Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

Balbharti Maharashtra State Board 12th Chemistry Important Questions Chapter 6 Chemical Kinetics Important Questions and Answers.

Maharashtra State Board 12th Chemistry Important Questions Chapter 6 Chemical Kinetics

Question 1.
What is chemical kinetics?
Answer:
Chemical kinetics is a branch of physical chemistry which involves the study of the rates and mechanisms of chemical reactions and the influence of various factors like temperature, pressure, catalyst, etc., on the rates of reactions.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

Question 2.
What is the importance of chemical kinetics?
Answer:

  • It deals with the study of the rates and mechanism of reactions.
  • The effect of temperature on the reaction rates can be studied.
  • The influence of catalysts can be studied.
  • The conditions for altering the rates and mechanisms of chemical reactions can be predicted.
  • Thermodynamic parameters like energy, enthalpy changes, Δ5, ΔG of the reactions can be calculated.

Question 3.
How are reactions classified according to their rates? Give one example of each.
Answer:
According to the rates of the reactions, they can be classified as :
(1) Fast reactions,
(2) Very slow reactions,
(3) Moderately slow reactions.

(1) Fitst actions : In this, reactants react almost instantaneously, e.g., neutralisation reaction between H+ and OH-, forming water.
\(\mathrm{H}_{(\mathrm{xa})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}_{0 \mathrm{D}}\)

(2) Very slow reactions : In this, the reactants react extremely slow, so that there is no appreciable change in the concentrations of the reactants over a long period of time. E.g., reaction of silica with mineral acids, rusting of iron, etc.

(3) Moderately slow reactions : In this, the reactants react moderately slow with a measurable velocity, e.g., the hydrolysis of the esters.
\(\begin{aligned}
\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{H}^{+}}{\longrightarrow} \mathrm{CH}_{3} \mathrm{COOH} \\
&+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
\end{aligned}\)

Question 4.
Define rate of a reaction.
Answer:
Definition : The rate of a chemical reaction is defined as the change in the concentration of the reactants or products per unit time.
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 2
It is often expressed in mol dm-3s-1.

Question 5.
Explain the following :
(A) Rate of the reaction in terms of the concentration of the reactants.
(B) Rate of reaction in terms of the concentration of the products.
Answer:
(A) Rate of the reaction in terms of the concentration of the reactants :
If c1 and c2 are the concentrations of the reactant A at time t1 and t2 respectively, then, the change in concentration, Δc = c2 – c1
Since c2 < c1, the term Δc is negative often written as – Δc.
The time interval is, Δt – t2 – t1
If Δ [A] is the change in concentration of A, then A[A] = C2 – C1
∴ Rate of the reaction = \(\mathrm{A}=\frac{-\Delta[\mathrm{A}]}{\Delta t}\)
∴ Rate of the reaction = \(\frac{-\Delta c}{\Delta t}\)

(B) Rate of the reaction in terms of the concentration of the products :
If x1 and x2 are the concentrations of the product B at time t1 and t2 respectively, then the change in concentration, Δx = x2 – x1.

∴ x2 > x1, the term Δx is positive.
The time interval is, Δt = t2 – t1

If Δ B is the change in concentration of product B, then Δ[B] = x2 – x1 = Δx
∴ Rate of formation of \(\mathrm{B}=+\frac{\Delta[\mathrm{B}]}{\Delta t}\)
∴ Rate of the reaction \(=\frac{\Delta x}{\Delta t}\)

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

Question 6.
What are the units of rate of a chemical reaction?
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 3
∴ The unit of the rate of a chemical reaction : mol L-1 3t-1 or mol dm-3s-1 (According to IUPAC, the rate of a chemical reaction should be expressed in mol m-3s-1 [SI unit]).

Question 7.
Mention the factors that affect the rate of a chemical reaction.
Answer:
The rate of a chemical reaction depends on the following factors :

  • Nature of the reactants.
  • The concentration of the reactants. In case of a gaseous reaction the rate depends on the pressures of the reactants.
  • Temperature of the reaction.
  • The presence of a catalyst and its nature.

Question 8.
Explain the term Average rate of a reaction.
Answer:
In chemical kinetics the rate of a reaction is measured in terms of the changes in the concentrations of the reactants or the products per unit time. Average rate of a chemical reaction : It is expressed as a finite change in concentration (- Δc) of the reactant divided by the time interval (Δt) for the change in concentration.

Consider a reaction,
A → B
The rate of a reaction, \(R=\frac{-\Delta[\mathrm{A}]}{\Delta t}=\frac{-\Delta c}{\Delta t}=\frac{c_{2}-c_{1}}{t_{2}-t_{1}}\)
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 4
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 5
∴ Average rate \(=\frac{-\Delta[\mathrm{A}]}{\Delta t}\) (in mol dm-3s-1)

Δc is negative, since the concentrartion of the reactant decreases with the time.
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 6
The rate of a reaction is also measured in terms of a finite change in the concentration (Δx) of the product divided by the time interval (Δt), for the change.

For the reaction,
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 7

Question 9.
Explain the term Instantaneous rate of a reaction.
Answer:
Instantaneous rate of a reaction : It is defined as a rate of a reaction at a specific instant during a course of the reaction.

If the average reaction rate is calculated over shorter and shorter intervals (making Δt very small) then instantaneous rate is obtained.

In case of reactant A, the instantaneous rate is represented as, \(R=\frac{-d[\mathrm{~A}]}{d t}\) and in case of product B, it is represented as \(R=\frac{+d[B]}{d t}\)

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

Question 10.
Define :
(a) Average rate of reaction.
(b) Instantaneous rate of reaction.
Answer:
(a) Average rate of a chemical reaction : It is expressed as a finite change in concentration (- Δc) of the reactant divided by the time interval (Δt) for the change in concentration.

∴ Average rate, \(R=\frac{-\Delta c}{\Delta t}\)

(b) Instantaneous rate of reaction : It is defined as a rate of a reaction at a specific instant during a course of the reaction.

Instantaneous rate \(=\frac{-d c}{d t}\)

Question 11.
Represent the average rates of the following reaction. N2(g) + 3H2(g) → 2NH3(g).
Answer:
For the reation,
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 12
This is because the rate of consumption of H2 is thrice the rate of consumption of N2 while the rate of formation of NH3 will be twice the rate of consumption of N2.

Question 12.
Express the rate of a reaction in terms of change in concentration of each constituent in the following reaction : aA+bB → cC+ dD
Answer:
The rate of a reaction may be expressed in terms of decrease in the concentration of the reactants or in-crease in the concentration of the product per unit time,

∴ For the given reaction, aA T bB → cC +dD
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 13

Question 13.
For a hypothetical reaction, A + 2B → products, the concentration of A and B at different intervals of time are given in the following table. Find the rates of the reaction in terms of concentration changes in A and B.

The equilibrium concentration of A and B at different time intervals :

Time t/minute [A]/mol L-1 [B]/ml L-1
0 1.000 2.000
10 0.534 1.068
20 0.342 0.360
30 0.180 0.360

Answer:
Rate of a reaction = \(\frac{-\Delta[\mathrm{A}]}{\Delta t}=-\frac{1}{2} \frac{\Delta[\mathrm{B}]}{\Delta t}\)
(1) Over time interval from O to 10 minutes
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 14
(Note that the rate of a reaction in terms of changes in concentration of any reactant or product at the given time remains the same.)

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

(2) Over the time interval from 10 to 20 minutes,
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 15

Question 14.
Show that the rate of reaction is the same whether expressed in terms of the rate of consumption of any reactant or of the formation of any product.
2N2O5(g) → 4NO2(g) + O2(g)
The concentrations of reactants and products at different time intervals are given in the following table :
Concentrations of various species at different times for the reaction N2O5(g) → 4NO2(g) + O2(g) :

Time/s [N2O5]/M [NO2]/M [O2]/M
0 0.0300 0 0
200 0.0213 0.0174 0.00435
400 0.0152 0.0296 0.00740
600 0.0108 0.0384  0.00960

Answer:
The rate of the reaction can be expressed in terms of rate of consumption of reactants or rate of formation of products.
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 16
Consider concentrations at time t1 = 200 seconds and t2 = 400 seconds
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 17
The constant values of rate of reaction proves that the rate of the reaction may be measured in terms of concentration changes of reactants or products per unit time.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

Question 15.
Define Rate law (or differential rate law).
Answer:
Rate law (or differential rate law) : It is defined as an experimentally determined mathematical equation which expresses the rate of a chemical reaction in terms of molar concentrations of the reactants which influence the rate of the reaction. For example, for a reaction, A + B → Products By rate law, Rate = R = k[A] x [B] where k is a rate constant and [Al and [B] are molar concentrations of the reactants A and B respectively.

Question 16.
Give examples of rate law with illustrations.
Answer:
Consider following examples :
(i) H2(g) + I2(g) → 2HI(g)
R = k[H2] [I2]

(ii) 2H2O2(g) → 2H2O(I) + O2(g)
Experimentally it is observed that the rate of the reaction is proportional to the concentration of H2O2.
∴ R = k [H2O2]

(iii) NO2(g) + CO(g) → NO(g) + CO2(g)
Experimentally it is observed that rate of the reaction does not depend on the concentration of CO but it is proportional to [NO2]2.
∴ R = k[NO2]2

Question 17.
What are the applications of the rate law?
Answer:

  • The rate of any reaction at the given concentration can be measured by knowing the rate law and the rate constant.
  • The concentration of the reactants or the products at any instant during the progress of a reaction can be estimated with the help of rate law and the rate constant.
  • The mechanisms of simple or complex chemical reactions can be predicted and studied.

Question 18.
Define the rate constant. What are the factors which influence the rate constant of a chemical reaction?
Answer:
(A) Rate constant : The rate constant of a chemical reaction is defined as the rate of the chemical reaction when the concentration (or active masses) of each reactant has unit value, i.e., 1 mol dm-3 in the case of solution and the pressure is 1 atm in case of gases, e.g., for a reaction, A → products, Rate R = k[A].

If [A] = 1 mol dm-3, then k = R.

(B) The rate constant of a reaction depends on the following factors:

  • Nature of the reactants.
  • Temperature of the reaction. As the temperature increases, the velocity constant (rate constant) increases.
  • The conditions of the reactions like the presence of the catalyst, solvent, pH, etc.
  • It does not depend on the concentration of the reactants. But if one or more substances are in excess concentration, then the order of the reaction is independent of them.

