.t. x, we get
\(\frac{d y}{d x}\) = c1e2x × 2 + c2e5x × 5
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q1 (viii)
The equations (1), (2) and (3) are consistent in c1e2x and c2e5x
∴ determinant of their consistency is zero.
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q1 (viii).1
This is the required D.E.

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2

Alternative Method:
y = c1e2x + c2e5x
Dividing both sides by e5x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q1 (viii).2
This is the required D.E.

(ix) c1x3 + c2y2 = 5.
Solution:
c1x3 + c2y2 = 5 ……….(1)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q1 (ix)
Differentiating again w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q1 (ix).1
The equations (1), (2) and (3) in c1, c2 are consistent.
∴ determinant of their consistency is zero.
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q1 (ix).2
This is the required D.E.

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2

(x) y = e-2x(A cos x + B sin x)
Solution:
y = e-2x(A cos x + B sin x)
∴ e2x . y = A cos x + B sin x ………(1)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q1 (x)
Differentiating again w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q1 (x).1
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q1 (x).2
This is the required D.E.

Question 2.
Form the differential equation of family of lines having intercepts a and b on the coordinate axes respectively.
Solution:
The equation of the line having intercepts a and b on the coordinate axes respectively, is
\(\frac{x}{a}+\frac{y}{b}=1\) ……….(1)
where a and b are arbitrary constants.
[For different values of a and b, we get, different lines. Hence (1) is the equation of family of lines.]
Differentiating (1) w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q2
Differentiating again w.r.t. x, we get \(\frac{d^{2} y}{d x^{2}}=0\)
This is the required D.E.

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2

Question 3.
Find the differential equation all parabolas having length of latus rectum 4a and axis is parallel to the X-axis.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q3
Let A(h, k) be the vertex of the parabola whose length of latus rectum is 4a.
Then the equation of the parabola is (y – k)2 = 4a (x – h), where h and k are arbitrary constants.
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q3.1
Differentiating again w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q3.2
This is the required D.E.

Question 4.
Find the differential equation of the ellipse whose major axis is twice its minor axis.
Solution:
Let 2a and 2b be lengths of major axis and minor axis of the ellipse.
Then 2a = 2(2b)
∴ a = 2b
∴ equation of the ellipse is
\(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\)
i.e., \(\frac{x^{2}}{(2 b)^{2}}+\frac{y^{2}}{b^{2}}=1\)
∴ \(\frac{x^{2}}{4 b^{2}}+\frac{y^{2}}{b^{2}}=1\)
∴ x2 + 4y2 = 4b2
Differentiating w.r.t. x, we get
2x + 4 × 2y \(\frac{d y}{d x}\) = 0
∴ x + 4y \(\frac{d y}{d x}\) = 0
This is the required D.E.

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2

Question 5.
Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.
Solution:
The equation of the line parallel to the line 2x + 3y + 4 = 0 is 2x + 3y + c = 0, where c is an arbitrary constant.
Differentiating w.r.t. x, we get
2 × 1 + 3 \(\frac{d y}{d x}\) + 0 = 0
∴ 3 \(\frac{d y}{d x}\) + 2 = 0
This is the required D.E.

Question 6.
Find the differential equation of all circles having radius 9 and centre at point (h, k).
Solution:
Equation of the circle having radius 9 and centre at point (h, k) is
(x – h)2 + (y – k)2 = 81 …… (1)
where h and k are arbitrary constant.
Differentiating (1) w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q6
Differentiating again w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q6.1
From (2), x – h = -(y – k) \(\frac{d y}{d x}\)
Substituting the value of (x – h) in (1), we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q6.2
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q6.3
This is the required D.E.

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2

Question 7.
Form the differential equation of all parabolas whose axis is the X-axis.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q7
The equation of the parbola whose axis is the X-axis is
y2 = 4a(x – h) …… (1)
where a and h are arbitrary constants.
Differentiating (1) w.r.t. x, we get
2y \(\frac{d y}{d x}\) = 4a(1 – 0)
∴ y \(\frac{d y}{d x}\) = 2a
Differentiating again w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.2 Q7.1
This is the required D.E.

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.1

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 6 Differential Equations Ex 6.1 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.1

1. Determine the order and degree of each of the following differential equations:

Question (i).
\(\frac{d y}{d x^{2}}+X\left(\frac{d y}{d x}\right)+y=2 \sin x\)
Solution:
The given D.E. is \(\frac{d y}{d x^{2}}+X\left(\frac{d y}{d x}\right)+y=2 \sin x\)
This D.E. has highest order derivative \(\frac{d^{2} y}{d x^{2}}\) with power 1.
∴ the given D.E. is of order 2 and degree 1.

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.1

Question (ii).
\(\sqrt[3]{1+\left(\frac{d y}{d x}\right)^{2}}=\frac{d^{2} y}{d x^{2}}\)
Solution:
The given D.E. is \(\sqrt[3]{1+\left(\frac{d y}{d x}\right)^{2}}=\frac{d^{2} y}{d x^{2}}\)
On cubing both sides, we get
\(1+\left(\frac{d y}{d x}\right)^{2}=\left(\frac{d^{2} y}{d x^{2}}\right)^{3}\)
This D.E. has highest order derivative \(\frac{d^{2} y}{d x^{2}}\) with power 3.
∴ the given D.E. is of order 2 and degree 3.

Question (iii).
\(\frac{d y}{d x}=\frac{2 \sin x+3}{\frac{d y}{d x}}\)
Solution:
The given D.E. is \(\frac{d y}{d x}=\frac{2 \sin x+3}{\frac{d y}{d x}}\)
∴ \(\left(\frac{d y}{d x}\right)^{2}\) = 2 sin x + 3
This D.E. has highest order derivative \(\frac{d y}{d x}\) with power 2.
∴ the given D.E. is of order 1 and degree 2.

Question (iv).
\(\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+x=\sqrt{1+\frac{d^{3} y}{d x^{3}}}\)
Solution:
The given D.E. is \(\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+x=\sqrt{1+\frac{d^{3} y}{d x^{3}}}\)
On squaring both sides, we get
\(\left(\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+x\right)^{2}=1+\frac{d^{3} y}{d x^{3}}\)
This D.E. has highest order derivative \(\frac{d^{3} y}{d x^{3}}\) with power 1.
∴ the given D.E. has order 3 and degree 1.

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.1

Question (v).
\(\frac{d^{2} y}{d t^{2}}+\left(\frac{d y}{d t}\right)^{2}+7 x+5=0\)
Solution:
The given D.E. is \(\frac{d^{2} y}{d t^{2}}+\left(\frac{d y}{d t}\right)^{2}+7 x+5=0\)
This D.E. has highest order derivative \(\frac{d^{2} y}{d x^{2}}\) with power 1.
∴ the given D.E. has order 2 and degree 1.

Question (vi).
(y”‘)2 + 3y” + 3xy’ + 5y = 0
Solution:
The given D.E. is (y”‘)2 + 3y” + 3xy’ + 5y = 0
This can be written as:
\(\left(\frac{d^{3} y}{d x^{3}}\right)^{2}+3 \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+5 y=0\)
This D.E. has highest order derivative \(\frac{d^{3} y}{d x^{3}}\) with power 2.
∴ The given D.E. has order 3 and degree 2.

Question (vii).
\(\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\cos \left(\frac{d y}{d x}\right)=0\)
Solution:
The given D.E. is \(\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\cos \left(\frac{d y}{d x}\right)=0\)
This D.E. has highest order derivative \(\frac{d^{2} y}{d x^{2}}\)
∴ order = 2
Since this D.E. cannot be expressed as a polynomial in differential coefficients, the degree is not defined.

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.1

Question (viii).
\(\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}=8 \frac{d^{2} y}{d x^{2}}\)
Solution:
The given D.E. is \(\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}=8 \frac{d^{2} y}{d x^{2}}\)
On squaring both sides, we get
\(\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=8^{2} \cdot\left(\frac{d^{2} y}{d x^{2}}\right)^{2}\)
This D.E. has highest order derivative \(\frac{d^{2} y}{d x^{2}}\) with power 2.
∴ the given D.E. has order 2 and degree 2.

Question (ix).
\(\left(\frac{d^{3} y}{d x^{3}}\right)^{\frac{1}{2}} \cdot\left(\frac{d y}{d x}\right)^{\frac{1}{3}}=20\)
Solution:
The given D.E. is \(\left(\frac{d^{3} y}{d x^{3}}\right)^{\frac{1}{2}} \cdot\left(\frac{d y}{d x}\right)^{\frac{1}{3}}=20\)
∴ \(\left(\frac{d^{3} y}{d x^{3}}\right)^{3} \cdot\left(\frac{d y}{d x}\right)^{2}=20^{6}\)
This D.E. has highest order derivative \(\frac{d^{3} y}{d x^{3}}\) with power 3.
∴ the given D.E. has order 3 and degree 3.

Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.1

Question (x).
\(x+\frac{d^{2} y}{d x^{2}}=\sqrt{1+\left(\frac{d^{2} y}{d x^{2}}\right)^{2}}\)
Solution:
The given D.E. is \(x+\frac{d^{2} y}{d x^{2}}=\sqrt{1+\left(\frac{d^{2} y}{d x^{2}}\right)^{2}}\)
On squaring both sides, we get
Maharashtra Board 12th Maths Solutions Chapter 6 Differential Equations Ex 6.1 (x)
This D.E. has highest order derivative \(\frac{d^{2} y}{d x^{2}}\) with power 1.
∴ the given D.E. has order 2 and degree 1.

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

I. Choose the correct option from the given alternatives:

Question 1.
The area bounded by the region 1 ≤ x ≤ 5 and 2 ≤ y ≤ 5 is given by
(a) 12 sq units
(b) 8 sq units
(c) 25 sq units
(d) 32 sq units
Answer:
(a) 12 sq units

Question 2.
The area of the region enclosed by the curve y = \(\frac{1}{x}\), and the lines x = e, x = e2 is given by
(a) 1 sq unit
(b) \(\frac{1}{2}\) sq units
(c) \(\frac{3}{2}\) sq units
(d) \(\frac{5}{2}\) sq units
Answer:
(a) 1 sq unit

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

Question 3.
The area bounded by the curve y = x3, the X-axis and the lines x = -2 and x = 1 is
(a) -9 sq units
(b) \(-\frac{15}{4}\) sq units
(c) \(\frac{15}{4}\) sq units
(d) \(\frac{17}{4}\) sq units
Answer:
(c) \(\frac{15}{4}\) sq units

Question 4.
The area enclosed between the parabola y2 = 4x and line y = 2x is
(a) \(\frac{2}{3}\) sq units
(b) \(\frac{1}{3}\) sq units
(c) \(\frac{1}{4}\) sq units
(d) \(\frac{3}{4}\) sq units
Answer:
(b) \(\frac{1}{3}\) sq units

Question 5.
The area of the region bounded between the line x = 4 and the parabola y2 = 16x is
(a) \(\frac{128}{3}\) sq units
(b) \(\frac{108}{3}\) sq units
(c) \(\frac{118}{3}\) sq units
(d) \(\frac{218}{3}\) sq units
Answer:
(a) \(\frac{128}{3}\) sq units

Question 6.
The area of the region bounded by y = cos x, Y-axis and the lines x = 0, x = 2π is
(a) 1 sq unit
(b) 2 sq units
(c) 3 sq units
(d) 4 sq units
Answer:
(d) 4 sq units

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

Question 7.
The area bounded by the parabola y2 = 8x, the X-axis and the latus rectum is
(a) \(\frac{31}{3}\) sq units
(b) \(\frac{32}{3}\) sq units
(c) \(\frac{32 \sqrt{2}}{3}\) sq units
(d) \(\frac{16}{3}\) sq units
Answer:
(b) \(\frac{32}{3}\) sq units

Question 8.
The area under the curve y = 2√x, enclosed between the lines x = 0 and x = 1 is
(a) 4 sq units
(b) \(\frac{3}{4}\) sq units
(c) \(\frac{2}{3}\) sq units
(d) \(\frac{4}{3}\) sq units
Answer:
(d) \(\frac{4}{3}\) sq units

Question 9.
The area of the circle x2 + y2 = 25 in first quadrant is
(a) \(\frac{25 \pi}{3}\) sq units
(b) 5π sq units
(c) 5 sq units
(d) 3 sq units
Answer:
(a) \(\frac{25 \pi}{3}\) sq units

Question 10.
The area of the region bounded by the ellipse \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\) is
(a) ab sq units
(b) πab sq units
(c) \(\frac{\pi}{a b}\) sq units ab
(d) πa2 sq units
Answer:
(b) πab sq units

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

Question 11.
The area bounded by the parabola y2 = x and the line 2y = x is
(a) \(\frac{4}{3}\) sq units
(b) 1 sq unit
(c) \(\frac{2}{3}\) sq unit
(d) \(\frac{1}{3}\) sq unit
Answer:
(a) \(\frac{4}{3}\) sq units

Question 12.
The area enclosed between the curve y = cos 3x, 0 ≤ x ≤ \(\frac{\pi}{6}\) and the X-axis is
(a) \(\frac{1}{2}\) sq unit
(b) 1 sq unit
(c) \(\frac{2}{3}\) sq unit
(d) \(\frac{1}{3}\) sq unit
Answer:
(d) \(\frac{1}{3}\) sq unit

Question 13.
The area bounded by y = √x and line x = 2y + 3, X-axis in first quadrant is
(a) 2√3 sq units
(b) 9 sq units
(c) \(\frac{34}{3}\) sq units
(d) 18 sq units
Answer:
(b) 9 sq units

Question 14.
The area bounded by the ellipse \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\) and the line \(\frac{x}{a}+\frac{y}{b}=1\) is
(a) (πab – 2ab) sq units
(b) \(\frac{\pi a b}{4}-\frac{a b}{2}\) sq units
(c) (πab – ab) sq units
(d) πab sq units
Answer:
(b) \(\frac{\pi a b}{4}-\frac{a b}{2}\) sq units

Question 15.
The area bounded by the parabola y = x2 and the line y = x is
(a) \(\frac{1}{2}\) sq unit
(b) \(\frac{1}{3}\) sq unit
(c) \(\frac{1}{6}\) sq unit
(d) \(\frac{1}{12}\) sq unit
Answer:
(c) \(\frac{1}{6}\) sq unit

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

Question 16.
The area enclosed between the two parabolas y2 = 4x and y = x is
(a) \(\frac{8}{3}\) sq units
(b) \(\frac{32}{3}\) sq units
(c) \(\frac{16}{3}\) sq units
(d) \(\frac{4}{3}\) sq units
Answer:
(c) \(\frac{16}{3}\) sq units

Question 17.
The area bounded by the curve y = tan x, X-axis and the line x = \(\frac{\pi}{4}\) is
(a) \(\frac{1}{3}\) log 2 sq units
(b) log 2 sq units
(c) 2 log 2 sq units
(d) 3 log 2 sq units
Answer:
(a) \(\frac{1}{3}\) log 2 sq units

Question 18.
The area of the region bounded by x2 = 16y, y = 1, y = 4 and x = 0 in the first quadrant, is
(a) \(\frac{7}{3}\) sq units
(b) \(\frac{8}{3}\) sq units
(c) \(\frac{64}{3}\) sq units
(d) \(\frac{56}{3}\) sq units
Answer:
(d) \(\frac{56}{3}\) sq units

Question 19.
The area of the region included between the parabolas y2 = 4ax and x2 = 4ay, (a > 0) is given by
(a) \(\frac{16 a^{2}}{3}\) sq units
(b) \(\frac{8 a^{2}}{3}\) sq units
(c) \(\frac{4 a^{2}}{3}\) sq units
(d) \(\frac{32 a^{2}}{3}\) sq units
Answer:
(a) \(\frac{16 a^{2}}{3}\) sq units

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

Question 20.
The area of the region included between the line x + y = 1 and the circle x2 + y2 = 1 is
(a) \(\frac{\pi}{2}-1\) sq units
(b) π – 2 sq units
(c) \(\frac{\pi}{4}-\frac{1}{2}\) sq units
(d) π – \(\frac{1}{2}\) sq units
Answer:
(c) \(\frac{\pi}{4}-\frac{1}{2}\) sq units

(II) Solve the following:

Question 1.
Find the area of the region bounded by the following curve, the X-axis and the given lines:
(i) 0 ≤ x ≤ 5, 0 ≤ y ≤ 2
(ii) y = sin x, x = 0, x = π
(iii) y = sin x, x = 0, x = \(\frac{\pi}{3}\)
Solution:
(i) Required area = \(\int_{0}^{5} y d x\), where y = 2
= \(\int_{0}^{5} 2 d x\)
= \([2 x]_{0}^{5}\)
= 2 × 5 – 0
= 10 sq units.

(ii) The curve y = sin x intersects the X-axis at x = 0 and x = π between x = 0 and x = π.
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q1(ii)
Two bounded regions A1 and A2 are obtained. Both the regions have equal areas.
∴ required area = A1 + A2 = 2A1
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q1(ii).1

(iii) Required area = \(\int_{0}^{\pi / 3} y d x\), where y = sin x
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q1(iii)

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

Question 2.
Find the area of the circle x2 + y2 = 9, using integration.
Solution:
By the symmetry of the circle, its area is equal to 4 times the area of the region OABO.
Clearly, for this region, the limits of integration are 0 and 3.
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q2
From the equation of the circle, y2 = 9 – x2.
In the first quadrant, y > 0
∴ y = \(\sqrt{9-x^{2}}\)
∴ area of the circle = 4 (area of the region OABO)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q2.1

Question 3.
Find the area of the ellipse \(\frac{x^{2}}{25}+\frac{y^{2}}{16}=1\) using integration.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q3
By the symmetry of the ellipse, its area is equal to 4 times the area of the region OABO.
Clearly, for this region, the limits of integration are 0 and 5.
From the equation of the ellipse
\(\frac{y^{2}}{16}=1-\frac{x^{2}}{25}=\frac{25-x^{2}}{25}\)
∴ y2 = \(\frac{16}{25}\) (25 – x2)
In the first quadrant y > 0
∴ y = \(\frac{4}{5} \sqrt{25-x^{2}}\)
∴ area of the ellipse = 4(area of the region OABO)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q3.1

Question 4.
Find the area of the region lying between the parabolas:
(i) y2 = 4x and x2 = 4y
(ii) 4y2 = 9x and 3x2 = 16y
(iii) y2 = x and x2 = y.
Solution:
(i)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q4(i)
For finding the points of intersection of the two parabolas, we equate the values of y2 from their equations.
From the equation x2 = 4y, y = \(\frac{x^{2}}{4}\)
y = \(\frac{x^{4}}{16}\)
\(\frac{x^{4}}{16}\) = 4x
∴ x4 – 64x = 0
∴ x(x3 – 64) = 0
∴ x = 0 or x3 = 64 i.e. x = 0 or x = 4
When x = 0, y = 0
When x = 4, y = \(\frac{4^{2}}{4}\) = 4
∴ the points of intersection are 0(0, 0) and A(4, 4).
Required area = area of the region OBACO = [area of the region ODACO] – [area of the region ODABO]
Now, area of the region ODACO = area under the parabola y2 = 4x, i.e. y = 2√x between x = 0 and x = 4
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q4(i).1

(ii)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q4(ii)
For finding the points of intersection of the two parabolas, we equate the values of 4y2 from their equations.
From the equation 3x2 = 16y, y = \(\frac{3 x^{2}}{16}\)
∴ y = \(\frac{3 x^{4}}{256}\)
∴ \(\frac{3 x^{4}}{256}\) = 9x
∴ 3x4 – 2304x = 0
∴ x(x3 – 2304) = 0
∴ x = 0 or x3 = 2304 i.e. x = 0 or x = 4
When x = 0, y = 0
When x = 4, y = \(\frac{4^{2}}{4}\)
∴ the points of intersection are O(0, 0) and A(4, 4).
Required area = area of the region OBACO = [area of the region ODACO] – [area of the region ODABO]
Now, area of the region ODACO = area under the parabola y2 = 4x,
i.e. y = 2√x between x = 0 and x = 4
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q4(ii).1
Area of the region ODABO = area under the rabola x2 = 4y,
i.e. y = \(\frac{x^{2}}{4}\) between x = 0 and x = 4
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q4(ii).2

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

(iii)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q4(iii)
For finding the points of intersection of the two parabolas, we equate the values of y2 from their equations.
From the equation x2 = y, y = \(\frac{x^{2}}{y}\)
∴ y = \(\frac{x^{2}}{y}\)
∴ \(\frac{x^{2}}{y}\) = x
∴ x2 – y = 0
∴ x(x3 – y) = 0
∴ x = 0 or x3 = y
i.e. x = 0 or x = 4
When x = 0, y = 0
When x = 4, y = \(\frac{4^{2}}{4}\) = 4
∴ the points of intersection are O(0, 0) and A(4, 4).
Required area = area of the region OBACO = [area of the region ODACO] – [area of the region ODABO]
Now, area of the region ODACO = area under the parabola y2 = 4x,
i.e. y = 2√x between x = 0 and x = 4
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q4(iii).1
Area ofthe region ODABO = area under the rabola x2 = 4y,
i.e. y = \(\frac{x^{2}}{3}\) between x = 0 and x = 4
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q4(iii).2

Question 5.
Find the area of the region in the first quadrant bounded by the circle x2 + y2 = 4 and the X-axis and the line x = y√3.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q5
For finding the points of intersection of the circle and the line, we solve
x2 + y2 = 4 ………(1)
and x = y√3 ……..(2)
From (2), x2 = 3y2
From (1), x2 = 4 – y2
3y2 = 4 – y2
4y2 = 4
y2 = 1
y = 1 in the first quadrant.
When y = 1, r = 1 × √3 = √3
∴ the circle and the line intersect at A(√3, 1) in the first quadrant
Required area = area of the region OCAEDO = area of the region OCADO + area of the region DAED
Now, area of the region OCADO = area under the line x = y√3, i.e. y = \(\frac{x}{\sqrt{3}}\) between x = 0
and x = √3
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q5.1

Question 6.
Find the area of the region bounded by the parabola y2 = x and the line y = x in the first quadrant.
Solution:
To obtain the points of intersection of the line and the parabola, we equate the values of x from both equations.
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q6
∴ y2 = y
∴ y2 – y = 0
∴ y(y – 1) = 0
∴ y = 0 or y = 1
When y = 0, x = 0
When y = 1, x = 1
∴ the points of intersection are O(0, 0) and A(1, 1).
Required area = area of the region OCABO = area of the region OCADO – area of the region OBADO
Now, area of the region OCADO = area under the parabola y2 = x i.e. y = +√x (in the first quadrant) between x = 0 and x = 1
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q6.1
Area of the region OBADO = area under the line y = x between x = 0 and x = 1
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q6.2

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

Question 7.
Find the area enclosed between the circle x2 + y2 = 1 and the line x + y = 1, lying in the first quadrant.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q7
Required area = area of the region ACBPA = (area of the region OACBO) – (area of the region OADBO)
Now, area of the region OACBO = area under the circle x2 + y2 = 1 between x = 0 and x = 1
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q7.1
Area of the region OADBO = area under the line x + y = 1 between x = 0 and x = 1
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q7.2
∴ required area = \(\left(\frac{\pi}{4}-\frac{1}{2}\right)\) sq units.

Question 8.
Find the area of the region bounded by the curve (y – 1)2 = 4(x + 1) and the line y = (x – 1).
Solution:
The equation of the curve is (y – 1)2 = 4(x + 1)
This is a parabola with vertex at A (-1, 1).
To find the points of intersection of the line y = x – 1 and the parabola.
Put y = x – 1 in the equation of the parabola, we get
(x – 1 – 1)2 = 4(x + 1)
∴ x2 – 4x + 4 = 4x + 4
∴ x2 – 8x = 0
∴ x(x – 8) = 0
∴ x = 0, x = 8
When x = 0, y = 0 – 1 = -1
When x = 8, y = 8 – 1 = 7
∴ the points of intersection are B (0, -1) and C (8, 7).
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q8
To find the points where the parabola (y – 1)2 = 4(x + 1) cuts the Y-axis.
Put x = 0 in the equation of the parabola, we get
(y – 1)2 = 4(0 + 1) = 4
∴ y – 1 = ±2
∴ y – 1 = 2 or y – 1 = -2
∴ y = 3 or y = -1
∴ the parabola cuts the Y-axis at the points B(0, -1) and F(0, 3).
To find the point where the line y = x – 1 cuts the X-axis.
Put y = 0 in the equation of the line, we get
x – 1 = 0
∴ x = 1
∴ the line cuts the X-axis at the point G (1, 0).
Required area = area of the region BFAB + area of the region OGDCEFO + area of the region OBGO
Now, area of the region BFAB = area under the parabola (y – 1)2 = 4(x + 1), Y-axis from y = -1 to y = 3
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q8.1
Since, the area cannot be negative,
Area of the region BFAB = \(\left|-\frac{8}{3}\right|=\frac{8}{3}\) sq units.
Area of the region OGDCEFO = area of the region OPCEFO – area of the region GPCDG
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q8.2
Since, area cannot be negative,
area of the region = \(\left|-\frac{1}{2}\right|=\frac{1}{2}\) sq units.
∴ required area = \(\frac{8}{3}+\frac{109}{6}+\frac{1}{2}\)
= \(\frac{16+109+3}{6}\)
= \(\frac{128}{6}\)
= \(\frac{64}{3}\) sq units.