Question 19.
What are the characteristics of rate constant?
Answer:
The characteristics of rate constant are as follows :

  • The rate constant depends upon the nature of the reaction.
  • Higher the value of the rate constant, faster is the reaction.
  • Lower the value of the rate constant, slower is the reaction.
  • By increasing the temperature, the magnitude of the rate constant increases.
  • For the given reaction, the rate constant has higher value in the presence of a catalyst than in the absence of the catalyst.
  • The reactions having lower activation energy have higher values for rate constants.

Solved Examples 6.2 – 6.3.2

Question 20.
Solve the following :

(1) Write the rate expressions for the following reactions in terms of rate of consumption of the reactants and the rate of formation of the products.
(i) 2NO(g) + O2(g) → 2NO2(g)
(ii) H2(g) + I2(g) → 2HI(g)
Solution :
(i) Given : 2NO(g) + O2(g) → 2NO2(g)
Rate of consumption of NO at time \(t=\frac{-d[\mathrm{NO}]}{d t}\)
Rate of consumption of O2 at time \(t=\frac{-d\left[\mathrm{O}_{2}\right]}{d t}\)
Rate of formation of NO2 at time \(t=\frac{d\left[\mathrm{NO}_{2}\right]}{d t}\)
Rate of the reaction \(=-\frac{1}{2} \frac{d[\mathrm{NO}]}{d t}=\frac{-d\left[\mathrm{O}_{2}\right]}{d t}\)
\(=\frac{1}{2} \frac{d\left[\mathrm{NO}_{2}\right]}{d t}\)

(ii) Given : H2(g) + I2(g) → 2HI(g)
Rate of consumption of H2 at time \(t=\frac{-d\left[\mathrm{H}_{2}\right]}{d t}\)
Rate of consumption of I2 at time \(t=\frac{-d\left[\mathrm{I}_{2}\right]}{d t}\)
Rate of formation of HI at time \(t=\frac{d[\mathrm{HI}]}{d t}\)
∴ Rate of reaction at any time t \(=-\frac{d\left[\mathrm{H}_{2}\right]}{d t}=-\frac{d\left[\mathrm{I}_{2}\right]}{d t}=\frac{1}{2} \frac{d[\mathrm{HI}]}{d t}\)

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

(2) The gas-phase reaction between NO and Br2 is represented by the equation. 2NO(g) + Br2(g) → 2NOBr(g)
(a) Write the expressions for the rate of consumption of reactants and formation of products.
(b) Write the expression for the rate of overall reaction in terms of rates of consumption of reactants and formation of products.
Solution :
Given : 2NO(g) + Br2(g) → 2NOBr(g)
(a) Rate of consumption of NO at time t \(=-\frac{d[\mathrm{NO}]}{d t}\)
Rate of consumption of Br2 at time t \(=\frac{-d\left[\mathrm{Br}_{2}\right]}{d t}\)
Rate of formation of NOBr at time \(t=\frac{d[\mathrm{NOBr}]}{d t}\)
(b) Rate of reaction \(=-\frac{1}{2} \frac{d[\mathrm{NO}]}{d t}=\frac{-d\left[\mathrm{Br}_{2}\right]}{d t}\)
\(=\frac{1}{2} \frac{d[\mathrm{NOBr}]}{d t}\)

(3) The decomposition of N2Os is represented by the equation
2N2O5(g) → 4NO2(g) + O2(g)
(a) How is the rate of formation of NO2 related to the rate of formation of O2?
(b) How is the rate of formation of O2 related to the rate of consumption of N2O5?
Solution :
Given : 2N2O5(g) → 4NO2(g) + O2(g)
(a) Rate of formation of NO2 at time \(t=\frac{d\left[\mathrm{NO}_{2}\right]}{d t}\)
Rate of formation of O2 at time \(t=\frac{d\left[\mathrm{O}_{2}\right]}{d t}\)

They are related to each other through rate of reaction.
∴ Rate of reaction \(=\frac{1}{4} \frac{d\left[\mathrm{NO}_{2}\right]}{d t}=\frac{d\left[\mathrm{O}_{2}\right]}{d t}\)

(b) Rate of consumption of N2O5 at time t \(=-\frac{d\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{d t}\)

Rate of reaction \(=-\frac{1}{2} \frac{d\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{d t}=\frac{d\left[\mathrm{O}_{2}\right]}{d t}\)

In general,
Rate of reaction \(=-\frac{1}{2} \frac{d\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{d t}=\frac{1}{4} \frac{d\left[\mathrm{NO}_{2}\right]}{d t}=\frac{d\left[\mathrm{O}_{2}\right]}{d t}\)

(4) Nitric oxide reacts with H2 according to the reaction. 2NO(g) + 2H2(g) → N2(g) + 2H2O(g)
What is the relationship among \(\frac{d[\mathrm{NO}]}{d t}=\frac{d\left[\mathrm{H}_{2}\right]}{d t}=\frac{d\left[\mathrm{~N}_{2}\right]}{d t} \text { and } \frac{d\left[\mathrm{H}_{2} \mathrm{O}\right]}{d t} ?\)
Solution :
Given : 2NO(g) + 2H2(g) → N2(g) + 2H2O(g)
The relationship among the rate of consumption of the reactants and the rate of formation of products is as follows :

Rate of reaction :
\(R=-\frac{1}{2} \frac{d[\mathrm{NO}]}{d t}=-\frac{1}{2} \frac{d\left[\mathrm{H}_{2}\right]}{d t}=\frac{d\left[\mathrm{~N}_{2}\right]}{d t}=\frac{1}{2} \frac{d\left[\mathrm{H}_{2} \mathrm{O}\right]}{d t}\)

(5) The rate of decomposition of N2Os was studied in liquid bromine,
2N2O5(g) → 4NO2(g) + O2(g)
If at a certain time, the rate of disappearance of N2O5 is 0.015 Ms-1 find the rates of formation of NO2 and O2. What is the rate of the reaction at this instant?
Solution :
Given : 2N2O5(g) → 4NO2(g) + O2(g)
Rate of disappearance of N2O5 = 0.015 M s-1
Rate of formation of NO2 =?
Rate of formation of O2 =?
Rate of reaction = ?
Rate of disappearance of \(\mathrm{N}_{2} \mathrm{O}_{5}=\frac{-d\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{d t}\)
= 0.015 M s-1

Since 4 moles of NO2 are formed from 2 moles of N2O5 Rate of formation of NO2Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 21
Answer:
Rate of formation of NO2 = 0.03 Ms-1
Rate of formation of O2 = 0.0075 M s-1
Rate of reaction = 0.0075 Ms-1.

(6) In the reaction, PCl5(g) → PCl3(g) + CI2(g), at a particular moment, the rate of disappearance of PCl5 is 0.015 Ms-1. What are the rates of formation of PCI3 and Cl2?
Solution :
Given : PCl5(g) → PCl3(g) + Cl2(g)
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 22
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 23
Answer:
Rate of formation of PCl3 = 0.015 Ms-1
Rate of formation of Cl2 = 0.015 Ms-1

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

(7) In the reaction, 2N3O5(g) → 4NO2(g) + O2(g), at a certain time, the rate of formation of NO2 is 0. 04 Ms-1. Find the rate of consumption of N2O5, rate of formation of O2 and the rate of the reaction.
Solution :
Given : 2N2O5(g) → 4NO2(g) + O2(g)
Rate of formation of NO2 = \(\frac{d\left[\mathrm{NO}_{2}\right]}{d t}\) = 0.04 Ms-1

From the reaction, rate of consumption of N2O5 is half the rate of formation of NO2 since when 2 moles of N2O5 are consumed, 4 moles of NO2 are formed.
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 24
Rate of formation of O2 is one-fourth rate of formation of NO2.
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 25
Answer:
(i) Rate of consumption of N2O5
(ii) Rate of formation of O2 = 0.01 Ms-1
(iii) Rate of reaction = 0.01 Ms-1

(8) Consider the reaction 2A + B → 2C. Suppose that at a particular moment during the reaction, rate of disappearance of A is 0.076 M/s,
(a) What is the rate of formation of C?
(b) What is the rate of consumption of B?
(c) What is the rate of the reaction?
Solution :
Given : 2A + B → 2C
Rate of disappearance of A = 0.076 Ms-1
(a) Rate of formation of C =?
(b) Rate of consumption of B =?
(c) Rate of reaction = ?
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 26
Answer:
(a) Rate of formation of C = 0.076 Ms-1
(b) Rate of consumption of B = 0.038 M s-1
(c) Rate of reaction = 0.038 Ms-1

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

(9) Consider the reation \(\mathbf{3 I}_{(\mathbf{a q})}^{-}+\mathbf{S}_{2} \mathbf{O}_{8(u q)}^{2-} \longrightarrow \mathbf{I}_{3(\mathrm{aq})}^{-}+2 \mathrm{SO}_{4}^{2-}\) At a particular time t, \(t, \frac{d\left[\mathrm{SO}_{4}^{2-}\right]}{d t}=2.2 \times 10^{-2} \mathrm{M} / \mathrm{s}\) What are the values of \(\text { (a) }-\frac{d\left[\mathrm{I}^{-}\right]}{d t}\) \(-\frac{d\left[\mathrm{~S}_{2} \mathrm{O}_{8}^{2-}\right]}{d t}\) \(\text { (c) } \frac{d\left[\mathbf{I}_{3}^{-}\right]}{d t}\) at the same time?
Solution :
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 27
(a) Rate of consumption of \(\mathrm{I}^{-}=-\frac{d\left[\mathrm{I}^{-}\right]}{d t}\)
When 2 moIes of \(\mathrm{SO}_{4}^{2-}\) are formed, 3 moves of I are consumed in the same time.
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 28

(b) In the formation of 2 moles of \(\mathrm{SO}_{4}^{2-}\), 1 mole of \(\mathrm{S}_{2} \mathrm{O}_{8}^{2-}\) is consumed in the same time.
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 29
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 30

(10) Ammonia and oxygen react at high temperature as :
4NH3(g) + 5O2(g) → 4NO(g) + 6H2O(g)
In an experiment, rate of formation of NO(g) is 3.6 x 10-3 mol L-1s-1.
Calculate-
(a) Rate of disappearance of ammonia
(b) Rate of formation of water.
Solution :
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 31
Answer:
(a) Rate of disappearance of NH3
= 3.6 x 10-3 mol L-1s-1
(b) Rate of formation of H2O
= 5.4 x 10-3 mol L-1s-1

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

(11) The rate law for the reaction
C2H4Br2 + 3I → C2H4 + 2Br +I3 is Rate = k [C2H4Br2][I]. The rate of the reac-tion is found to be 1.1 x 10-4 M/s when the concentrations of C2H4Br2 and I– are 0.12M and 0.18 M respectively. Calculate the rate constant of the reaction.
Solution :
Given : C2H4Br2 + 3I → C2H4 + 2Br +I3
By rate law, Rate of reaction = R = k x [C2H4Br2][I]
R = 1.1 x 10-4 Ms-1
[C2H4Br2] = 0.12 M; [I] =0.18 M
Rate constant = k =?
R = k x [C2H4Br2] x [I]
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 33
Answer:
Rate constant = k = 5.1 x 10-3 M-1s-1

(12) For a reaction, 2A + B → C, the rate law is, rate =k x [A]2 x [B]. If the rate constant of the reaction is 3.74 x 10-2M-2s-1, calculate the rate of the reaction when the concentrations of A, B and C are 0.108 M, 0.132 M and 0.124 M respectively.
Solution :
Given : Rate constant of the reaction = k
= 3.74 x 10-2M-2s-1
[A] =0.108 M, [B] = 0.132M, [C] = 0.124 M
Rate of the reaction = R = ?
By rate law,
R = k [A]2 x [B] = (0.108)2 x 0.132 = 1.54 x 10-3 Ms-1
(Concentration of C need not be considered since it is a product.)
Answer:
Rate of reaction = 1.54 x10-3 Ms-1

(13) For a reaction, A + B → C, if the concentration of A doubles, the rate of the reaction doubles. While if the concentration of B doubles the rate of the reaction increases by four fold. Write rate law. .
Solution :
Let x moles of A react with y moles of B. xA + yB → C
To write rate law, it is necessary to find x and y values.