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

Question 9.
Find the area of the region bounded by the straight line 2y = 5x + 7, X-axis and x = 2, x = 5.
Solution:
The equation of the line is
2y = 5x + 7, i.e., y = \(\frac{5}{2} x+\frac{7}{2}\)
Required area = area of the region ABCDA = area under the line y = \(\frac{5}{2} x+\frac{7}{2}\) between x = 2 and x = 5
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q9

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5

Question 10.
Find the area of the region bounded by the curve y = 4x2, Y-axis and the lines y = 1, y = 4.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q10
By symmetry of the parabola, the required area is 2 times the area of the region ABCD.
From the equation of the parabola, x2 = \(\frac{y}{4}\)
In the first quadrant, x > 0
∴ x = \(\frac{1}{2} \sqrt{y}\)
∴ required area = \(\int_{1}^{4} x d y\)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Miscellaneous Exercise 5 II Q10.1

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 5 Application of Definite Integration Ex 5.1 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1

1. Find the area of the region bounded by the following curves, X-axis, and the given lines:

(i) y = 2x, x = 0, x = 5.
Solution:
Required area = \(\int_{0}^{5} y d x\), where y = 2x
= \(\int_{0}^{5} 2x d x\)
= \(\left[\frac{2 x^{2}}{2}\right]_{0}^{5}\)
= 25 – 0
= 25 sq units.

(ii) x = 2y, y = 0, y = 4.
Solution:
Required area = \(\int_{0}^{4} x d y\), where x = 2y
= \(\int_{0}^{4} 2 y d y\)
= \(\left[\frac{2 y^{2}}{2}\right]_{0}^{4}\)
= 16 – 0
= 16 sq units.

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1

(iii) x = 0, x = 5, y = 0, y = 4.
Solution:
Required area = \(\int_{0}^{5} y d x\), where y = 4
= \(\int_{0}^{5} 4 d x\)
= \([4 x]_{0}^{5}\)
= 20 – 0
= 20 sq units.

(iv) y = sin x, x = 0, x = \(\frac{\pi}{2}\)
Solution:
Required area = \(\int_{0}^{\pi / 2} y d x\), where y = sin x
= \(\int_{0}^{\pi / 2} \sin x d x\)
= \([-\cos x]_{0}^{\pi / 2}\)
= -cos \(\frac{\pi}{2}\) + cos 0
= 0 + 1
= 1 sq unit.

(v) xy = 2, x = 1, x = 4.
Solution:
For xy = 2, y = \(\frac{2}{x}\)
Required area = \(\int_{1}^{4} y d x\), where y = \(\frac{2}{x}\)
= \(\int_{1}^{4} \frac{2}{x} d x\)
= \([2 \log |x|]_{1}^{4}\)
= 2 log 4 – 2 log 1
= 2 log 4 – 0
= 2 log 4 sq units.

(vi) y2 = x, x = 0, x = 4.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q1 (vi)
The required area consists of two bounded regions A1 and A2 which are equal in areas.
For y2 = x, y = √x
Required area = A1 + A2 = 2A1
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q1 (vi).1

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1

(vii) y2 = 16x, x = 0, x = 4.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q1 (vii)
The required area consists of two bounded regions A1 and A2 which are equal in areas.
For y2 = x, y = √x
Required area = A1 + A2 = 2A1
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q1 (vii).1

2. Find the area of the region bounded by the parabola:

(i) y2 = 16x and its latus rectum.
Solution:
Comparing y2 = 16x with y2 = 4ax, we get
4a = 16
∴ a = 4
∴ focus is S(a, 0) = (4, 0)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q2 (i)
For y2 = 16x, y = 4√x
Required area = area of the region OBSAO
= 2 [area of the region OSAO]
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q2 (i).1

(ii) y = 4 – x2 and the X-axis.
Solution:
The equation of the parabola is y = 4 – x2
∴ x2 = 4 – y
i.e. (x – 0)2 = -(y – 4)
It has vertex at P(0, 4)
For points of intersection of the parabola with X-axis,
we put y = 0 in its equation.
∴ 0 = 4 – x2
∴ x2 = 4
∴ x = ± 2
∴ the parabola intersect the X-axis at A(-2, 0) and B(2, 0)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q2 (ii)
Required area = area of the region APBOA
= 2[area of the region OPBO]
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q2 (ii).1

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1

3. Find the area of the region included between:

(i) y2 = 2x and y = 2x.
Solution:
The vertex of the parabola y2 = 2x is at the origin O = (0, 0).
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (i)
To find the points of intersection of the line and the parabola, equaling the values of 2x from both the equations we get,
y2 = y
∴ y2 – y = 0
∴ y = 0 or y = 1
When y = 0, x = \(\frac{0}{2}\) = 0
When y = 1, x = \(\frac{1}{2}\)
∴ the points of intersection are 0(0, 0) and B(\(\frac{1}{2}\), 1)
Required area = area of the region OABCO = area of the region OABDO – area of the region OCBDO
Now, area of the region OABDO = area under the parabola y2 = 2x between x = 0 and x = \(\frac{1}{2}\)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (i).1
Area of the region OCBDO = area under the line y = 2x between x = 0 and x = \(\frac{1}{2}\)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (i).2

(ii) y2 = 4x and y = x.
Solution:
The vertex of the parabola y2 = 4x is at the origin O = (0, 0).
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (ii).jpg
To find the points of intersection of the line and the parabola, equaling the values of 4x from both the equations we get,
∴ y2 = y
∴ y2 – y = 0
∴ y(y – 1) = 0
∴ y = 0 or y = 1
When y = 0, x = \(\frac{0}{2}\) = 0
When y = 1, x = \(\frac{1}{2}\)
∴ the points of intersection are O(0, 0) and B(\(\frac{1}{2}\), 1)
Required area = area of the region OABCO = area of the region OABDO – area of the region OCBDO
Now, area of the region OABDO = area under the parabola y2 = 4x between x = 0 and x = \(\frac{1}{2}\)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (ii).1
Area of the region OCBDO = area under the line y = 2x between x = 0 and x = \(\frac{1}{2}\)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (ii).2

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1

(iii) y = x2 and the line y = 4x.
Solution:
The vertex of the parabola y = x2 is at the origin 0(0, 0)
To find the points of the intersection of a line and the parabola.
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (iii)
Equating the values of y from the two equations, we get
x2 = 4x
∴ x2 – 4x = 0
∴ x(x – 4) = 0
∴ x = 0, x = 4
When x = 0, y = 4(0) = 0
When x = 4, y = 4(4) = 16
∴ the points of intersection are 0(0, 0) and B(4, 16)
Required area = area of the region OABCO = (area of the region ODBCO) – (area of the region ODBAO)
Now, area of the region ODBCO = area under the line y = 4x between x = 0 and x = 4
= \(\int_{0}^{4} y d x\), where y = 4x
= \(\int_{0}^{4} 4 x d x\)
= 4\(\int_{0}^{4} x d x\)
= 4\([latex]\int_{0}^{4} x d x\)[/latex]
= 2(16 – 0)
= 32
Area of the region ODBAO = area under the parabola y = x2 between x = 0 and x = 4
= \(\int_{0}^{4} y d x\), where y = x2
= \(\int_{0}^{4} x^{2} d x\)
= \(\left[\frac{x^{3}}{3}\right]_{0}^{4}\)
= \(\frac{1}{3}\) (64 – 0)
= \(\frac{64}{3}\)
∴ required area = 32 – \(\frac{64}{3}\) = \(\frac{32}{3}\) sq units.

(iv) y2 = 4ax and y = x.
Solution:
The vertex of the parabola y2 = 4ax is at the origin O = (0, 0).
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (iv).jpg
To find the points of intersection of the line and the parabola, equaling the values of 4ax from both the equations we get,
∴ y2 = y
∴ y2 – y = 0
∴ y(y – 1) = 0
∴ y = 0 or y = 1
When y = 0, x = \(\frac{0}{2}\) = 0
When y = 1, x = \(\frac{1}{2}\)
∴ the points of intersection are O(0, 0) and B(\(\frac{1}{2}\), 1)
Required area = area of the region OABCO = area of the region OABDO – area of the region OCBDO
Now, area of the region OABDO
= area under the parabola y2 = 4ax between x = 0 and x = \(\frac{1}{2}\)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (iv).1
Area of the region OCBDO
= area under the line y
= 4ax between x = 0 and x = \(\frac{1}{4 a x}\)
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (iv).2

Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1

(v) y = x2 + 3 and y = x + 3.
Solution:
The given parabola is y = x2 + 3, i.e. (x – 0)2 = y – 3
∴ its vertex is P(0, 3).
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (v)
To find the points of intersection of the line and the parabola.
Equating the values of y from both the equations, we get
x2 + 3 = x + 3
∴ x2 – x = 0
∴ x(x – 1) = 0
∴ x = 0 or x = 1
When x = 0, y = 0 + 3 = 3
When x = 1, y = 1 + 3 = 4
∴ the points of intersection are P(0, 3) and B(1, 4)
Required area = area of the region PABCP = area of the region OPABDO – area of the region OPCBDO
Now, area of the region OPABDO
= area under the line y = x + 3 between x = 0 and x = 1
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (v).1
Area of the region OPCBDO = area under the parabola y = x2 + 3 between x = 0 and x = 1
Maharashtra Board 12th Maths Solutions Chapter 5 Application of Definite Integration Ex 5.1 Q3 (v).2

Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.2

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 6 Line and Plane Ex 6.2 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.2

Question 1.
Find the length of the perpendicular from (2, -3, 1) to the line \(\frac{x+1}{2}=\frac{y-3}{3}=\frac{z+1}{-1}\)
Solution:
Let PM be the perpendicular drawn from the point P (2, -3, 1) to the line \(\frac{x+1}{2}=\frac{y-3}{3}=\frac{z+1}{-1}\) = λ …(Say)
The coordinates of any point on the line are given by x = -1 + 2λ, y = 3 + 3λ, z = -1 – λ
Let the coordinates of M be
(-1 + 2λ, 3 + 3λ, -1 – λ) … (1)
The direction ratios of PM are
-1 + 2λ – 2, 3 + 3λ + 3, -1 – λ – 1
i.e. 2λ – 3, 3λ + 6, -λ – 2
The direction ratios of the given line are 2, 3, -1.
Since PM is perpendicular to the given line, we get
2(2λ – 3) + 3(3λ + 6) – 1(-λ – 2) = 0
∴ 4λ – 6 + 9λ + 18 + λ + 2 = 0
∴ 14λ + 14 = 0 ∴ λ = -1.
Put λ = -1 in (1), the coordinats of M are
(-1 – 2, 3 – 3, -1 + 1) i.e. (-3, 0,0).
∴ length of perpendicular from P to the given line
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.2 1
Alternative Method:
We know that the perpendicular distance from the point P\(|\bar{\alpha}|\) to the line \(\bar{r}=\bar{a}+\lambda \vec{b}\) is given by
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.2 2
Substituting these values in (1), we get
length of perpendicular from P to given line
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.2 3

Question 2.
Find the co-ordinates of the foot of the perpendicular drawn from the point \(2 \hat{i}-\hat{j}+5 \hat{k}\) to the line \(\bar{r}=(11 \hat{i}-2 \hat{j}-8 \hat{k})+\lambda(10 \hat{i}-4 \hat{j}-11 \hat{k})\). Also find the length of the perpendicular.
Solution:
Let M be the foot of perpendicular drawn from the point P (\(2 \hat{i}-\hat{j}+5 \hat{k}\)) on the line
\(\bar{r}=(11 \hat{i}-2 \hat{j}-8 \hat{k})+\lambda(10 \hat{i}-4 \hat{j}-11 \hat{k})\).
Let the position vector of the point M be
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.2 4
Then \(\overline{\mathrm{PM}}\) = Position vector of M – Position vector of P
= [(11 + 10λ)\(\hat{i}\) + (-2 – 4λ)\(\hat{j}\) + -8 – 11λ) \(\hat{k}\)] – (2\(\hat{i}\) – \(\hat{j}\) + 5\(\hat{k}\))
= (9 + 10λ)\(\hat{i}\) + (-1 – 4λ)\(\hat{j}\) + (-13 – 11λ)\(\hat{k}\)
Since PM is perpendicular to the given line which is parallel to \(\bar{b}=10 \hat{i}-4 \hat{j}-11 \hat{k}\),
\(\overline{\mathrm{PM}}\) ⊥r\(\bar{b}\) ∴ \(\overline{\mathrm{PM}} \cdot \bar{b}\) = 0
∴ [(9 + 10λ)\(\hat{i}\) + ( – 1 – 4λ)\(\hat{j}\) + (-13 – 11λ)\(\hat{k}\)]-(10\(\hat{i}\) – 4\(\hat{j}\) – 11\(\hat{k}\)) = 0
∴ 10(9 +10λ) – 4( -1 – 4λ) – 11( -13 – 11λ) = 0
∴ 90 + 100λ + 4 + 16λ + 143 +121λ = 0
∴ 237λ + 237 = 0
∴ λ = -1
Putting this value of λ, we get the position vector of M as \(\hat{i}+2 \hat{j}+3 \hat{k}\).
∴ coordinates of the foot of perpendicular M are (1, 2, 3).
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.2 5
Hence, the coordinates of the foot of perpendicular are (1,2, 3) and length of perpendicular = \(\sqrt {14}\) units.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 3.
Find the shortest distance between the lines \(\bar{r}=(4 \hat{i}-\hat{j})+\lambda(\hat{i}+2 \hat{j}-3 \hat{k})\) and \(\bar{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(\hat{i}+4 \hat{j}-5 \hat{k})\)
Solution:
We know that the shortest distance between the skew lines \(\bar{r}=\overline{a_{1}}+\lambda \overline{b_{1}}\) and \(\bar{r}=\overline{a_{2}}+\mu \overline{b_{2}}\) is given by
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.2 6
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.2 7

Question 4.
Find the shortest distance between the lines \(\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}\) and \(\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}\)
Solution:
The shortest distance between the lines
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.2 8
= 4(-6 + 2) – 6(7 – 1) + 8(-14 + 6)
= -16 – 36 – 64 = -116
and (m1n2 – m2n1)2 + (l2n1 – l1n2)2 + (l1m2 – l2m1)2
= (-6 + 2)2 + (1 – 7)2 + (-14 + 6)2
= 16 + 36 + 64 = 116
Hence, the required shortest distance between the given lines = \(\left|\frac{-116}{\sqrt{116}}\right|\) = \(\sqrt{116}\) = \(2 \sqrt{29}\) units

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
Find the perpendicular distance of the point (1, 0, 0) from the line \(\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}\) Also find the co-ordinates of the foot of the perpendicular.
Solution:
Let PM be the perpendicular drawn from the point (1, 0, 0) to the line \(\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+10}{8}\) = λ …(Say)
The coordinates of any point on the line are given by x = -1 + 2λ, y = 3 + 2λ, z = 8 – λ
Let the coordinates of M be
(-1 + 2λ, 3 + 3λ, -1 – λ) …..(1)
The direction ratios of PM are
-1 + 2λ – 2, 3 + 3λ + 3, -1 – λ – 1
i.e. 2λ – 3, 3λ = 6, -λ – 2
The direction ratios of the given line are 2, 3, 8.
Since PM is perpendicular to the given line, we get
2(2λ – 3) + 3(3λ + 6) – 1(-λ – 2) = O
∴ 4λ – 6 + 9λ + 18 + λ + 2 = 0
∴ 14λ + 14 = 0
∴ λ = -1
Put λ in (1), the coordinates of M are
(-1 – 2, 3 – 3, -1 + 1) i.e. (-3, 0, 0).
∴ length of perpendicular from P to the given line
= PM
= \(\sqrt{(-3-2)^{2}+(0+3)^{2}+(0-1)^{2}}\)
= \(\sqrt{(25 + 9 + 1)}\)
= \(\sqrt{35}\)units.
Alternative Method :
We know that the perpendicular distance from the point
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.2 9
Substitutng tese values in (1), w get
length of perpendicular from P to given line
= PM
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.2 10

Question 6.
A(1, 0, 4), B(0, -11, 13), C(2, -3, 1) are three points and D is the foot of the perpendicular from A to BC. Find the co-ordinates of D.
Solution:
Equation of the line passing through the points (x1, y1, z1) and (x2, y2, z2) is
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.2 11
AD is the perpendicular from the point A (1, 0, 4) to the line BC.
The coordinates of any point on the line BC are given by x = 2λ, y = -11 + 8λ, z = 13 – 12λ
Let the coordinates of D be (2λ, -11 + 8λ, 13 – 12λ) … (1)
∴ the direction ratios of AD are
2λ – 1, -1λ + 8λ – 0, 13 – 12λ – 4 i.e.
2λ – 1, -11 + 8λ, 9 – 12λ
The direction ratios of the line BC are 2, 8, -12.
Since AD is perpendicular to BC, we get
2(2λ – 1) + 8(-11 + 8λ) – 12(9 – 12λ) = 0
∴ 42λ – 2 – 88 + 64λ – 108 + 144λ = 0
∴ 212λ – 198 = 0
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.2 12

Question 7.
By computing the shortest distance, determine whether following lines intersect each other.
(i) \(\bar{r}=(\hat{i}-\hat{j})+\lambda(2 \hat{i}+\hat{k})\) and \(\bar{r}=(2 \hat{i}-\hat{j})+\mu(\hat{i}+\hat{j}-\hat{k})\)
Solution:
The shortest distance between the lines
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.2 13
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.2 14
Hence, the given lines do not intersect.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) \(\frac{x-5}{4}=\frac{y-7}{-5}=\frac{z+3}{-5}\) and \(\frac{x-8}{7}=\frac{y-7}{1}=\frac{z-5}{3}\)
Solution:
The shortest distance between the lines
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.2 15
∴ x1 = -1, y1 = -1, z1 = -1, x2 = 3, y2 = 5, z2 = 7,
l1 = 7, m1 = -6, n1 = 1, l2 = 1, m2 = -2, n2 = 1
\(\left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
l_{1} & m_{1} & n_{1} \\
l_{2} & m_{2} & n_{2}
\end{array}\right|\) = \(\left|\begin{array}{ccc}
4 & 6 & 8 \\
4 & -5 & -5 \\
7 & 1 & 3
\end{array}\right|\)
= 4(- 6 + 2) – 6(7 – 1) + 8(-14 + 6)
= -16 – 36 – 64
= -116
and
(m1n2 – m2n1)2 + (l2n1 – l1n2)2 + (l1m2 – l2m1)2
= (-6 + 2)2 + (1 – 7)2 + (-14 + 6)2
= 16 + 36 + 64
= 116
Hence, the required shortest distance between the given lines
= \(\left|\frac{-116}{\sqrt{116}}\right|\)
= \(\sqrt{116}\)
=\(2 \sqrt{29}\) units
or
The shortest distance between the lines
= \(\frac{282}{\sqrt{3830}}\)units
Hence, the gives lines do not intersect.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
If lines \(\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}\) and \(\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}\) intersect each other then find k.
Solution:
The lines
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.2 16
∴ x1 = 1, y1 = -1, z1 = 1, x2 = 3, y2 = k, z2 = 0,
l1 = 2, m1 = 3, n1 = 4, l2 = 1, m2 = 2, n2 = 1.
Since these lines intersect, we get
\(\left|\begin{array}{ccc}
2 & k+1 & -1 \\
2 & 3 & 4 \\
1 & 2 & 1
\end{array}\right|\) = 0
∴ 2 (3 – 8) – (k + 1)(2 – 4) – 1 (4 – 3) = 0
∴ -10 + 2(k + 1) – 1 = 0
∴ 2(k + 1) = 11
∴ k + 1 = \(\frac{11}{2}\)
∴ k = \(\frac{9}{2}\)

Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.1

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 6 Line and Plane Ex 6.1 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.1

Question 1.
Find the vector equation of the line passing through the point having position vector \(-2 \hat{i}+\hat{j}+\hat{k}\) and parallel to vector \(4 \hat{i}-\hat{j}+2 \hat{k}\).
Solution:
The vector equation of the line passing through A (\(\bar{a}\)) and parallel to the vector \(\bar{b}\) is \(\bar{r}\) = \(\bar{a}\) + λ\(\bar{b}\), where λ is a scalar.
∴ the vector equation of the line passing through the point having position vector \(-2 \hat{i}+\hat{j}+\hat{k}\) and parallel to the vector \(4 \hat{i}-\hat{j}+2 \hat{k}\) is
\(\bar{r}=(-2 \hat{i}+\hat{j}+\hat{k})+\lambda(4 \hat{i}-\hat{j}+2 \hat{k})\).

Question 2.
Find the vector equation of the line passing through points having position vectors \(3 \hat{i}+4 \hat{j}-7 \hat{k}\) and \(6 \hat{i}-\hat{j}+\hat{k}\).
Solution:
The vector equation of the line passing through the A (\(\bar{a}\)) and B(\(\bar{b}\)) is \(\bar{r}=\bar{a}+\lambda(\bar{b}-\bar{a})\), λ is a scalar
∴ the vector equation of the line passing through the points having position vectors \(3 \hat{i}+4 \hat{j}-7 \hat{k}\) and \(6 \hat{i}-\hat{j}+\hat{k}\) is
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.1 1

Question 3.
Find the vector equation of line passing through the point having position vector \(5 \hat{i}+4 \hat{j}+3 \hat{k}\) and having direction ratios -3, 4, 2.
Solution:
Let A be the point whose position vector is \(\bar{a}=5 \hat{i}+4 \hat{j}+3 \hat{k}\).
Let \(\bar{b}\) be the vector parallel to the line having direction ratios -3, 4, 2
Then, \(\bar{b}\) = \(-3 \hat{i}+4 \hat{j}+2 \hat{k}\)
The vector equation of the line passing through A (\(\bar{a}\)) and parallel to \(\bar{b}\) is \(\bar{r}=\bar{a}+\lambda \bar{b}\), where λ is a scalar.
∴ the required vector equation of the line is
\(\bar{r}=5 \hat{i}+4 \hat{j}+3 \hat{k}+\lambda(-3 \hat{i}+4 \hat{j}+2 \hat{k})\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 4.
Find the vector equation of the line passing through the point having position vector \(\hat{i}+2 \hat{j}+3 \hat{k}\) and perpendicular to vectors \(\hat{i}+\hat{j}+\hat{k}\) and \(2 \hat{i}-\hat{j}+\hat{k}\).
Solution:
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.1 2
Since the line is perpendicular to the vector \(\bar{b}\) and \(\bar{c}\), it is parallel to \(\bar{b} \times \bar{c}\). The vector equation of the line passing through A (\(\bar{a}\)) and parallel to \(\bar{b} \times \bar{c}\) is
\(\bar{r}=\bar{a}+\lambda(\bar{b} \times \bar{c})\), where λ is a scalar.
Here, \(\bar{a}\) = \(\hat{i}+2 \hat{j}+3 \hat{k}\)
Hence, the vector equation of the required line is
\(\bar{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(2 \hat{i}+\hat{j}-3 \hat{k})\)

Question 5.
Find the vector equation of the line passing through the point having position vector \(-\hat{i}-\hat{j}+2 \hat{k}\) and parallel to the line \(\bar{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(3 \hat{i}+2 \hat{j}+\hat{k})\).
Solution:
Let A be point having position vector \(\bar{a}\) = \(-\hat{i}-\hat{j}+2 \hat{k}\)
The required line is parallel to the line
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.1 3
The vector equation of the line passing through A(\(\bar{a}\)) and parallel to \(\bar{b}\) is \(\bar{r}\) = \(\bar{a}\) + λ\(\bar{b}\) where λ is a scalar.
∴ the required vector equation of the line is
\(\overline{\mathrm{r}}=(-\hat{i}-\hat{j}+2 \hat{k})+\lambda(3 \hat{i}+2 \hat{j}+\hat{k})\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 6.
Find the Cartesian equations of the line passing through A(-1, 2, 1) and having direction ratios 2, 3, 1.
Solution:
The cartesian equations of the line passing through (x1, y1, z1) and having direction ratios a, b, c are
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.1 4
∴ the cartesian equations of the line passing through the point (-1, 2, 1) and having direction ratios 2, 3, 1 are
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.1 5

Question 7.
Find the Cartesian equations of the line passing through A(2, 2, 1) and B(1, 3, 0).
Solution:
The cartesian equations of the line passing through the points (x1, y1, z1) and (x2, y2, z2) are
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.1 6
Here, (x1, y1, z1) = (2, 2, 1) and (x2, y2, z2) = (1, 3, 0)
∴ the required cartesian equations are
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.1 7

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
A(-2, 3, 4), B(1, 1, 2) and C(4, -1, 0) are three points. Find the Cartesian equations of the line AB and show that points A, B, C are collinear.
Solution:
We find the cartesian equations of the line AB. The cartesian equations of the line passing through the points (x1, y1, z1) and (x2, y2, z2) are
\(\frac{x-x_{1}}{x_{2}-x_{1}}\) = \(\frac{y-y_{1}}{y_{2}-y_{1}}\) = \(\frac{z-z_{1}}{z_{2}-z_{1}}\)
Here, (x1, y1, z1) = (-2, 3, 4) and (x2, y2, z2) = (4, -1, 0)
∴ the required cartesian equations of the line AB are
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.1 8
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.1 9
∴ coordinates of C satisfy the equations of the line AB.
∴ C lies on the line passing through A and B.
Hence, A, B, C are collinear.