(i) Initial rate \(=R_{1}=k[\mathrm{~A}]_{1}^{x}[\mathrm{~B}]_{1}^{y}\)
Final rate R2 is doubled when the concentration of A is doubled, i.e., R2 = 2R1 when final concentration,
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 174
(It is assumed that the concentration of B remains same.)
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 34

(ii) Initial rate \(=R_{1}=k[\mathrm{~A}]_{1}^{x}[\mathrm{~B}]^{y}\)
If the concentration of B is doubled keeping of A constant, rate becomes four times, i.e.,
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 35
Hence the rate law is represented by an expression.
Rate = k[A] [B]2
Answer:
Rate law is. Rate = k [A] [B]2

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

(14) For the reaction, A2 + B + C → AC + AB, it is found that tripling the concentration of A2 triples the rate, doubling the concentration of C doubles the rate and doubling the concentration of B has no effect,
(a) What is the rate law?
(b) Why the change in concentration of B has no effect?
Solution :
Given : A2 + B + C → AC + AB
(a) The rate law may be represented as,
Rate = k [A2]x [B]y [C]z
Let [A]1, [B]1 and [C]1 represent initial concentration and [A]2, [B]2 and [C]2 represent final concentrations, and let R1 and R2 be initial and final rates of the reaction when the concentrations are changed.

(i) If [A]2 = 3[A]1, R2 = 3R1
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 36
If the concentrations of B and C remain constant, then
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 37

(b) In the rate determining step, B may not be involved as the reactant, hence rate is independent of changes in concentration of B. (OR B may be in large excess as compared to the concentrations of A and C.)
Answer:
(a) Rate law : Rate = k [A] [C]

Question 21.
Define and explain the term order of a chemical reaction.
Answer:
Order of a chemical reaction : The order of a chemical reaction is defined as the number of molecules (or atoms) whose concentrations influence the rate of the chemical reaction.
OR
The order of a chemical reaction is defined as the sum of the powers (or exponents) to which the concentration terms of the reactants are raised in the rate law expression for the given reaction.

Explanation :
Consider a reaction,
n1A + n2B → Products
where n1 moles of A react with n2 moles of B.

The rate of this reaction can be expressed by the rate law equation as,
R = k [A]n1 [B]n2
where k is the rate constant of the reaction, hence, the order of the reaction is n – n1 + n2, (observed, experimentally).

If n = 1, the reaction is called the first order reaction, if n = 2, it is called the second order reaction, etc.

If n = 0, it is called the zero order reaction, e.g., photochemical reaction of H2(g) and Cl2(g).

Question 22.
What are the features (or key points) of order of a reaction?
Answer:
The features of order of reaction are as follows :

  • It represents the number of atoms, ions or molecules whose concentrations influence the rate of the reaction.
  • It is not related to the stoichiometric equation of the reaction, hence it cannot be predicted from stoichiometric balanced equation.
  • It is experimentally determined quantity.
  • It is defined only in terms of the concentrations of the reactants and not of products.
  • It may have values which are integers, fractional or zero.
  • Higher values are rare. Reactions of first and second order are in large number. Third order reactions are very few like,
    2NO(g) + Cl2(g) → 2NOCl(g).

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

Solved Examples 6.3.3

Question 23.
Solve the following :
(1) From the rate expressions for the following reactions, determine their order :
(a) 2N2O5(g) → 4NO2(g) + O2(g) : Rate = k [N2O5]
(b) CHCl3(g) + Cl2(g) → CCl4(g) + HCl(g) : Rate = k [CHL3] [Cl2]1/2
(c) C2H5Cl(g) → C2H4(g) + HCl(g): Rate = k [C2H5Cl]
(d) 2NO2(g) + F2(g) → 2NO2F(g) → : Rate = k (NO2] [F2]
Solution :
(a) 2N2O5(g) → 4NO2(g) + O2(g)
The rate law expression given for the reaction is Rate = k x [N2O5]
Hence the reaction is of first order.

(b) CHCl3(g) + Cl2(g) → CCl4(g) + HCl(g)
The given rate law expression is, R = k [CHCl3] x [Cl2]1/2 Here the order of a reaction is one with respect to CHCl3(g) and half with respect to Cl2(g). Therefore the overall order of the reaction is 1 + 1/2 = 1.5.

(c) C2H5Cl(g) → C2H4(g) + HCl(g)
The given rate law expression is, Rate = k [C2H5Cl]
Hence the reaction has order equal to one.

(d) 2NO2(g) + F2(g) → 2NO2F(g)
The given rate law expression for the reaction is Rate = k [NO2] x [F2]
Hence the reaction is first order with respect to NO2 and first order with respect to F2. The overall order of the reaction is, n = nNO2 + nF1 = 1 + 1 = 2.

(2) Determine the order of following reactions from their rate expressions :
(a) 2H2O2 → 2H2O + O2 Rate = k [H2O2]
(b) NO2 + CO → NO + CO2 Rate = k [NO2]2
(c) 2NO + O2 → 2NO2 Rate = k [NO]2 x [O2]
(d) CHCl3(g) + Cl2(g) → CCl4(g) + HCl(g)
Rate = k [CHCl3] [Cl2]
Solution :
(a) For the reaction,
2H2O2 → 2H2O + O2
Since the rate law expression given is,
Rate = k [H2O2]
Hence the reaction is of first order.

(b) For the reaction,
NO2 + CO → NO + CO2
Since the rate law given is Rate = k [NO2]2, the reaction is second order with respect to NO2 and zero order with respect to CO. Hence the net order of the reaction is, n = nNO2 + nco = 2 + 0 = 2

(c) For the reaction,
2NO + O2 → 2NO2
Since the rate law expression given is, Rate = k [NO]2 x [O2] the reaction is second order with respect to NO and first order with respect to O2. Hence the overall order of reaction is n = nNO2 + no2 = 2 + 1 = 3.

(d) For the reaction, by rate law,
Rate = k [CHCl3] x [Cl2] reaction is first order with respect to CHCl3 and first order with respect to Cl2. Hence the overall order is, n = ncHcl3 + ncl2 = 1 + 1 = 2.

(3) Write the rate law expressions for the following reactions:
(1) 2N2O5(g) → 4NO2 + O2; order of the reaction is 1.
(2) CH3CHO → CH4 + CO; order of the reaction Is 3/2.
Solution :
(1) For the given reaction, order is one hence the rate law expression is, Rate = k [N2O5].
(2) For the given reaction, order is 3/2, hence the rate law expression is Rate = k x [CH2CHO]3/2.

(4) The reaction \(\mathbf{H}_{2} \mathbf{O}_{2(\mathbf{a q})}+3 \mathbf{I}_{(\mathbf{a q})}^{-}+2 \mathbf{H}_{(\mathrm{aq})}^{+} \longrightarrow 2 \mathbf{H}_{2} \mathbf{O}_{(0)}+\mathbf{I}_{3(a q)}^{-}\) is first order in H2O2 and I, zero order in H+. Write the rate law.
Solution:
Given :
\(\mathrm{H}_{2} \mathrm{O}_{2(\mathrm{~g})}+3 \mathrm{I}_{(\mathrm{aq})}^{-}+2 \mathrm{H}^{+}{ }_{(\mathrm{aq})} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{i})}+\mathrm{I}_{3(\mathrm{aq})}^{-}\)
Since the reaction is first order in H2O2 and F and zero order in H+, the expression for rate law will be,
Rate =k [H2O2]1 [I]1 [H+]0
∴ Rate = k [H2O2] [I]
Answer:
Rate = k [H2O2] [I]

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

(5) The rate law for the gas-phase reaction
2NO(g) + O2(g) → 2NO2(g) is rate = k [NO2]2 [O2]. What is the order of the reaction with respect to each of the reactants and what is the overall order of the reaction?
Solution :
Given : 2NO(g) + O2(g) → 2NO2(g)
Rate = k [NO]2[O2]
Order of the reaction with respect to NO = nNo = 2
Order with respect to O2 = nO2 = 1
Overall order of the reaction = n = nNO + nO2
= 2 + 1
= 3
Answer:
Order with respect to NO = 2
Order with respect to O2 = 1
Overall order = 3

(6) What is the order for the following reactions?
(a) 2NO2(g) + F2(g) → 2NO2F(g), rate = k [NO2][F2]
(b) CHCl3(g) + Cl2(g) → CCl4(g) + HCl(g), rate = k[CHCl3][Cl2]1/2
Solution :
(a) Given : 2NO2(g) + F2(g) → 2NO2F
Rate = k [NO2][F2]
Hence the reaction is first order with respect to NO2 and first order with respect to F2
∴ Order of reaction = nNO2 + nF2 = 1 + 1 = 2

(b) Given :
CHCl3(g) + Cl2(g) → CCl4(g) + HCl(g),
Rate = k [ CHCl3] [Cl2]1/2
Hence the reaction is first order in CHCl3 and half order in Cl2.
∴ Order of reaction
= nCHCl3 + nCl2 = 1 + \(\frac{1}{2}\) = \(\frac{3}{2}\)
Answer:
(a) Order of the reaction = 2
(b) The order of the reaction = \(\frac{3}{2}\)