Question 9.
Show that lines \(\frac{x+1}{-10}=\frac{y+3}{-1}=\frac{z-4}{1}\) and \(\frac{x+10}{-1}=\frac{y+1}{-3}=\frac{z-1}{4}\) intersect each other. Find the co-ordinates of their point of intersection.
Solution:
The equations of the lines are
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.1 10
From (1), x = -1 -10λ, y = -3 – 2, z = 4 + λ
∴ the coordinates of any point on the line (1) are
(-1 – 10λ, – 3 – λ, 4 + λ)
From (2), x = -10 – u, y = -1 – 3u, z = 1 + 4u
∴ the coordinates of any point on the line (2) are
(-10 – u, -1 – 3u, 1 + 4u)
Lines (1) and (2) intersect, if
(- 1 – 10λ, – 3 – λ, 4 + 2) = (- 10 – u, -1 – 3u, 1 + 4u)
∴ the equations -1 – 10λ = -10 – u, -3 – 2= – 1 – 3u
and 4 + λ = 1 + 4u are simultaneously true.
Solving the first two equations, we get, λ = 1 and u = 1. These values of λ and u satisfy the third equation also.
∴ the lines intersect.
Putting λ = 1 in (-1 – 10λ, -3 – 2, 4 + 2) or u = 1 in (-10 – u, -1 – 3u, 1 + 4u), we get
the point of intersection (-11, -4, 5).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 10.
A line passes through (3, -1, 2) and is perpendicular to lines \(\bar{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(2 \hat{i}-2 \hat{j}+\hat{k})\) and \(\bar{r}=(2 \hat{i}+\hat{j}-3 \hat{k})+\mu(\hat{i}-2 \hat{j}+2 \hat{k})\). Find its equation.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.1 11
The vector perpendicular to the vectors \(\bar{b}\) and \(\bar{c}\) is given by
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.1 12
Since the required line is perpendicular to the given lines, it is perpendicular to both \(\bar{b}\) and \(\bar{c}\).
∴ it is parallel to \(\bar{b} \times \bar{c}\)
The equation of the line passing through A(\(\bar{a}\)) and parallel to \(\bar{b} \times \bar{c}\) is
\(\bar{r}=\bar{a}+\lambda(\bar{b} \times \bar{c})\), where λ is a scalar.
Here, \(\bar{a}\) = \(3 \hat{i}-\hat{j}+2 \hat{k}\)
∴ the equation of the required line is
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.1 13

Question 11.
Show that the line \(\frac{x-2}{1}=\frac{y-4}{2}=\frac{z+4}{-2}\) passes through the origin.
Solution:
The equation of the line is
\(\frac{x-2}{1}=\frac{y-4}{2}=\frac{z+4}{-2}\)
The coordinates of the origin O are (0, 0, 0)
Maharashtra Board 12th Maths Solutions Chapter 6 Line and Plane Ex 6.1 14
∴ coordinates of the origin O satisfy the equation of the line.
Hence, the line passes through the origin.

Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 5 Vectors Miscellaneous Exercise 5 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5

I) Select the correct option from the given alternatives :
Question 1.
If |\(\bar{a}\)| = 2, |\(\bar{b}\)| = 3 |\(\bar{c}\)| = 4 then [\(\bar{a}\) + \(\bar{b}\) \(\bar{b}\) + \(\bar{c}\) \(\bar{c}\) – \(\bar{a}\)] is equal to
(A) 24
(B) -24
(C) 0
(D) 48
Solution:
(C) 0

Question 2.
If |\(\bar{a}\)| = 3, |\(\bar{b}\)| = 4, then the value of λ for which \(\bar{a}\) + λ\(\bar{b}\) is perpendicular to \(\bar{a}\) – λ\(\bar{b}\), is
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 1
Solution:
(b) \(\frac{3}{4}\)

Question 3.
If sum of two unit vectors is itself a unit vector, then the magnitude of their difference is
(A) \(\sqrt {2}\)
(B) \(\sqrt {3}\)
(C) 1
(D) 2
Solution:
(B) \(\sqrt {3}\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 4.
If |\(\bar{a}\)| = 3, |\(\bar{b}\)| = 5, |\(\bar{c}\)| = 7 and \(\bar{a}\) + \(\bar{b}\) + \(\bar{c}\) = 0, then the angle between \(\bar{a}\) and \(\bar{b}\) is
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 2
Solution:
(b) \(\frac{\pi}{3}\)

Question 5.
The volume of tetrahedron whose vertices are (1, -6, 10), (-1, -3, 7), (5, -1, λ) and (7, -4, 7) is 11 cu. units then the value of λ is
(A) 7
(B) \(\frac{\pi}{3}\)
(C) 1
(D) 5
Solution:
(A) 7

Question 6.
If α, β, γ are direction angles of a line and α = 60º, β = 45º, the γ =
(A) 30º or 90º
(B) 45º or 60º
(C) 90º or 30º
(D) 60º or 120º
Solution:
(D) 60º or 120º

Question 7.
The distance of the point (3, 4, 5) from Y- axis is
(A) 3
(B) 5
(C) \(\sqrt {34}\)
(D) \(\sqrt {41}\)
Solution:
(C) \(\sqrt {34}\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
The line joining the points (-2, 1, -8) and (a, b, c) is parallel to the line whose direction ratios are 6, 2, 3. The value of a, b, c are
(A) 4, 3, -5
(B) 1, 2, \(\frac{-13}{2}\)
(C) 10, 5, -2
(D) 3, 5, 11
Solution:
(A) 4, 3, -5

Question 9.
If cos α, cos β, cos γ are the direction cosines of a line then the value of sin2 α + sin2β + sin2γ is
(A) 1
(B) 2
(C) 3
(D) 4
Solution:
(B) 2

Question 10.
If l, m, n are direction cosines of a line then \(\hat{l}+m \hat{j}+n \hat{k}\) is
(A) null vector
(B) the unit vector along the line
(C) any vector along the line
(D) a vector perpendicular to the line
Solution:
(B) the unit vector along the line

Question 11.
If |\(\bar{a}\)| = 3 and –1 ≤ k ≤ 2, then |k\(\bar{a}\)| lies in the interval
(A) [0, 6]
(B) [-3, 6]
(C) [3, 6]
(D) [1, 2]
Solution:
(A) [0, 6]

Question 12.
Let α, β, γ be distinct real numbers. The points with position vectors \(\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}\), \(\beta \hat{i}+\gamma \hat{j}+\alpha \hat{k}\), \(\gamma \hat{i}+\alpha \hat{j}+\beta \hat{k}\)
(A) are collinear
(B) form an equilateral triangle
(C) form a scalene triangle
(D) form a right angled triangle
Solution:
(B) form an equilateral triangle

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 13.
Let \(\bar{p}\) and \(\bar{q}\) be the position vectors of P and Q respectively, with respect to O and |\(\bar{p}\)| = p, |\(\bar{q}\)| = q. The points R and S divide PQ internally and externally in the ratio 2 : 3 respectively. If OR and OS are perpendicular then.
(A) 9p2 = 4q2
(B) 4p2 = 9q2
(C) 9p = 4q
(D) 4p = 9q
Solution:
(A) 9p2 = 4q2

Question 14.
The 2 vectors \(\hat{j}+\hat{k}\) and \(3 \hat{i}-\hat{j}+4 \hat{k}\) represents the two sides AB and AC, respectively of a ∆ABC. The length of the median through A is
(A) \(\frac{\sqrt{34}}{2}\)
(B) \(\frac{\sqrt{48}}{2}\)
(C) \(\sqrt {18}\)
(D) None of these
Solution:
(A) \(\frac{\sqrt{34}}{2}\)

Question 15.
If \(\bar{a}\) and \(\bar{b}\) are unit vectors, then what is the angle between \(\bar{a}\) and \(\bar{b}\) for \(\sqrt{3} \bar{a}\) – \(\bar{b}\) to be a unit vector ?
(A) 30º
(B) 45º
(C) 60º
(D) 90º
Solution:
(A) 30º

Question 16.
If θ be the angle between any two vectors \(\bar{a}\) and \(\bar{b}\), then \(|\vec{a} \cdot \vec{b}|\) = \(|\vec{a} \times \vec{b}|\), when θ is equal to
(A) 0
(B) \(\frac{\pi}{4}\)
(C) \(\frac{\pi}{2}\)
(D) π
Solution:
(B) \(\frac{\pi}{4}\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 17.
The value of \(\hat{i} \cdot(\hat{j} \times \hat{k})+\hat{j} \cdot(\hat{i} \times \hat{k})+\hat{k} \cdot(\hat{i} \times \hat{j})\)
(A) 0
(B) -1
(C) 1
(D) 3
Solution:
(C) 1

Question 18.
Let a, b, c be distinct non-negative numbers. If the vectors \(\mathrm{a} \hat{i}+\mathrm{a} \hat{j}+\mathrm{c} \hat{k}\), \(\hat{i}+\hat{k}\) and \(\mathbf{c} \hat{i}+\mathrm{c} \hat{j}+\mathrm{b} \hat{k}\) lie in a plane, then c is
(A) The arithmetic mean of a and b
(B) The geometric mean of a and b
(C) The harmonic man of a and b
(D) 0
Solution:
(B) The geometric mean of a and b

Question 19.
Let \(\bar{a}\) = \(\hat{i} \hat{j}\), \(\bar{b}\) = \(\hat{j} \hat{k}\), \(\bar{c}\) = \(\hat{k} \hat{i}\). If \(\bar{d}\) is a unit vector such that \(\bar{a} . \bar{d}=0=\left[\begin{array}{lll}
\bar{b} & \bar{c} & \bar{d}
\end{array}\right]\), then \(\bar{d}\) equals.
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 3
Solution:
(a) \(\pm \frac{\hat{i}+\hat{j}-2 \hat{k}}{\sqrt{6}}\)

Question 20.
If \(\bar{a}\) \(\bar{b}\) \(\bar{c}\) are non coplanar unit vectors such that \(\bar{a} \times(\bar{b} \times \bar{c})\) =\(\frac{(\bar{b}+\bar{c})}{\sqrt{2}}\) then the angle between \(\bar{a}\) and \(\bar{b}\) is
(A) \(\frac{3 \pi}{4}\)
(B) \(\frac{\pi}{4}\)
(C) \(\frac{\pi}{2}\)
(D) π
Solution:
(A) \(\frac{3 \pi}{4}\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

II Answer the following :
1) ABCD is a trapezium with AB parallel to DC and DC = 3AB. M is the mid-point of DC,
\(\overline{A B}\) = \(\bar{p}\) and \(\overline{B C}\) = \(\bar{q}\). Find in terms of \(\bar{p}\) and \(\bar{q}\).
(i) \(\overline{A M}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 4

(ii) \(\overline{B D}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 5

(iii) \(\overline{M B}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 6

(iv) \(\overline{D A}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 7

Question 2.
The points A, B and C have position vectors \(\bar{a}\), \(\bar{b}\) and \(\bar{c}\) respectively. The point P is midpoint of AB. Find in terms of \(\bar{a}\), \(\bar{b}\) and \(\bar{c}\) the vector \(\overline{P C}\)
Solution:
P is the mid-point of AB.
∴ \(\bar{p}\) = \(=\frac{\bar{a}+\bar{b}}{2}\), where \(\bar{p}\) is the position vector of P.
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 8

Question 3.
In a pentagon ABCDE
Show that \(\overline{A B}\) + \(\overline{A E}\) + \(\overline{B C}\) + \(\overline{D C}\) + \(\overline{E D}\) = 2\(\overline{A C}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 9

Question 4.
If in parallelogram ABCD, diagonal vectors are \(\overline{A C}\) = \(2 \hat{i}+3 \hat{j}+4 \hat{k}\) and \(\overline{B D}\) = \(-6 \hat{i}+7 \hat{j}-2 \hat{k}\), then find the adjacent side vectors \(\overline{A B}\) and \(\overline{A D}\)
Solution:
ABCD is a parallelogram
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 10
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 11

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
If two sides of a triangle are \(\hat{i}+2 \hat{j}\) and \(\hat{i}+\hat{k}\), then find the length of the third side.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 12
Let ABC be a triangle with \(\overline{A B}\) = \(\hat{i}+2 \hat{j}\), \(\overline{B C}\) = \(\hat{i}+\hat{k}\).
By triangle law of vectors
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 13
Hence, the length of third side is 3 units.