(7) Write the rate law for the following reactions :
(a) A reaction that is zero order in A and second order in B.
(b) A reaction that is second order in NO and first order in Br2.
Solution :
(a) Given : A + B → Products
The reaction is zero order in A and second order in B. Hence the rate law is represented as, Rate = k [A]O[B]2
Rate = k[B]2

(b) Given : 2NO(g) + Br2(g) → 2NOBr(g)
The reaction is second order in NO and first in Br2. Hence the rate law is,
∴ Rate = k [NO]2[Br2]
Answer: (a) Rate law : Rate = k[B]2
(b) Rate law : Rate = k [NO]2[Br2]

(8) The reaction A + B → Products, is first order in each of the reactants, (a) Write the rate law.
(b) How does the reaction rate change if the concentration of B is decreased by a factor 3?
(c) What is the change in the rate if the concentration of each reactant is tripled? (d) What is the change in the rate, if the concentration of A is doubled and that of B is halved?
Solution :
(a) The reaction is first order in A and B. Hence the equation for rate law is,
Rate = k [A] [B]
(b) Before changing the concentration of B, Initial rate = R1 – k [A]1 [B]1
After change in concentration of B,
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 39
Hence the rate of the reaction will be decreased by a factor 3.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

(c) When the concentration of each reactant is tripled, then the final concentrations will be, [A]2 = 3[A]1 and [B]2 = 3[B1]
∴ R2 = k x 3[A]1 x 3 [B]1
∴ R2 = k x 3[A]1 x 3 [B]1
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 40
Hence the rate of the reaction will be increased by 9 times.

(d) When the concentration A is doubled and that of B is halved then the final concentrations will be,
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 41
Rate of the reaction will remain unchanged.
Answer:
(a) Rate law is, Rate = k [A] [B],
(b) Rate is decreased by a factor 3,
(c) Rate is increased by 9 times,
(d) Rate remains unchanged.

(9) Consider the reaction A2 + B → products. If the concentration of A2 and B are halved, the rate of the reaction decreases by a factor of 8. If the concentration of A2 is increased by a factor of 2.5, the rate increases by the factor of 2.5. What is the order of the reaction? Write the rate law.
Solution :
Given : A2 + B → Products
(i) When concentration of A2 and B are halved :
[A2]2(final) = 1/2 [A2]1(final) and [B]2 = 1/2 [B]1 then, R2(final) = 1/8R1(intial).

(ii) When concentration of A2 is increased by the factor 2.5,
[A2]2 = 2.5 [A2]1 (concentration of B is same) then, R2 = 2.5 R1
Now let the reaction be, XA2 + yB → Products

From data in (ii),
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 43
Hence the reaction is of third order. The rate law can be represented as,
Rate = k [A2] [B]2
Answer:
(i) Order of the reaction = 3
(ii) Rate law : Rate = k [A2] [B]3

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

(10) Consider the reaction C + D → Products. The rate of the reaction increases by a factor of 4 when the concentration of C is doubled. The rate of the reaction is tripled when concentration of D is tripled. What is the order of the reaction? Write the rate law.
Solution :
Given : C + D → Products OR xC + yD → Products
(i) When the concentration of C is doubled, the rate of the reaction increases by 4.

[C]2(final) = 2[C]1(initial) then R2(final) = 4R1(initial)
(In this, the concentration of D is assumed to be constant.)
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 44
Hence, the reaction is second order in C.
∴ nC = 2
(ii) When the concentration of D is tripled, rate is tripled. The concentration of C is assumed to be constant.
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 45
Rate law : Rate = A[C]2[D]
Answer:
(i) Order of the reaction = 3
(ii) Rate law : Rate = A[C]2[D]

(11) The reaction F2(g) + 2ClO2(g) → 2FClO2(g) is first order in each of the reactants. The rate of the reaction is 4.88 x 10-4 M/s when [F2] = 0.015 M and [ClO2]= 0.025 M. Calculate the rate constant of the reaction.
Solution :
Given :
F2(g) + 2ClO2(g) → 2FClO2(g)
Order of reaction in F2 = nF2 = 1
Order of reaction in CIO2 = nClO2 = 1
Rate = R = 4.88 x 10-4 Ms-1
[F2] = 0.015 M; [ClO2] = 0.025 M
Rate = k = ?
By rate law,
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 46
Answer:
Rate constant = 1 = 1.3 M-2s-1

(12) The reaction 2H2(g) + 2NO(g) → 2H2O(g) + N2(g) is first order in H2 and second order in NO. The rate constant of the reaction at a certain tem­perature is 0.42M-2s-1. Calculate the rate when [H2] = 0.015 M and [NO] = 0.025 M.
Solution :
Given : 2H2(g) + 2NO(g) → 2H2O(g) + N2(g)
Order of reaction in H2 = nH1 = 1
Order of reaction in NO = nNO = 2
Rate constant = k = 0.42 M-2s-1
[H2] = 0.015 M; [NO] = 0.025 M
Rate of reaction = R = ?
By rate law,
Rate = R = k [H2] [NO]2
= 0.42 x 0.015 x (0.025)2 M-2s-1 M M
= 3.94 x 10-6 Ms-1
Answer:
Rate of reaction = R = 3.94 x 10-6 Ms-1

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

(13) Find the order of following reactions whose rate laws are expressed as follows. CA and CB are the concentrations of reactants A and B respectively :
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 47
Solution :
Given :
(1) For, – \(\frac{d c}{d t}\) = k x \(\mathrm{C}_{A}^{0}\) the order of the reaction, n = 0. Hence it is a zero order reaction.

(2) For, – \(\frac{d c}{d t}\) = k x \(\mathrm{C}_{A}^{3 / 2}\), the overall order of the reaction is 3/2.

(3) For, –\(\frac{d c}{d t}\) = k x \(\mathrm{C}_{A}^{1 / 2} \mathrm{C}_{B}^{2}\), the reaction has order 1/2 with respect to A and 2 with respect to B.
∴ n = nA + nB = \(\frac{1}{2}\) + 2 = \(\frac{5}{2}\).
Hence the (overall) order of the reaction is \(\frac{5}{2}\).

(4) For, \(-\frac{d c}{d t}=k \mathrm{C}_{A}^{5 / 2} \times \mathrm{C}_{B}^{0}\)
The reaction has order \(\frac{5}{2}\) with respect to A and zero with respect to B.
∴ n = nA + nB = \(\frac{5}{2}\) + 0 = \(\frac{5}{2}\)
Hence the order of the reaction is \(\frac{5}{2}\).

(5) For, \(-\frac{d c}{d t}=k \times \mathrm{C}_{A}^{1 / 3} \times \mathrm{C}_{B}^{2 / 3}\). The reaction has order \(\frac{1}{3}\) with respect to A and \(\frac{2}{3}\) with respect to B.
∴ n = nA + nB = \(\frac{1}{3}\) + \(\frac{2}{3}\) = 1
Hence the order of the reaction is 1.

(14) The rate of a reaction, 2A + B → Products is 3.78 x 10-4 M s-1 when the concentrations of A and B are 0.3 M each. If the rate constant of the reaction is 4.2 x 10-3s-1 find the order of the reaction.
Solution :
Given : 2A + B → Products
Rate = R = 3.78 x 10-4Ms-1
[A] = [B] = 0.3 M
Rate constant = 1 = 4.2 x 10-3 s-1
Let the order of the reaction in A be x and in B be y.

Then, by rate law,
Rate = R = k [A]x [B]y 3.78 x 10-4
= 4.2 x 10-3(0.3)x(0.3)y
= 4.2 x 10-3 (0.3)x+y
∴ \(\frac{3.78 \times 10^{-4}}{4.2 \times 10^{-3}}\) = (0.3)x+y
0.09 = (0.3)x+y
(0.3)2 = (0.3)x+y                        .
∴ x + y = 2
Hence the order of overall reaction is 2.
Answer:
The order of the reaction is 2.

(15) The rate of the reaction, A → Products is 1.25 x 10-2 M/s when concentration of A is 0. 45 M. Determine the rate constant if the reaction is
(a) first order in A
(b) second order in A.
Solution :
Given : A → Products
Rate = R = 1.25 x 10-2 M/s
[A] = 0.45 M

(a) Rate constant, k = ? if order is one.
For first order, rate law is, R = k [A]
∴ \(k=\frac{R}{[\mathrm{~A}]}=\frac{1.25 \times 10^{-2}}{0.45}\)
= 2.78 x 10-2s-1

(b) Rate constant, k =? if order is two. For second order, rate law is, R = k [A]2
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 50
Answer:
(a) Rate constant, k = 2.78 x 10-2
(b) Rate constant, k = 6.173 x 10-2

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

Question 24.
Define and explain the term elementary reaction.
Answer:
Many reactions take place in a series of steps. Such reactions are called complex reactions. Each step taking place in a complex reaction is called an elementary reaction. This shows that a complex reaction is broken down in a series of elementary chemical reactions.

By adding all the elementary steps of a complex reaction we get the overall reaction.

The mechanism of a reaction is decided from the sequence of the elementary steps that are added to give overall reaction.

Elementary reaction : It is defined as the reac­tion which takes place in a single step and cannot be divided further into simpler chemical reactions.

The order and molecularity of the elementary reaction are same.

Some reactions take place in one step and cannot be broken down into simpler reactions. For example,

C2H5I(g) → C2H4(g) + HI(g)
O3(g) → O2(g) + O(g)

Question 25.
Define and explain the term molecularity of a reaction. Give examples.
OR
Define the molecularity of a chemical reaction.
Answer:
Molecularity : The molecularity of an elementary reaction is defined as the number of molecules (or atoms or ions) which take part in a chemical reaction.

Explanation :

  • The molecularity of a reaction is always integral.
  • It cannot be determined experimentally.
  • The minimum value of the molecularity is one.
  • It cannot have fractional or zero values.
  • The reactions are classified according to the mole­cularity as follows :

(a) Unimolecular reaction (OR First order reac­tion) : In this only one molecule takes part in the reaction, e.g., N2O5(g) → 2NO2(g) + \(\frac{1}{2}\)O2(g)

The rate law expression for this reaction is, Rate = k [N2O5]. Hence it is unimolecular and first order.

Other unimolecular reactions are,
O3(g) → O2(g) + O(g)
C2H5I(g) → C2H2(g) + HI(g)

(B) Bimolecular reaction In this two molecules take part in the reaction,
e.g., 2HI(g) → H2(g) + I2(g)
O3(g) + O(g) → 2O2(g)
2NO2(g) → 2NO(g) + O2(g)

(c) Trimolecular reaction: In this three molecules take part in the reaction.
e.g., 2NO(g) + O2(g) → 2NO2(g)

The higher molecularity is rare since the prob ability of simultaneous collisions between more molecules is very low.

Question 26.
Explain order and molecularity of elementary reactions.
Answer:
(1) The order and molecularity of elementary reaction are same.
(2) Consider second order bimolecular reaction,
2NO2(g) → 2NO(g) + O2.
(3) The rate of the reaction is given by, Rate = k [NO2]2
(4) Similarly consider unimolecular first order reaction,
C2H5I(g) → C2H4(g) + HI(g)
Rate = k [C2H5I]

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

Question 27.
Define and explain the term rate-determining step.
Answer:
(1) Many chemical reactions take place in a series of elementary steps. Among many steps of the reaction, one of the steps is the slowest step compared to other steps.

Rate determining step : The slowest step in the reaction mechanism which involves many steps is called the rate-determining step.

(2) Example :
Consider decomposition of gaseous NO2Cl.
2NO2Cl(g) → 2NO2(g) + Cl2(g)
This reaction takes place in two steps :
Step I : \(\mathrm{NO}_{2} \mathrm{Cl}_{(g)} \stackrel{k_{1}}{\longrightarrow} \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{Cl}_{(\mathrm{g})}\) (slow, unimolecular)

Step II: \(\mathrm{NO}_{2} \mathrm{Cl}_{(g)} \stackrel{k_{2}}{\longrightarrow} \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{Cl}_{(\mathrm{g})}\) (fast, bimolecular)

2NO2CI(g) → 2NO2(g) + CI2(g) (overall reaction)

Among two steps, first step being slower represents rate-determining step. The rate law can be represented as, Rate = k1 [NO2CI]

Hence, the reaction is first order.

In this Cl(g) is formed as a reaction intermediate.

Question 28.
What are the features of rate-determining step?
Answer:
Features of rate-determining step :

  • The overall reaction can never occur faster than its rate-determining step.
  • The rate-determining step can occur anywhere in the reaction mechanism and depends on nature of reactants, conditions of the reaction, etc.
  • The rate law of a rate-determining step can directly be obtained from its stoichiometric equation.
  • The rate law of a rate-determining step can directly be obtained from its stoichiometric equation.

Question 29.
What is reaction intermediate? Explain with an example.
Answer:
Reaction intermediate : The additional species other than the reactants or products formed in the mechanism during progress of the reaction is called reaction intermediate.

Features of reaction intermediate :

  • The reaction intermediate appears in the reaction mechanism but does not appear in the overall reaction or in the products.
  • It is always formed in one step and consumed in the subsequent step in the mechanism.
  • Its concentration is very small and cannot be determined easily.
  • Rate of the reaction is independent of concentration of this intermediate.
  • The life period of the reaction intermediate is extremely small, hence cannot be isolated.
  • The composition of the reaction intermediate, decides the mechanism of the reaction.
  • Consider decomposition of gaseous NO2Cl. 2NO2Cl(g) → 2NO2(g) + Cl2(g)

This reaction takes place in two steps :
Step I : \(\mathrm{NO}_{2} \mathrm{Cl}_{(\mathrm{g})} \stackrel{k_{1}}{\longrightarrow} \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{Cl}_{(\mathrm{g})}\) (slow, unimolecular)

Step II : \(\mathrm{NO}_{2} \mathrm{Cl}_{(\mathrm{g})}+\mathrm{Cl}_{(\mathrm{g})} \stackrel{k_{2}}{\longrightarrow} \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}\) (fast, bimolecular)
2NO2Cl(g) → 2NO2(g) + Cl2(g) (overall reaction)
Cl formed in Step I is removed in Step II, Hence Cl is a reaction intermediate.

Question 30.
Identify the molecularity and write the rate law for each of the following elementary reactions :
(a) NO(g) + O3(g) → NO3(g) + O(g)
(b) H2I(g) + I(g) → 2HI(g)
(c) CI(g) + Cl(g) + N2(g) → N2(g)
Answer:
NO(g) + O3(g) → NO3(g) + O(g) Molecularity is 2.
Rate law : Rate = k [NO] x [O3]

(b) H2I(g) + I(g) → 2HI(g) Molecularity is 2.
Rate law : Rate = k [H2I] x [I]

(c) Cl(g) + Cl(g) + N2(g) →Cl2(g) + N2(g) Molecularity is 3.
Rate law : Rate = k [Cl]2

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

Question 31.
Write molecularity of the following reaction:
2NO(g) + O2(g) → 2NO2(g).
Answer:
For the reaction, 2NO(g) + O2(g) → 2NO2(g) Molecularity = 3.

Question 32.
How Is reaction intermediate predicted in the reaction?
Answer:
(1) When a reaction takes place in more than one steps, then a substance produced in one step is removed in the next step is called reaction intermediate.
(2) For example,
(I) NO(g) + O3(g) → NO3(g) + O(g)
(ii) NO3(g) + O(g) → NO2(g) + O(g)
In the reaction. NO3 and O are reaction intermediates.

Question 33.
A certain reaction occurs in the following steps :
(i) Cl(g) + O3(g) → ClO(g) + O2(g)
(ii) ClO(g) + O(g) → Cl(g) + O2(g)
(a) Write the chemical equation for overall reaction.
(b) Identify the reaction intermediate.
(c) Identify the catalyst.
(d) What is the molecularity of each step?
Answer:
Step I : Cl(g) + O3(g) → ClO(g) + O2(g)
Step II : ClO(g) + O(g) → Cl(g) + O2(g)
(a) Overall reaction is obtained by adding both the reactions.
O3(g) + O(g) → 2O2(g)
(b) Reaction intermediate is ClO(g) which is formed in the first step and removed in the second step.
(c) Cl(g) acts as a catalyst. It is an example of homo-geneous catalysis in which catalyst Cl(g) forms an intermediate ClO(g) and again is released in the second step.
(d) Since both the steps involve two reactants each, both the steps are bimolecular.

Question 34.
The rate law for the reaction 2H2(g) + 2NO(g) → N2(g) + 2H2O(g) is given by rate = k [H2] [NO]2.
The reaction occurs in the following two steps :
(i) H2(g) + 2NO(g) → N2O(g) + H2O(g)
(ii) N2O(g) + H2(g) → N2(g) + H2O(g)
What is the role of N2O in the mechanism? What is the molecularity of each of the elementary steps?
Answer:
N2O is a reaction intermediate which is formed in the first step and removed in the second step. Molecularity of the elementary steps :
(a) First step – Termolecular.
(b) Second step-Bimolecular.

Question 35.
What is the rate law for the reaction,
NO2(g) + CO(g) → NO(g) + CO2(g)
The reaction occurs in the following steps :
NO2 + NO2 → NO3 + NO (slow)
NO3 + CO → NO2 + CO2 (fast)
What is the role of NO3?
Answer:
Overall reaction :
NO2(g) + CO(g) → NO(g) + CO2(g)
Step-I NO2 + NO2 → NO3 + NO (slow) (slow)
Step-II NO3 + CO → NO2 + CO2 (fast)

(A) From first rate determining slow step, rate law is, Rate = k[NO2]2
(B) Role of NO3 : In the reaction, NO3 is the reaction intermediate which is formed in first step and removed in the second step.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

Question 36.
The rate law for the reaction 2NO(g) + Cl2(g) → 2NOCl(g) is given by rate = k[NO][Cl2]. The reaction occurs in the following steps :
(i) NO(g) + Cl2(g) → NOCl2(g)
(ii) NOCl2(g) + NO(g) → 2NOCl(g)
(a) Is NOCl2 a catalyst or reaction intermedi-ate? Why?
(b) Identify the rate determining step.
Answer:
(a) NOCl2 is a reaction intermediate since it is formed in the first step and removed in the second step. It is not a catalyst since it was not present in the first step or on reactant side nor in the second step on product side.
(b) Since rate law is, Rate = k[NO][Cl2], and the sub-stances NO and Cl2 are present in the first step as reactants, it is the slow and rate-determining step.

Question 37.
The rate law for the reaction 2H2(g) + 2NO(g) → N2(g) + 2H2O(g) is given by rate = k[H2][NO]2. The reaction occurs in the following steps :
(i) H2 + 2NO → N2O + H2O
(ii) N2O + H2 → N2 + H2O
What is the role of N2O in the mechanism? Identify the slow step.
Answer:
(a) N2O is the reaction intermediate since it is formed in the first step and removed in the second step.
(b) By rate law, Rate = k [H2][NO]2. Since the first step involves the substances H2 and NO, it is the slow and rate-determining step.

Question 38.
What are integrated rate laws?
Answer:
Integrated rate laws : The equations which are obtained by integrating the differential rate laws (expressions) and which provide direct relationship between the concentrations of the reactants and time are called integrated rate laws.

For example, integrated rate law for first order reaction is represented as,
\(k=\frac{2.303}{t} \log _{10} \frac{[\text { Reactant }]_{\text {final }}}{[\text { Reactant }]_{\text {initial }}}\)

Question 39.
Derive the expression for integrated rate law (equation) for the first-order reaction.
Answer:
Consider the following first-order reaction, A → B The rate of the chemical reaction is given by the rate law expression as, Rate, R = k [A] where [A] is the concentration of the reactant A and k is the velocity constant or specific rate of the reaction.
The instantaneous rate is given by,
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 52

If [A0] is the initial concentration of the reactant and [A]t at time t, then by integrating the above equation,
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 53

This is the integrated rate equation for the first order reaction. This is also called integrated rate law.

Question 40.
How is the integrated rate equation for the first order reaction represented by considering the concentration of the product?
Answer: The
integrated rate equation for the first order reaction can be represented as,
\(k=\frac{2.303}{t} \log _{10} \frac{[\mathrm{A}]_{0}}{[\mathrm{~A}]_{t}}\) where [A]0 is the initial concentration of the reactant (at time, 1 = 0) and [A]t is that at time t. Consider the reaction, A → B
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 54

If a is the initial concentration of the reactant A and x is the concentration of the product B after time t, then
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 55

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

Question 41.
Explain the exponential rate law expression for the first order reaction.
Answer:
The integrated rate equation for the first order reaction can be represented as,
\(k=\frac{1}{t} \log _{\mathrm{e}} \frac{[\mathrm{A}]_{0}}{[\mathrm{~A}]_{t}}\)
where k is a rate constant, [A]0 and [A]t are initial and final concentrations of the reactant after time t.
∴ k = \(-\frac{1}{t} \log _{\mathrm{e}} \frac{[\mathrm{A}]_{t}}{[\mathrm{~A}]_{0}}\)
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 56
where [A]0 and [A]t are the concentrations of the reactant when t = 0 and t = t respectively.