Question 6.
If |\(\bar{a}\)| = |\(\bar{b}\) | = 1 \(\bar{a}\).\(\bar{b}\) = 0 and \(\bar{a}\) + \(\bar{b}\) + \(\bar{c}\) = 0 then find |\(\bar{c}\)|
Solution:
\(\bar{a}\) + \(\bar{b}\) + \(\bar{c}\) = 0
∴ –\(\bar{c}\) = \(\bar{a}\) + \(\bar{b}\)
Taking dot product of both sides with itself, we get
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 14

Question 7.
Find the lengths of the sides of the triangle and also determine the type of a triangle.
(i) A(2, -1, 0), B(4, 1, 1,), C(4, -5, 4)
Solution:
The position vectors \(\bar{a}\), \(\bar{b}\), \(\bar{c}\) of the points A, B, C are
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 15
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 16
∴ ∆ ABC is right angled at A.

(ii) L(3, -2, -3), M(7, 0, 1), N (1, 2, 1)
Solution:
The position vectors bar \(\bar{a}\), \(\bar{b}\), \(\bar{c}\) of the points L M, N are
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 17
l(LM) = 6, l(MN) = 2\(\sqrt {10}\) , l(NL) = 6
∆LMN is sosceles

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
Find the component form of if a if
(i) It lies in YZ plane and makes 60º with positive Y-axis and |\(\bar{a}\)| = 4
Solution:
Let α, β, γ be the direction angles of \(\bar{a}\)
Since \(\bar{a}\) lies in YZ-plane, it is perpendicular to X-axis
∴ α = 90°
It is given that β= 60°
∵ cos2α + cos2β + cos2γ = 1
∴ cos290° + cos260° + cos2γ = 1
∴ 0 + \(\left(\frac{1}{2}\right)^{2}\) + cos2γ = 1
∴ cos2γ = 1 – \(\frac{1}{4}=\frac{3}{4}\)
∴ cos γ = \(\pm \frac{\sqrt{3}}{2}\)
Unit vector along a is given by
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 18
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 19

(ii) It lies in XZ plane and makes 45º with positive Z-axis and |\(\bar{a}\)| = 10
Solution:

Question 9.
Two sides of a parallelogram are \(3 \hat{i}+4 \hat{j}-5 \hat{k}\) and \(-2 \hat{j}+7 \hat{k}\). Find the unit vectors parallel to the diagonals.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 20
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 21

Question 10.
If D, E, F are the mid-points of the sides BC, CA, AB of a triangle ABC , prove that \(\overline{A D}\) + \(\overline{B E}\) + \(\overline{C F}\) = 0
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 22
Solution:
Let \(\bar{a}\), \(\bar{b}\), \(\bar{c}\), \(\bar{d}\), \(\bar{e}\), \(\bar{f}\) be the position vectors of the points A, B, C, D, E, F respectively.
Since D, E, F are the midpoints of BC, CA, AB respec-tively, by the midpoint formula
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 23

Question 11.
Find the unit vectors that are parallel to the tangent line to the parabola y = x2 at the point (2, 4)
Solution:
Differentiating y = x2 w.r.t. x, we get \(\) = 2x
Slope of tangent at P(2, 4) = \(\left(\frac{d y}{d x}\right)_{\text {at } \mathrm{P}(2, 4)}\) = 2 × 2 = 4
∴ the equation of tangent at P is
y – 4 = 4(-2)
∴ y = 4x – 4
∴ y = 4x is equation of line parallel to the tangent at P and passing through the origin O.
4x = y, z = 0 ∴ \(\frac{x}{1}=\frac{y}{4}\), z = 0
∴ the direction ratios of this line are 1, 4, 0
∴ its direction cosines are
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 24

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 12.
Express the vector \(\hat{i}+4 \hat{j}-4 \hat{k}\) as a linear combination of the vectors \(2 \hat{i}-\hat{j}+3 \hat{k}\), \(\hat{i}-2 \hat{j}+4 \hat{k}\) and \(-\hat{i}+3 \hat{j}-5 \hat{k}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 25
By equality of vectors,
2x + 2y – z = 1
-x – 2y + 3z = 4
3x + 4y – 5z = -4
We have to solve these equations by using Cramer’s Rule.
D = \(\left|\begin{array}{ccc}
2 & 2 & -1 \\
-1 & -2 & 3 \\
3 & 4 & -5
\end{array}\right|\)
= 2(10 – 12) – 2(5 – 9) – 1(-4 + 6)
= -4 + 8 – 2
= 2 ≠ 0
Dx = \(\left|\begin{array}{ccc}
1 & 2 & -1 \\
4 & -2 & 3 \\
-4 & 4 & -5
\end{array}\right|\)
= 1(10 – 12) – 2(-20 + 12) – 1 (16 – 8)
= -2 + 16 – 8
= 6
Dy = \(\left|\begin{array}{ccc}
2 & 1 & -1 \\
-1 & 4 & 3 \\
3 & -4 & -5
\end{array}\right|\)
= 2(-20 + 12) – 1(5 – 9) – 1(4 – 12)
= -16 – 4 – 8
= -28
Dz = \(\left|\begin{array}{ccc}
2 & 2 & 1 \\
-1 & -2 & 4 \\
3 & 4 & -4
\end{array}\right|\)
= 2(8 – 16) – 2(4 – 12) + 1(-4 + 6)
= -16 – 16 + 2
= -30
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 26

Question 13.
If \(\overline{O A}\) = \(\bar{a}\) and \(\overline{O B}\) = \(\bar{b}\) then show that the vector along the angle bisector of angle AOB is
given by \(\bar{d}\) = λ\(\left(\frac{\bar{a}}{|\bar{b}|}+\frac{\bar{b}}{|\bar{b}|}\right)\)
Question is modified
If \(\overline{O A}\) = \(\bar{a}\) and \(\overline{O B}\) = \(\bar{b}\) then show that the vector along the angle bisector of ∠AOB is
given by \(\bar{d}\) = λ\(\left(\frac{\bar{a}}{|\bar{a}|}+\frac{\bar{b}}{|\bar{b}|}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 27
Choose any point P on the angle bisector of ∠AOB. Draw PM parallel to OB.
∴ ∠OPM = ∠POM
= ∠POB
Hence, OM = MP
∴ OM and MP is the same scalar multiple of unit vectors \(\hat{a}\) and \(\hat{b}\) along these directions,
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 28

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 14.
The position vectors f three consecutive vertices of a parallelogram are \(\hat{i}+\hat{j}+\hat{k}\), \(\hat{i}+3 \hat{j}+5 \hat{k}\) and \(7 \hat{i}+9 \hat{j}+11 \hat{k}\) Find the position vector of the fourth vertex.
Solution:
Let ABCD be a parallelogram.
Let \(\bar{a}\), \(\bar{b}\), \(\bar{c}\), \(\bar{d}\) be the position vectors of the vertices
A, B, C, D of the parallelogram,
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 29
Hence, the position vector of the fourth vertex is 7(\(\hat{i}\) + \(\hat{j}\) + \(\hat{k}\)).

Question 15.
A point P with position vector \(\frac{-14 \hat{i}+39 \hat{j}+28 \hat{k}}{5}\) divides the line joining A(-1, 6, 5) and B in the ratio 3 : 2 then find the point B.
Solution:
Let A, B and P have position vectors \(\bar{a}\), \(\bar{b}\) and \(\bar{p}\) respectively.
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 30
∴ coordinates of B are (-4, 9, 6).

Question 16.
Prove that the sum of the three vectors determined by the medians of a triangle directed from the vertices is zero.
Solution:
Let \(\overrightarrow{\mathrm{a}}\), \(\overrightarrow{\mathrm{b}}\) and \(\overrightarrow{\mathrm{c}}\) are the position vectors of the vertices A, B and C respectively.
Then we know that the position vector of the centroid O of the triangle is \(\frac{\vec{a}+\vec{b}+\vec{c}}{3}\)
Therefore sum of the three vectors \(\overrightarrow{\mathrm{OA}}\), \(\overrightarrow{\mathrm{OB}}\) and \(\overrightarrow{\mathrm{OC}}\), is
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 31
Hence, Sum os the three vectors determined by the medians of a triangle directed from the vertices is zero.

Question 17.
ABCD is a parallelogram E, F are the mid points of BC and CD respectively. AE, AF meet the diagonal BD at Q and P respectively. Show that P and Q trisect DB.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 32
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 33
LHS is the position vector of the point on AE and RHS is the position vector of the point on DB. But AE and DB meet at Q.
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 34
LHS is the position vector of the point on AF and RHS is the position vector of the point on DB.
But AF and DB meet at P.
∴ \(\bar{p}=\frac{\bar{b}+2 \bar{d}}{1+2}\)
∴ P divides DB in the ratio 1 : 2 … (5)
From (4) and (5), if follows that P and Q trisect DB.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 18.
If aBC is a triangle whose orthocenter is P and the circumcenter is Q, then prove that \(\overline{P A}\) + \(\overline{P C}\) + \(\overline{P B}\) = 2 \(\overline{P Q}\)
Solution:
Let G be the centroid of the ∆ ABC.
Let A, B, C, G, Q have position vectors \(\bar{a}\), \(\bar{b}\), \(\bar{c}\), \(\bar{g}\), \(\bar{q}\) w.r.t. P. We know that Q, G, P are collinear and G divides segment QP internally in the ratio 1 : 2.
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 35

Question 19.
If P is orthocenter, Q is circumcenter and G is centroid of a triangle ABC, then prove that \(\overline{Q P}\) = 3\(\overline{Q G}\)
Solution:
Let \(\bar{p}\) and \(\bar{g}\) be the position vectors of P and G w.r.t. the circumcentre Q.
i.e. \(\overline{\mathrm{QP}}\) = p and \(\overline{\mathrm{QG}}\) = g.
We know that Q, G, P are collinear and G divides segment QP internally in the ratio 1 : 2
∴ by section formula for internal division,
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 36

Question 20.
In a triangle OAB, E is the midpoint of BO and D is a point on AB such that AD: DB = 2:1. If OD and AE intersect at P, determine the ratio OP:PD using vector methods.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 37
Let A, B, D, E, P have position vectors \(\bar{a}\), \(\bar{b}\), \(\bar{d}\), \(\bar{e}\), \(\bar{p}\) respectively w.r.t. O.
∵ AD : DB = 2 : 1.
∴ D divides AB internally in the ratio 2 : 1.
Using section formula for internal division, we get
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 38
LHS is the position vector of the point which divides OD internally in the ratio 3 : 2.
RHS is the position vector of the point which divides AE internally in the ratio 4 : 1.
But OD and AE intersect at P
∴ P divides OD internally in the ratio 3 : 2.
Hence, OP : PD = 3 : 2.