Thus, the concentration of the reactant decreases exponentially with time and the time required to complete the first order reaction will be infinity.

Another feature of the exponential behaviour is the time required to complete a definite fraction of the reaction is always constant. Therefore, the first order reactions are also described in terms of the half-life of the reaction ™.

Question 42.
What are the units of rate constant of first order reaction?
Answer:
The units of rate constant (k) for the first order reaction is per time (or s-1).

Question 43.
Give three examples of first order reaction.
Answer:
The examples of first order reaction are :
(1) Decomposition of H2O2 :
2H2O2(I) → 2H2O(1) + O2(g) Rate = k[H2O2]
(2) Decomposition of N2Os :
2N2O5(g) → 4NO2(g) + O2(g) Rate = k[N2O5]
(3) Isomerisation of cyclopropane to propene :
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 67

Question 44.
Write a note on a zero order reaction.
OR
What is a zero order reaction? Explain.
Answer:
(1) Definition : Zero order reaction : A reaction in which the rate of the reaction does not depend on the concentration of any reactant taking part in the reaction is called zero order reaction.
(2) Explanation : For example, consider photochemical reaction between H2 and Cl2 gases.
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 72
In this the rate of the reaction remains constant throughout the progress of the reaction, even if the concentrations of the reactants decrease with time, until the reactant has reacted entirely.

Hence, by the rate law,
R = k [H2]° [Cl2]° = k (constant).

Question 45.
Derive the expression for integrated rate law for zero-order reaction A → Products.
Answer:
Consider a zero order reaction, A → Products
The rate of the reaction is, Rate \(=\frac{-d[\mathrm{~A}]}{d t}\)

By rate law,
Rate = k x [A]0 = k
∴ – d[A] = k x dt

If [A]0 is the initial concentration of the reactant A at t = 0 and [A]t is the concentration of A present after time t, then by integrating above equation,
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 73
This is the integrated rate law expression for rate constant for zero order reaction.
∴ k x t = [A]0 – [A]t
∴ [A]t = – kt + A0

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

Question 46.
How would you obtain the unit of the velocity constant k for (i) the first order reaction (ii) the zero order reaction?
Answer:
(i) For a first order reaction :
Consider the reaction,
A → B
The rate (R) of the reaction will be, R = k [A] = kc, where [A] is concentration in mol dm-3Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 74
Hence, the SI unit of velocity constant for the first order reaction is second-1.

(ii) For a zero order reaction :
The rate of reaction is R = k [A]0 = k
Hence, the velocity constant k has the unit of the rate of the reaction, i.e., mol dm-3 s-1.

Question 47.
Obtain an expression for half-life period of zero order reaction.
Answer:
The rate law expression for zero order reaction is, [A]t = – kt + [A]0
where [A]0 and [A]t are the concentrations of the reactant at time, t = 0 and after time t respectively, Half-life period, t1/2 is the time when the concentration reduces from [A]0 to [A]0/2. i.e., at t = t1/2, [A]t = [A]0/2.
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 75
Hence for a zero-order reaction, the half-life period is directly proportional to the initial concentration of the reactant.

Question 48.
Give the examples of zero order reactions.
Answer:
Zero order reactions are not common. They take place under special conditions. They are hetero-geneous catalysed reactions generally involving metals as catalysts.

(1) Decomposition NH3 on Pt surface :
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 79
(2) Decomposition of N2O to N2 and O2 on Pt :
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 80
(3) Decomposition of PH3 on hot tungsten catalyst at high pressure.

Question 49.
Decomposition of NH3(g) on platinum surface at high temperature is a zero order reaction. Explain.
Answer:

  • The decomposition of NH3(g) on platinum surface is represented as,
    2NH3(g) \(\frac{1130 \mathrm{~K}}{\mathrm{Pt}}\) N2(g) + 3H2(g)
  • Since it is a heterogeneous catalysed reaction, NH3 gaseous molecules at high pressure are adsorbed on the metal surface covering the surface area.
  • The number of NH3 molecules adsorbed is small compared to NH3 molecules in the gaseous phase.
  • Only the molecules adsorbed on the surface get decomposed. Hence rate of the decomposition becomes independent of the concentration (pressure) of NH3. Therefore the decomposition reaction is zero order.

Question 50.
The catalysed decomposition of nitrous oxide (N2O) to nitrogen and oxygen is a zero order reaction. Explain.
Answer:

  • The decomposition of N2O(g) on platinum can be represented as, \(2 \mathrm{~N}_{2} \mathrm{O}_{(\mathrm{g})} \stackrel{\mathrm{Pt}}{\longrightarrow} 2 \mathrm{~N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}\)
  • Since it is heterogeneously catalysed reaction, N2O gaseous molecules are adsorbed on the metal surface covering the surface area.
  • The number of N2O molecules adsorbed is small compared to N2O molecules in the gaseous phase.
  • Only the molecules adsorbed on the metal surface get decomposed. Hence rate of decomposition becomes independent of the concentration (pressure) of N2O. Therefore the decomposition of N2O is a zero order reaction.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

Question 51.
Inversion of cane sugar (sucrose) is a pseudo-first-order reaction. Explain.
OR
The reaction,
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 82
Can it be of pseudo-first-order type?
Answer:
The inversion of cane sugar (sucrose) is an acid catalysed hydrolysis reaction which can be represented as,
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 83

This is a bimolecular reaction. Hence, the true rate law for the reaction should be, Rate = k[C12H22O11] [H2O]. This shows that the reaction should be second order.

Since water (H2O) is in large excess, its concentration remains constant and the rate depends only upon the concentration of cane sugar.

∴ Rate = k[C12H22O11]

Therefore the second order true rate law becomes first order rate law. Hence the inversion of cane sugar is a pseudo first order reaction.

Solved Examples 6.4-6.5

Question 52.
Solve the following :

(1) For the reaction 2A + B → products, find the rate law from the following data :

[A]/M [B]/M rate/Ms-1
0.3 0.05 0.15
0.6 0.05 0.30
0.6 0.2 1.20

Solution:
In steps (i) and (ii), the concentration of A is doubled but the concentration of B remains constant. Since the rate is doubled the rate is proportional to the concentration of A or R α [A] and hence with respect to A order of the reaction is 1 or nA = 1.

In steps (ii) and (iii), the concentration of A is kept constant but the concentration of B is increased 4 times and rate of the reaction is increased 4 times. Hence the rate of reaction is proportional to concentration of B, R α [B] and hence with respect of B, order is 1 or nB = 1. Hence rate law will be, Rate = k [A] x [B].

(2) In a first order reaction A → product, 80 % of the given sample of compound decomposes in 40 min. What is the half life period of the reaction ?
Solution :
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 91
Answer:
Half life period = 17.22 min

(3) The reaction A + B → products is first order in each of the reactants.
(a) How does the rate of reaction change if the concentration of A is increased by factor 3?
(b) What is the change in the rate of reaction if the concentration of A is halved and concen­tration of B is doubled?
Solution :
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 92
Hence the rate remains the same.
Answer:
(a) The rate increases by factor 3.
(b) The rate remains the same.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

(4) Half-life period of a first order reaction is 41.09 min. Calculate rate constant in per second.
Solution :
Given : Half-life period = t1/2
= 41.09 min = 41.09 x 60 s
= 2.465 x 103s
Rate constant = k = ?
For a first order reaction,
\(\begin{aligned}
k &=\frac{0.693}{t_{1 / 2}} \\
&=\frac{0.693}{2.465 \times 10^{3}}
\end{aligned}\)
= 2.81 x 10-4 s-1
Answer:
Rate constant = k = 2.81 x 10-4 s-1

(5) A first order reaction takes 15 minutes to com­plete 25%. How much will it take to complete 65 %?
Solution:
(i) Given : For 25% completion, t1 = 15 min.
For 35 % completion, t2 = ?
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 94
Answer:
Time required to complete 65 % reaction = 547 min

(6) Gaseous A2 dissociates as, A2(g) → 2A(g). Initial pressure of A2 is 0.8 atm. After 20 minutes the pressure is 1.1 atm. Calculate rate constant and half-life period for the reaction.
Solution :
Given : [A]0 = Initial pressure = P0 = 0.8 atm
Final pressure = Total pressure = PT = 1.1 atm
Rate constant = k = ?
Half life period = t1/2 = ?
A2(g) → 2A(g)
P0 – x 2x
Pressure of A2 = Pt = P0 – x
Total pressure of the mixture,
PT = P0 – x + 2x = P0 + x
∴ x = PT – P0
∴ Pt = P0 – X = P0 – (PT – P0) – 2P0 – PT
\(k=\frac{2.303}{t} \log _{10} \frac{[\mathrm{A}]_{0}}{[\mathrm{~A}]_{t}}\)
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 95
Answer:
Rate constant = k = 2.35 x 10-2 min-1
Half-life period = t1/2 = 29.5 min

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

(7) The decomposition of N2O5(g) at 320 K according to the following equation follows first order reaction :
N2O5(g) → 2NO2(g) + \(\frac{1}{2}\)O2(g)
The initial concentration of N2O5(g) is 1-24 x 10-2 mol. L-1 and after 60 minutes,
0.20 x 10-2 mol. L-1. Calculate the rate con­stant of the reaction at 320 K.
Solution :
Given :
Initial concentration
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 96

(8) From the following data for the liquid phase reaction A → B, determine the order of reaction and calculate its rate constant:

t/s 0 600 1200 1800
[A]/Mol L-1 0.624 0.446 0.318 0.226

Solution:
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 97
Answer:
Rate constant = k = 5.618 x 10-4 s-1

(9) The concentration of a reactant in a first-order reaction A → products, varies with time as follows :

t/min 0 10 20 30 40
[AJ/M 0.0800 0.0536 0.0359 0.0241 0.0161

Show that the reaction is first order.
Solution :
Given : A → Products
[A]0 = 0.08 M
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 98
Since all the values of rate constant using first order rate law equation come constant, the reaction is of first order.
Answer:
Order of the reaction is one.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

(10) In a first order reaction x → y, 40% of the given sample of compound remains unreacted in 45 minutes. Calculate rate constant of the reac­tion.
Solution :
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 99
Answer:
k = 0.02036 min-1

(11) If the half-life period of a zero order reaction with initial concentration 0.1 M is 21.3 min, what will be the half-life when the concentration is 0.3 M?
Solution :
Given : Reaction is zero order. t1/2 = 21.3, when
initial concentration = [A]1 x = 0.1 M t1/2 = 2 when
initial concentration = [A]2 = 0.3 M
For zero order reaction, t1/2 = \(\frac{[\mathrm{A}]_{0}}{2 k}\)
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 100
Answer:
Half life period = 63.9 min

(12) Consider the reaction 2A + 2B → 2C + D.
From the following data, calculate the order and rate constant of the reaction.

[A]0/M [B]0/M r0/Ms_1
0.488 0.160 0.24
0.244 0.160 0.06
0.244 0.320 0.12

Write the rate law of the reaction.
Solution :
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 101

Hence the reaction is 2nd order in A.
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 102
Hence the reaction is first order in B.
The order of overall reaction = n = nA + nB = 2 + 1 = 3
By rate law,
Rate = R = k[A]2[B]
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 103
Answer:
(i) Order of reaction = 3
(ii) Rate constant = k = 63M-2s-1
(iii) Rate law : Rate = k [A]2 [B]

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

(20) In acidic solution, sucrose is converted to a mixture of glucose and fructose in pseudo first order reaction. It has been found that the con-centration of sucrose decreased from 20 mmol L-1 to 8 mmol L-1 in 38 minutes. What is the half-life of the reaction?
Solution :
Given :
Initial concentration = [A]0 = [sucrose]0
= 20 mmol L-1
= 20 x 10-3 mol L-1

Final concentration = [A]t = [sucrose]t
= 8 mmol L-1
= 8 x 10-3 mol L-3
time = t = 38 min
Half-life period = t1/2 =?
For first order reaction,
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 106
Answer:
Half-life period = t1/2 = 28.74 min

(21) The half-life of a first order reaction is 1.7 hours. How long will it take for 20 % of the reactant to disappear?
Solution :
Given : Half-life period = t1/2 = 1.7 hrs.
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 107
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 108
Answer:
Time required for 20% reaction = 32.86 min

(22) The gaseous reaction A2 → 2A is first order in A2. After 12.3 minutes, 65% of A2 remains un­decomposed. How long will it take to decompose 90% of A2? What is the half-life of the reaction?
Solution :
Given : A2 → 2A
t1 = 12.3 min
[A]0 = 100, [A], = 65
t2 = ? for 90 % decomposition Half-life period = t1/2 = ?
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 109
Answer:
(i) Time required for 90% reaction = 65.8 min
(ii) Half-life periods = t1/2 = 19.8 min

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

(23) Sucrose decomposes in acid solution to give glucose and fructose according to the first-order rate law. The half-life of the rection is 3 hours. Calculate the fraction of sucrose which will remain after 8 hours.
Solution :
Given : Half-life period = t1/2 = 3 hrs
Time = t = 8 hrs
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 110
Answer:
Fraction of sucrose left = 0.1576

(24) The rate constant of a first order reaction is 6.8 x 10-4 s-1. If the initial concentration of the reactant is 0.04 M, what is its molarity after 20 minutes? How long will it take for 25% of the reactant to react?
Solution :
Given : Rate constant = k = 6.8 x 10-4s-1
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 111
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 112
Answer:
(i) Molarity of reactant after 20 min = 0.0177 M
(ii) Time for 25 % of the reaction = 7.05 min

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

(25) The rate constant of a certain first-order reaction is 3.12 x 10-3 min-1,
(a) How many minutes does it take for the reactant concentra­tion to drop to 0.02 M if the initial concentration of the reactant is 0.045 M?
(b) What is the molarity of the reactant after 1.5 hr?
Solution :
Given : Rate constant = k = 3.12 x 10-3 min-1
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 113
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 114
Answer:
(i) Time required to drop the concentration to 0.02 M = 260 min
(ii) Molarity after 1.5 hr = 0.034 M

(26) From the following data for the decomposition of azoisopropane,
(CH32)2 CHN = NCH(CH3)2 → N2 + C6H14 estimate the rate of the reaction when total pressure is 0.75 stm.

Time/s Total pressure/atm
0 0.65
200 1.0

Solution :
Given :
(CH3)2CHN = NCH(CH3)2(g) → N2(g) + C6H14(g)
At time t P0 – x x x
At t = 0, [A]0 = P0 = 0.65 atm
At t = 200 s,
Total pressure = PT = 0.75 atm, Rate =?
From the reaction,
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 115
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 116
Answer:
Rate of the reaction = 2.13 x 10-3 atm s-1

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

(27) The rate constant for a zero order reaction is 0.04 Ms-1. Calculate the half-life period of the reaction, when the initial concentration of the reactant is 0.01 M.
Solution :
Given : Order of the reaction = 0
Rate constant = k = 0.04 Ms-1
Concentration = [A]0 = 0.01 M
Half-life period = t1/2 =?
For zero order reaction,
\(t_{1 / 2}=\frac{[\mathrm{A}]_{0}}{2 k}=\frac{0.01}{0.04}=0.25 \mathrm{~s}\)
Answer:
Half-life period = t1/2 = 0.25 s

(28) A flask contains a mixture of A and B. Both the compounds decompose by first order kinetics. The half-lives are 60 min for A and 15 min for B. If the initial concentrations of A and B are equal, how long will it take for the concentration of A to be three times that of B?
Solution :
Given :
For A : tm = 60 min For B : t1/2 = 15 min
Let initial concentrations of
[A]0 = [B]0 = M mol dm-3
After time t, let the concentrations be, [B]t = x, then [A]t = 3x
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 117
Answer:
After 31.8 min, concentration of A will be three time that of B. ‘

Question 53.
Obtain Arrhenius equation from collision theory of bimolecular reactions.
Answer:
Consider a bimolecular reaction,
A – B + C → A + B – C
(i) Collisions of reactant molecules : The basic
requirement for a reaction to occur is reacting species A – B and C must come together and collide. The rate of reaction will depend on the rate and frequency of collisions between them. As the i concentration and temperature increase, rate of collisions increases, hence the rate of reaction increases. But the rate of reaction is low as com-pared to the rate of collisions.

(ii) Energy of activation : For fruitful collisions, the colliding molecules must possess a certain amount of energy called activation energy Ea. Due to collisions between A – B and C, there is a change in electron distribution about three nuclei namely A, B and C so that old A – B bond is weakened while new bond is partially formed between B and C, and results in the formation of an activated complex or a transition state.
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 119

Therefore transition state always has higher energy than reactants or products. Due to high energy, activated complex is unstable, short lived and decomposes into the products.

To form activated complex, the reactant mol-ecules have to climb the potential energy barrier i. e., activation energy level, hence molecular collision energy of colliding molecules must be high so that reactant molecules form activated complex and further decompose into products.

The fraction (f) of molecules at temperature T having activation energy Ea is given by f = e-Ea/RT.

If P represents the probability of Z collisions with proper orientation then,
Reaction rate = P x Z x e-Ea/RT,

Hence the rate constant k of the reaction may be represented as, k = A x e-Ea/RT where A is called frequency factor or pre-exponential factor and ΔH is the enthalpy change of the reaction. This equation is called Arrhenius equation.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

Question 54.
Define :
(i) Transition state or activated complex.
Answer:
Transition state or activated complex : The configuration of atoms formed from reactant molecules and which is at the peak of barrier in energy profile diagram having maximum potential energy compared to reactants and products is called transition state or activated complex.

Question 55.
If a gaseous reaction has activation energy 75k J mol-1 at 298 K, find the fraction of successful collisions.
Answer:
Activation energy = Ea = 75 kJ mol-1 = 75000 mol-1; Temperature = T = 298 K The fraction (f) of successful collisions between the molecules with an energy equal to Ea is given by,
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 120
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 121
This shows that only 7 collisions out of 1014 collisions are sufficiently energetic to convert reactants into products.

Question 56.
Draw energy profile diagram and show
(i) Activated complex
(ii) Energy of activation for forward reaction
(iii) Energy of activation for backward reaction
(iv) Heat of reaction.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 122
(i) B → Activated complex
(ii) Ef → Energy of activation for forward reaction
(iii) Eb → Energy of activation for backward reaction
(iv) ΔH → Heat of reaction.

Question 57.
Obtain Arrhenius equation, k = A x e-Ea/RT
Answer:
(i) From experimental observations of variation in rate constants with temperature, Arrhenius developed a mathematical equation between reaction rate con­stant (k), activation energy (Ea) and temperature T.
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 123

When a graph of Ink is plotted against reciprocal of temperature (1/T) a straight line with a negative slope is obtained. This is described by a mathematical equation as,
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 124

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

where k is a rate constant, R is the gas constant, E.a is activation energy, T is absolute temperature and the parameter A is called frequency factor or preexponential factor. This is Arrhenius equation.

Question 58.
What is a frequency factor or pre-exponential factor?
Answer:
In Arrhenius equation, k=A x e-Ea/RT the factor A is called frequency factor and since it is a coefficient of exponential expression, e~Ea/RT it is also called a pre-exponential factor.

In the above equation k is a rate constant at temperature T, Ea is the energy of activation and R is a gas constant.

A is related to frequency of collisions (Z) or rate of collisions. It is represented as, A = P x Z where P is the probability of collisions with proper orientations and Z is the frequency of collisions of reacting molecules.

The units of A are same as that of k.

Question 59.
Obtain a relation, \(\log _{10} \frac{k_{2}}{k_{1}}=\frac{E_{\mathrm{a}}\left(T_{2}-T_{1}\right)}{2.303 R \times T_{1} \times T_{2}}\),
OR
Obtain a relation showing variation in rate constant with temperature.
Answer:
By arrhenius equation, the rate constant k of the reaction at a temperature T is represented as, k = A x e-Ea/RT where A is a frequency factor, R is a gas constant and Ed is the energy of activation.

By taking logarithm to the base e, we get,
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 126

If kt and k2 are the rate constants at temperatures T1 and T2 respectively, then
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 127
By measuring the rate constants k1 and k2 at two different temperatures T1 and T2, the energy of activation Ea of the reaction can be obtained.

Question 60.
How is the energy of activation determined from rate constants at two different temperatures?
Answer:
For the given reaction, rate constants k1 and k2 are measured at two different temperatures T1 and T2 respectively. Then \(\log _{10} \frac{k_{2}}{k_{1}}=\frac{E_{\mathrm{a}}\left(T_{2}-T_{1}\right)}{2.303 R \times T_{1} \times T_{2}}\) where Ea is the energy of activation.