Question 21.
Dot-product of a vector with vectors \(3 \hat{i}-5 \hat{k}, 2 \hat{i}+7 \hat{j}\) and \(\hat{i}+\hat{j}+\hat{k}\) are respectively -1, 6 and 5. Find the vector.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 39
∴ 3x – 5z= -1 … (1)
∴ 2x + 7y = 6 … (2)
∴ x + y + z = 5 … (3)
From (3), z = 5 – x – y
Substituting this value of z in (1), we get
∴ 3x – 5(5 – x – y)= -1
∴ 8x + 5y = 24 … (4)
Multiplying (2) by 4 and subtracting from (4), we get
8x + 5y – 4(2x + 7y) = 24 – 6 × 4
∴ -23y = 0 ∴ y = 0
Substituting y = 0 in (2), we get
∴ 2x = 6 ∴ x = 3
Substituting x = 3 in (1), we get
∴ 3(3) – 5z = -1
∴ 5z = -10 ∴ z = 2
∴ \(\bar{r}=3 \hat{i}+0 \cdot \hat{j}+2 \hat{k}=3 \hat{i}+2 \hat{k}\)
Hence, the required vector is \(3 \hat{i}+2 \hat{k}\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 22.
If \(\bar{a}\), \(\bar{b}\), \(\bar{c}\) are unit vectors such that \(\bar{a}\) + \(\bar{b}\) + \(\bar{c}\) = 0, then find the value of \(\bar{a}\).\(\bar{b}\) + \(\bar{b}\).\(\bar{c}\) + \(\bar{c}\).\(\bar{a}\)
Solution:
\(\bar{a}\), \(\bar{b}\), \(\bar{c}\) are unit vectors
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 40
Adding (2), (3), (4) and using the fact that scalar product commutative, we get
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 41

Question 23.
If a parallelogram is constructed on the vectors \(\bar{a}=3 \bar{p}-\bar{q}\), \(\bar{b}=\bar{p}+3 \bar{q}\) and \(|\bar{p}|=|\bar{q}|=2\) and angle between \(\bar{p}\) and \(\bar{q}\) is\(\frac{\pi}{3}\) show that the ratio of the lengths of the sides is \(\sqrt {7}\) : \(\sqrt {13}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 42
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 43
Hence, the ratio of the lengths of the sides is \(\sqrt {7}\) : \(\sqrt {13}\).

Question 24.
Express the vector \(\bar{a}=5 \hat{i}-2 \hat{j}+5 \hat{k}\) as a sum of two vectors such that one is parallel to the vector \(\bar{b}=3 \hat{i}+\hat{k}\) and other is perpendicular to \(\bar{b}\).
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 44
By equality of vectors
3m + x = 5 … (1)
y = -2
and m – 3x = 5
From (1) and (2)
3m + x = m – 3x
∴ 2m = -4x m ∴ m = -2x
Substituting m = -2x in (1), we get
∴ -6x + x = 5 ∴ -5x = 5 ∴ x = -1
∴ m = -2x = 2
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 45

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 25.
Find two unit vectors each of which makes equal angles with \(\bar{u}\), \(\bar{v}\) and \(\bar{w}\). \(\bar{u}=2 \hat{i}+\hat{j}-2 \hat{k}\), \(\bar{v}=\hat{i}+2 \hat{j}-2 \hat{k}\) and \(\bar{W}=2 \hat{i}-2 \hat{j}+\hat{k}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 46
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 47
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 48
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 49

Question 26.
Find the acute angles between the curves at their points of intersection. y = x2, y = x3
Solution:
The angle between the curves is same as the angle between their tangents at the points of intersection. We find the points of intersection of y = x2 … (1)
and y = x3 … (2)
From (1) and (2)
x3 = x2
∴ x3 – x2 = 0
∴ x2(x – 1) = 0
∴ x = 0 or x = 1
When x = 0, y = 0.
When x = 1, y = 1.
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 50
∴ equation of tangent to y = x3 at P is y = 0.
∴ the tangents to both curves at (0, 0) are y = 0
∴ angle between them is 0.
Angle at P = (1, 1)
Slope of tangent to y = x2 at P
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 51
∴ equation of tangent to y = x3 at P is y – 1 = 3(x – 1) y = 3x – 2
We have to find angle between y = 2x – 1 and y = 3x – 2
Lines through origin parallel to these tagents are y = 2x and y = 3x
∴ \(\frac{x}{1}=\frac{y}{2}\) and \(\frac{x}{1}=\frac{y}{3}\)
These lines lie in XY-plane.
∴ the direction ratios of these lines are 1, 2, 0 and 1, 3, 0.
The angle θ between them is given by
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 52

Question 27.
Find the direction cosines and direction angles of the vector.
(i) \(2 \hat{i}+\hat{j}+2 \hat{k}\)
Solution:
Let \(\bar{a}\) = \(2 \hat{i}+\hat{j}+2 \hat{k}\)
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 53

(ii) \((1 / 2) \hat{i}+\hat{j}+\hat{k}\)
Solution:

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 28.
Let \(\bar{b}\) = \(4 \hat{i}+3 \hat{j}\) and \(\bar{c}\) be two vectors perpendicular to each other in the XY-plane. Find vectors in the same plane having projection 1 and 2 along \(\bar{b}\) and \(\bar{c}\), respectively, are given y.
Solution:
\(\bar{b}\) = \(4 \hat{i}+3 \hat{j}\)
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 54
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 55
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 56

Question 29.
Show that no line in space can make angle \(\frac{\pi}{6}\) and \(\frac{\pi}{4}\) with X- axis and Y-axis.
Solution:
Let, if possible, a line in space make angles \(\frac{\pi}{6}\) and \(\frac{\pi}{4}\) with X-axis and Y-axis.
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 57
∴ cos2γ = 1 – \(\frac{3}{4}-\frac{1}{2}=-\frac{1}{4}\)
This is not possible, because cos γ is real
∴ cos2γ cannot be negative.
Hence, there is no line in space which makes angles \(\frac{\pi}{6}\) and \(\frac{\pi}{4}\) with X-axis and Y-axis.

Question 30.
Find the angle between the lines whose direction cosines are given by the equation 6mn – 2nl + 5lm = 0, 3l + m + 5n = 0
Solution:
Given 6mn – 2nl + 5lm = o
3l + m +5n = 0.
From (2), m = 3l – 5n
Putting the value of m in equation (1), we get,
⇒ 6n(-3l – 5n) – 2nl + 5l(-3l – 5n) = 0
⇒ -18nl- 30n – 2nl- 15l2 – 25nl = 0
⇒ – 30n2 – 45nl – 15l2 = 0
⇒ 2n2 + 3nl + l2 = 0
⇒ 2n2 + 2nl + nl + l2 = 0
⇒ (2n + l) (n + l) = 0
∴ 2n + l = 0 OR n + l = 0
∴ l = -2n OR l = -n
∴ l = -2n
From (2), 3l + m + 5n = 0
∴ -6n + m + 5n = 0
∴ m = n
i.e. (-2n, n, n) = (-2, 1, 1)
∴ l = -n
∴ -3n + m + 5n = 0
∴ m = -2n
i.e. (-n, -2n, n) = (1, 2, -1)
(a1, b1, c1) = (-2, 1, 1) and (a2, b3, c3) = (1, 2, -1)
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 89

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 31.
If Q is the foot of the perpendicular from P(2, 4, 3) on the line joining the points A(1, 2, 4) and B(3, 4, 5), find coordinates of Q.
Solution:
Let PQ be the perpendicular drawn from point P(2, 4, 3) to the line joining the points A(1, 2, 4) and B (3, 4, 5).
Let Q divides AB internally in the ratio λ : 1
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 59
Now, direction ratios of AB are, 3 – 1, 4 – 2, 5 – 4 i.e., 2, 2, 1.
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 60
Coordinates of Q are,
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 61

Question 32.
Show that the area of a triangle ABC, the position vectors of whose vertices are a, b and c is \(\frac{1}{2}[\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}]\)
Question is modified.
Show that the area of a triangle ABC, the position vectors of whose vertices are \(\bar{a}\), \(\bar{b}\) and \(\bar{c}\) is \(\frac{1}{2}[\bar{a} \times \bar{b}+\bar{b} \times \bar{c}+\bar{c} \times \bar{a}]\).
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 62
Consider the triangle ABC.
Complete the parallelogram ABDC.
Vector area of ∆ABC
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 63
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 64

Question 33.
Find a unit vector perpendicular to the plane containing the point (a, 0, 0), (0, b, 0), and (0, 0, c). What is the area of the triangle with these vertices?
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 65
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 66

Question 34.
State whether each expression is meaningful. If not, explain why ? If so, state whether it is a vector or a scalar.
(a) \(\bar{a} \cdot(\bar{b} \times \bar{c})\)
Solution:
This is the scalar product of two vectors. Therefore, this expression is meaningful and it is a scalar.

(b) \(\bar{a} \times(\bar{b} \cdot \bar{c})\)
Solution:
This expression is meaningless because \(\bar{a}\) is a vector, \(\bar{b} \cdot \bar{c}\) is a scalar and vector product of vector and scalar is not defined.

(c) \(\bar{a} \times(\bar{b} \times \bar{c})\)
Solution:
This is vector product of two vectors. Therefore, this expression is meaningful and it is a vector.

(d) \(\bar{a} \cdot(\bar{b} \cdot \bar{c})\)
Solution:
This is meaningless because \(\bar{a}\) is a vector, \(\bar{b} \cdot \bar{c}\) is a scalar and scalar product of vector and scalar is not defined.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(e) \((\bar{a} \cdot \bar{b}) \times(\bar{c} \cdot \bar{d})\)
Solution:
This is meaningless because \(\bar{a} \cdot \bar{b}, \bar{c} \cdot \bar{d}\) are scalars and cross product of two scalars is not defined.

(f) \((\bar{a} \times \bar{b}) \cdot(\bar{c} \times \bar{d})\)
Solution:
This is scalar product of two vectors. Therefore, this expression is meaningful and it is a scalar.

(g) \((\bar{a} \cdot \bar{b}) \cdot \bar{c}\)
Solution:
This is meaningless because \(\bar{c}\) is a vector, \(\bar{a} \cdot \bar{b}\) scalar and scalar product of vector and scalar is not defined.

(h) \((\bar{a} \cdot \bar{b}) \bar{c}\)
Solution:
This is a scalar multiplication of a vector. Therefore, this expression is meaningful and it is a vector.

(i) \((|\bar{a}|)(\bar{b} \cdot \bar{c})\)
Solution:
This is the product of two scalars. Therefore, this expression is meaningful and it is a scalar.

(j) \(\bar{a} \cdot(\bar{b}+\bar{c})\)
Solution:
This is the scalar product of two vectors. Therefore, this expression is meaningful and it is a scalar.

(k) \(\bar{a} \cdot \bar{b}+\bar{c}\)
Solution:
This is the sum of scalar and vector which is not defined. Therefore, this expression is meaningless.

(l) \(|\bar{a}| \cdot(\bar{b}+\bar{c})\)
Solution:
This is meaningless because \(\bar{a}\) is a vector, \(\overline{\mathrm{b}}+\overline{\mathrm{c}}\) is a scalar and the scalar product of vector and scalar is not defined.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 35.
Show that, for any vectors \(\bar{a}, \bar{b}, \bar{c}\)
\((\bar{a}+\bar{b}+\bar{c}) \times \bar{c}+(\bar{a}+\bar{b}+\bar{c}) \times \bar{b}+(\bar{b}+\bar{c}) \times \bar{a}=2 \bar{a} \times \bar{c}\)
Question is modified.
For any vectors \(\bar{a}, \bar{b}, \bar{c}\) show that
\(\begin{aligned}
&(\bar{a}+\bar{b}+\bar{c}) \times \bar{c}+(\bar{a}+\bar{b}+\bar{c}) \times \bar{b}+(\bar{b}-\bar{c}) \times \bar{a} \\
&=2 \bar{a} \times \bar{c} .
\end{aligned}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 67

Question 36.
Suppose that \(\bar{a}\) = 0.
(a) If \(\bar{a} \cdot \bar{b}=\bar{a} \cdot \bar{c}\) then is \(\bar{b}=\bar{c}\)?
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 68

(b) If \(\bar{a} \times \bar{b}=\bar{a} \times \bar{c}\) then is \(\bar{b}=\bar{c}\)?
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 69

(c) If \(\bar{a} \cdot \bar{b}=\bar{a} \cdot \bar{c}\) and \(\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\overline{\mathrm{a}} \times \overline{\mathrm{c}}\) then is \(\bar{b}=\bar{c}\)?
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 70

Question 37.
If A(3, 2, -1), B(-2, 2, -3), C(3, 5, -2), D(-2, 5, -4) then
(i) verify that the points are the vertices of a parallelogram and
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 71
∴ opposite sides AB and DC of ABCD are parallel and equal.
∴ ABCD is a parallelogram.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) find its area.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 72
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 73

Question 38.
Let A, B, C, D be any four points in space. Prove that \(|\overline{A B} \times \overline{C D}+\overline{B C} \times \overline{A D}+\overline{C A} \times \overline{B D}|\) = 4 (area of ∆ABC)
Solution:
Let A, B, C, D have position vectors \(\bar{a}\), \(\bar{b}\), \(\bar{c}\), \(\bar{d}\) respectively.
Consider \(|\overline{A B} \times \overline{C D}+\overline{B C} \times \overline{A D}+\overline{C A} \times \overline{B D}|\)
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 74

Question 39.
Let \(\hat{a}, \hat{b}, \hat{c}\) be unit vectors such that \(\hat{a} \cdot \hat{b}=\hat{a} \cdot \hat{c}=0\) and the angle between \(\hat{b}\) and \(\hat{c}\) be\(\frac{\pi}{6}\).
Prove that \(\hat{a}=\pm 2(\hat{b} \times \hat{c})\)
Solution:
\(\hat{a} \cdot \hat{b}=\hat{a} \cdot \hat{c}=0\)
∴ \(\hat{a}\) is perpendicular to \(\hat{b}\) and \(\hat{c}\) both
∴ \(\hat{a}\) is parallel to \(\hat{b}\) × \(\hat{c}\)
∴ \(\hat{a}\) = m(\(\hat{b}\) × \(\hat{c}\)), m is a scalar.
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 75

Question 40.
Find the value of ‘a’ so that the volume of parallelopiped a formed by \(\hat{i}+\hat{j}+\hat{k}+a \hat{k}\) aand \(a j+\hat{k}\) becomes minimum.
Question is modified.
Find the value of ‘a’ so that the volume of parallelopiped formed by \(\hat{i}+a \hat{j}+\hat{k}, \hat{j}+a \hat{k}\) and \(a \hat{i}+\hat{k}\) becomes minimum.
Solution:
Let \(\bar{p}\) = \(\hat{i}+a \hat{j}+\hat{k}\), \(\bar{q}\) = \(\hat{j}+a \hat{k}\), \(\bar{r}\) = \(a \hat{i}+\hat{k}\)
Let V be the volume of the parallelopiped formed by \(\bar{p}, \bar{q}, \bar{r}\).
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 76
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 77

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 41.
Find the volume of the parallelepiped spanned by the diagonals of the three faces of a cube of side a that meet at one vertex of the cube.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 78
Take origin O as one vertex of the cube and OA, OB and OC as the positive directions of the X-axis, the Y-axis and the Z-axis respectively.
Here, the sides of the cube are
OA = OB = OC = a
∴ the coordinates of all the vertices of the cube will be
O = (0, 0, 0) A = (a, 0, 0)
B = (0, a, 0) C = (0, 0, a)
N = (a, a, 0) L = (0, a, a)
M = (a, 0, a) P = (a, a, a)
ON, OL, OM are the three diagonals which meet at the vertex O
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 79

Question 42.
If \(\bar{a}, \bar{b}, \bar{c}\) are three non-coplanar vectors, then show that \(\frac{\bar{a} \cdot(\bar{b} \times \bar{c})}{(\bar{c} \times \bar{a}) \cdot \bar{b}}+\frac{\bar{b} \cdot(\bar{a} \times \bar{c})}{(\bar{c} \times \bar{a}) \cdot \bar{b}}\) = 0
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 80

Question 43.
Prove that \((\bar{a} \times \bar{b}) \cdot(\bar{c} \times \bar{d})\left|\begin{array}{ll}
\bar{a} \cdot \bar{c} & \bar{b} \cdot \bar{c} \\
\bar{a} \cdot \bar{d} & \bar{b} \cdot \bar{d}
\end{array}\right|\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 81
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 82

Question 44.
Find the volume of a parallelopiped whose coterminus edges are represented by the vector \(\hat{j}+\hat{k} \cdot \hat{i}+\hat{k}\) and \(\hat{i}+\hat{j}\). Also find volume of tetrahedron having these coterminous edges.
Solution:
Let \(\bar{a}\) = \(\hat{j}+\hat{k}\), \(\bar{b}\) = \(\hat{i}+\hat{k}\) and \(\bar{c}\) = \(\hat{i}+\hat{j}\) be the co-terminus edges of a parallelopiped.
Then volume of the parallelopiped = \([\bar{a} \bar{b} \bar{c}]\)
= \(\left|\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right|\)
= 0(0 – 1) – 1(0 – 1) + 1(1 – 0)
= 0 + 1 + 1 = 2cu units.
Also, volume of tetrahedron = \(\frac{1}{6}[\bar{a} \bar{b} \bar{c}]\)
= \(\frac{1}{6}(2)=\frac{1}{3}\) cubic units.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 45.
Using properties of scalar triple product, prove that \(\left[\begin{array}{llll}
\bar{a}+\bar{b} & \bar{b}+\bar{c} & \bar{c}+\bar{a}
\end{array}\right]=2\left[\begin{array}{lll}
\bar{a} & \bar{b} & \bar{c}
\end{array}\right]\).
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 83

Question 46.
If four points A(\(\bar{a}\)), B(\(\bar{b}\)), C(\(\bar{c}\)) and D(\(\bar{d}\)) are coplanar then show that \(\left[\begin{array}{lll}
\bar{a} \bar{b} \bar{d}]+\left[\begin{array}{lll}
\bar{b} & \bar{c} & \bar{d}
\end{array}\right]+\left[\begin{array}{lll}
\bar{c} & \bar{a} & \bar{d}
\end{array}\right]=[\overline{\bar{a}} \bar{b} & \bar{c}
\end{array}\right]\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 84
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 85

Question 47.
If \(\bar{a}\) \(\bar{b}\) and \(\bar{c}\) are three non coplanar vectors, then \((\bar{a}+\bar{b}+\bar{c}) \cdot[(\bar{a}+\bar{b}) \times(\bar{a}+\bar{c})]=-\left[\begin{array}{lll}
\bar{a} & \bar{b} & \bar{c}
\end{array}\right]\).
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 86

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 48.
If in a tetrahedron, edges in each of the two pairs of opposite edges are perpendicular, then show that the edges in the third pair are also perpendicular.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 87
Let O-ABC be a tetrahedron. Then o
(OA, BC), (OB, CA) and (OC, AB) are the pair of opposite edges.
Take O as the origin of reference and let \(\bar{a}\) \(\bar{b}\) and Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Miscellaneous Exercise 5 88
∴ the third pair (OC, AB) is perpendicular.

Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.5

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 5 Vectors Ex 5.5 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 5 Vectors Ex 5.5

Question 1.
Find \(\bar{a}\)∙(\(\bar{b}\) × \(\bar{c}\)), if \(\bar{a}\) = \(3 \hat{i}-\hat{j}+4 \hat{k}\), \(\bar{b}\) = \(2 \hat{i}+3 \hat{j}-\hat{k}\) and \(\bar{c}\) = \(-5 \hat{i}+2 \hat{j}+3 \hat{k}\)
Solution:
\(\bar{a}\)∙(\(\bar{b}\) × \(\bar{c}\)) = \(\left|\begin{array}{rrr}
3 & -1 & 4 \\
2 & 3 & -1 \\
-5 & 2 & 3
\end{array}\right|\)
= 3(9 + 2) + 1 (6 – 5) + 4(4 + 15)
= 33 + 1 + 76
= 110.

Question 2.
If the vectors \(3 \hat{i}+5 \hat{k}, 4 \hat{i}+2 \hat{j}-3 \hat{k}\) and \(3 \hat{i}+\hat{j}+4 \hat{k}\) are to co-terminus edges of the parallelo piped, then find the volume of the parallelopiped.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.5 1
= 3(8 + 3) – 0(16 + 9) + 5(4 – 6)
= 33 – 0 – 10 = 23
∴ volume of the parallelopiped = \([\bar{a} \bar{b} \bar{c}]\)
= 23 cubic units.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 3.
If the vectors \(-3 \hat{i}+4 \hat{j}-2 \hat{k}, \hat{i}+2 \hat{k}\) and\(\hat{i}-p \hat{j}\) are coplanar, then find the value of p.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.5 2
∴ -3(0 + 2p) – 4(0 – 2) – 2(-p – 0) = 0
∴ -6p + 8 + 2p = 0
∴ -4p = -8
P = 2.

Question 4.
Prove that :
(i) [latex]\bar{a} \bar{b}+\bar{c} \bar{a}+\bar{b}+\bar{c}[/latex] = 0
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.5 3

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) (\(\bar{a}\) – \(2 \bar{b}\) – \(\bar{c}\))∙[(\(\bar{a}\) – \(\bar{b}\)) × \(\bar{a}\) – \(\bar{b}\) – \(\bar{c}\)] = 3[\(\bar{a}\) – \(\bar{b}\) – \(\bar{c}\)]
Question is modified.
(\(\bar{a}\) – \(2 \bar{b}\) – \(\bar{c}\)) [(\(\bar{a}\) – \(\bar{b}\)) × \(\bar{a}\) – \(\bar{b}\) – \(\bar{c}\)] = 3[\(\bar{a}\) \(\bar{b}\) \(\bar{c}\)]
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.5 4

Question 5.
If \(\bar{c}\) =3\(\bar{a}\) – 2\(\bar{b}\) prove that [\(\bar{a}\) \(\bar{b}\) \(\bar{c}\)] = 0
Solution:
We use the results :\(\bar{b}\) × \(\bar{b}\) = 0 and if in a scalar triple product, two vectors are equal, then the scalar triple product is zero.
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.5 5

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 6.
If u = \(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{k}\), \(\bar{v}\) = \(3 \hat{\mathbf{i}}+\hat{k}\) and \(\bar{w}\) = \(\hat{\mathrm{j}}-\hat{\mathrm{k}}\) are given vectors, then find
(i) [\(\bar{u}\) + \(\bar{w}\)]∙[(\(\bar{w}\) × \(\bar{r}\)) × (\(\bar{r}\) × \(\bar{w}\))]
Question is modified.
If \(\bar{u}\) = \(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{k}\), \(\bar{r}\) = \(3 \hat{\mathbf{i}}+\hat{k}\) and \(\bar{w}\) = \(\hat{\mathrm{j}}-\hat{\mathrm{k}}\) are given vectors, then find [\(\bar{u}\) + \(\bar{w}\)]∙[(\(\bar{u}\) × \(\bar{r}\)) × (\(\bar{r}\) × \(\bar{w}\))]
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.5 6
= 1(6 – 18) + 1 (-6 + 6) + 0
= -12 + 0 + 0 = -12.

Question 7.
Find the volume of a tetrahedron whose vertices are A( -1, 2, 3) B(3, -2, 1), C (2, 1, 3) and D(-1, -2, 4).
Solution:
The position vectors \(\bar{a}\), \(\bar{b}\), \(\bar{c}\) and \(\bar{d }\) of the points A, B, C and D w.r.t. the origin are \(\bar{a}\) = \(-\hat{i}+2 \hat{j}+3 \hat{k}\), \(\bar{b}\) = \(3 \hat{i}-2 \hat{j}+\hat{k}\), \(\bar{c}\) = \(2 \hat{i}+\hat{j}+3 \hat{k}\) and
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.5 7

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
If \(\bar{a}\) = \(\hat{i}+2 \hat{j}+3\), \(\bar{b}\) = \(3 \hat{i}+2 \hat{j}\) and \(\bar{c}\) = ,\(2 \hat{i}+\hat{j}+3\) then verify that \(\bar{a}\) × (\(\bar{b}\) × \(\bar{c}\)) = (\(\bar{a}\) ⋅ \(\bar{c}\))\(\bar{b}\) – (\(\bar{a}\) ⋅ \(\bar{b}\))\(\bar{c}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.5 8
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.5 9
From (1) and (2), we get
\(\bar{a}\) × (\(\bar{b}\) × \(\bar{c}\)) = (\(\bar{a}\) ⋅ \(\bar{c}\))\(\bar{b}\) – (\(\bar{a}\) ⋅ \(\bar{b}\))\(\bar{c}\)

Question 9.
If, \(\bar{a}\) = \(\hat{i}-2 \hat{j}\), \(\bar{b}\) = \(\hat{i}+2 \hat{j}\) and \(\bar{c}\) =\(2 \hat{i}+\hat{j}-2\) then find
(i) \(\bar{a}\) × (\(\bar{b}\) × \(\bar{c}\))
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.5 10

(ii) (\(\bar{a}\) × \(\bar{b}\)) × \(\bar{c}\) Are the results same? Justify.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.5 11
\(\bar{a}\) × (\(\bar{b}\) × \(\bar{c}\)) ≠ (\(\bar{a}\) × \(\bar{b}\)) × \(\bar{c}\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 10.
Show that \(\bar{a}\) × (\(\bar{b}\) × \(\bar{c}\)) + \(\bar{b}\) × (\(\bar{c}\) × \(\bar{a}\)) + \(\bar{c}\) × (\(\bar{a}\) × \(\bar{b}\)) = 0
Solution:
Maharashtra Board 12th Maths Solutions Chapter 5 Vectors Ex 5.5 12