Hence by substituting appropriate values, energy of activation Ea for the reaction is determined.

Question 61.
Obtain a relation, \(\frac{k_{2}}{k_{1}}=\frac{\left(t_{1 / 2}\right)_{2}}{\left(t_{1 / 2}\right)_{1}}\), where k1 and k2 are rate constants while (t1/2)1 and (t1/2)2 are halflife periods of the first order reaction at temperatures T1 and T2 respectively. Write the relation for activation energy.
Answer:
The rate constant k and half-life period t1/2 are related as
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 129

Question 62.
How does a catalyst differ from reaction intermediate?
Answer:

  • A catalyst accelerates the rate of reaction, while reaction intermediate has no effect on the rate of the reaction.
  • The catalyst is always present at the start of the reaction whereas reaction intermediate is produced during the mechanism of the reaction.
  • A catalyst is consumed in one of the steps of mechanism and regenerated in a subsequent step while the reaction intermediate is formed in one step and consumed in subsequent step.
  • The catalyst is stable but the reaction intermediate is unstable and short lived.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

Question 63.
How is lowering of activation energy in the presence of a catalyst obtained?
Answer:

  • In the presence of a catalyst, activation energy of a reaction is lowered, hence rate and rate constant increase.
  • If ΔEa is lowering of activation energy, while k1 and k2 are the rate constants of the reaction in the absence and presence of the catalyst respectively then,
    Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 135

Question 64.
The rate constant of a reaction of 400 K is 1.35 x 102s-1. When a nickel catalyst is used, the rate constant of the reaction becomes 3.8 x 102s-1. Find activation energy. If the initial activation energy is 20 KJ, what will be activation energy in the presence of the catalyst?
Answer:
In the presence of a catalyst, the activation energy is lowered and rate constant is increased.
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 136
The decrease activation energy of the reaction in the presence of a catalyst will be Ea = 20 – 3.446 = 16.554 kJ.

Solved Examples 6.6-6.7

Question 65.
Solve the following :

(1) Calculate activation energy for a reaction of which rate constant becomes four times when temperature changes from 30 °C to 50 °C. (Given : R = 8.314 K-1mol-1)
Solution :
Given : k2 = 4k1
T1 = 273 + 30 = 303 K
T2 = 273 + 50 = 323 K
Activation energy = Ea =?
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 141
Answer:
Activation energy = Ea = 56.41 kJ

(2) The rate constant of a first order reaction are 0.58 s-1 at 313 K and 0.045 s-1 at 293 K. What is the energy of activation for the reaction?
Solution :
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 142
Answer:
Energy of activation = Ea = 97.46 kJ mol-1

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

(3) The energy of activation for a first order reaction is 104 kJ mol-1. The rate constant at 25°C is 3.7 x 10-5s-1. What is the rate constant at 30 °C?
Solution :
Given : Energy of activation = Ea = 104 kJ mol-1 = 104 x 103 mol-1
Initial rate constant – k1= 3.7 x 10-5 s-1
Initial temperature = T1 = 273 + 25 = 298 K
Final temperature = T2 = 273 + 30 = 303 K
Final rate constant = k2 =?
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 143
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 144
Answer:
Rate constant at 30 0C = 7.4 x 10-4 s-1

(4) What is the activation energy for a reaction whose rate constant doubles when temperature changes from 30 °C to 40 °C?
Solution :
Given :
Initial rate constant = k1
and final rate constant = k2; \(\frac{k_{2}}{k_{1}}\) = 2
Initial temperature = T1 = 273 + 30 = 303 K
Final temperature = T2 = 273 + 40 = 313 K
Energy of activation = Ea = ?
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 145
Answer:
Activation energy = Ea = 54.66 kj mol-1

(5) The activation energy for a certain reaction is 334.4 kj mol-1. How many times larger is the rate constant at 610 K than the rate constant at 600 K?
Solution :
Given :
Activating energy = Ea = 334.4 kJ mol-1
= 334.4 x 103 J mol-1
Initial temperature = T1 = 600 K
Final temperature = T2 = 610 K
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 146
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 147
Answer:
Rate constant increase three time.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

(6) The rate of a reaction at 600 K is 7.5 x 105 times the rate of the same reaction at 400 K. Calculate the energy of activation for the reaction. (Hint: The ratio of rates is equal to the ratio of rate constants.)
Solution :
Given : \(\frac{R_{2}}{R_{1}}\) = 7.5 x 105.
From the hint, \(\frac{R_{2}}{R_{1}}=\frac{k_{2}}{k_{1}}\) = 7.5 x 10s
Initial temperature = T1 = 400 K
Final temperature = T2 = 600 K
Energy of activation = Ea = ?
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 148
Answer:
Activation energy = Ea = 135 kj mol-1

(7) The rate constant of a first order reaction at 25 °C is 0.24 s’. If the energy of activation of the reaction is 88 kJmol-1, at what temperature would this reaction have rate constant of 4 x 10-2s-1?
Solution :
Given : k2 =0.24s-1; k2 =4 x 10-2s-1 T1 = 273 + 25 = 298 K
Energy of activation = Ea
= 88 kJ mol-1 = 88000 J mol-1
T2 = ?
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 149
Answer:
Temperature = 283.6 K

(8) The half-life of a first order reaction is 900 min at 820 K. Estimate its half-life at 720 K if the energy of activation ot the reaction is 250 kJ mol-1 (1.464 x 105 mm).
Solution:
Given: Initial half-life period = (t1/2)1 = 900 min
Energy of activation = 250 kJ mol-1
= 250 x 103 kJ mol-1
Initial temperature = T1 = 820 K
Final temperature = T2 = 720 K
Final half-life period = (t1/2)2 = ?
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 150
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 151
Answer:
Half-life period = 1.46 x 105 min

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

(9) The rate of a gaseous reaction is 6.08 x 10-2 Ms-1 at 50°C. What will be its rate at 60°C? Energy of activation of the reaction is 18.26 kj mol-1. (R = 8.314k-1 mol-1)
Solution :
Given : Initial rate = R1 = 6.08 x 10″2Ms-1
Energy of activation = Ea = 18.26 kJmol-1 = 18260 mol-1
Initial temperature = T1 = 273 + 50 = 323 K
Final temperature = T2 = 273 + 60 = 333 K
Final rate of the reaction = R2 = ?
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 152
Answer:
Rate of reaction at 37°C = 7.46 x 10-2 Ms-1

(10) A first order gas-phase reaction has an energy of activation of 240 kj mol-1. If the frequency factor of the reaction is 1.6 x 1013 s-1, calculate its rate constant at 600 K.
Solution :
Given : Energy of activation = Ea = 240 kJ mol-1 = 240 x 103 mol-1
Frequency factor = A = 1.6x 1013 s-1
Temperature = T= 600 K
Rate constant = k = ?
By Arrhenius equation,
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 153
Answeer:
Rate constant = k = 2.01 x 10-8 s-1

(11) In the Arrhenius equation for a first order reaction, the values of ‘A’ and ‘Ea’ are 4 x 1013 sec-1 and 98.6 kJ mol-1 respectively. At what temperature will its half-life period be 10 minutes? [R = 8.314 JK-1 mol-2]
Solution :
Given
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 154
= 311.3 K
Answer:
Temperature = T = 311.3 K

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

(12) The frequency factor for a second-order reaction is 4.83 x 1012M-1s-1 at 27°C. If the rate con­stant of the reaction is 1.37 x 10-3M-1s-1, find the energy of activation.
Solution :
Given : Frequency factor = A
= 4.83 x 1012 M-1s-1
Rate constant = k= 1.37 x 10-3 M-1s-1
Temperature = T = 273 + 27 = 300 K
Energy of activation = Ea = ?
By Arrhenius equation,
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 155
Answer:
Energy of activation = Ea = 89.305 kJ mol1

(13) Rate constants (k) for a reaction were measured at different temperatures. When log10ft was plotted against 1/T, the slope of the graph was 3.28 x 103. Calculate the energy of activation.
Solution :
Given : Slope of a graph = 3.28 x 103
Activation energy = Ea = ?
From Arrhenius equation, k = A x e-Ea/RT
\(\log _{10} k=\frac{-E_{\mathrm{a}}}{2.303 R} \times \frac{1}{T}+\log _{10} A\)

The graph is a straight line with slope equal to Ea/2.303R
∴ \(\frac{E_{\mathrm{a}}}{2.303 R}\) = 3.28 x 103
∴ Ea = 2.303/? x 3.28 x 103
= 2.303 x 8.314 x 3.28 x 103
= 62.8 x 103 mol-1
= 62.8 kJ mol-1
Answer:
Activation energy = Ea = 62.8 kj mol-1

Multiple Choice Questions

Question 66.
Select and write the most appropriate answer from the given alternatives for each subquestion :

1. The rate of a reaction is expressed in the units
(a) L mol-1t-1
(b) mol dm-3 t-1
(c) Ms
(d) M-1s-1
Answer:
(b) mol dm-3 t-1

2. For a gaseous reaction the unit of rate of reaction is
(a) L atm s-1
(b) atm mol-1s-1
(c) atm s-1
(d) mol s
Answer:
(c) atm s-1

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

3. In the reaction A 4- 3B → 2C, the rate of formation of C is
(a) the same as rate of consumption of A
(b) the same as the rate of consumption of B
(c) twice the rate of consumption of A
(d) 3/2 times the rate of consumption of B
Answer:
(c) twice the rate of consumption of A

4. The units of rate of a reaction and rate constant are same for a reaction of order.
(a) zero
(b) one
(c) two
(d) fractional
Answer:
(a) zero

5. During the progress of a reaction, the rate constant of a reaction
(a) increases
(b) decreases
(c) remains unchanged
(d) first increases and then decreases
Answer:
(a) increases

6. For the reaction, 2A → 3C, the reaction rate is equal to
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 158
Answer:
(c)

7. For the reaction, 2X + 3Y → 4Z, reaction may be represented as
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 159
Answer:
(b)

8. For the reaction 2N2O5(g) → 4NO2(g) + O2(g) liquid bromine, which of the following rate equation is ‘incorrect’?
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 160
Answer:
(b)

9. The rate of reaction for certain reaction is expressed as :
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 161
The reaction is
(a) 3A → 2B + C
(b) 2B → 3A + C
(c) 2B+C → 3A
(d) 3A + 2B → C
Answer:
(c) 2B+C → 3A

10. Order of a reaction is
(a) number of molecules reacting in a reaction
(b) the number of molecules whose concentration changes during a reaction
(c) the number of molecules of reactants whose concentration determine the rate
(d) increase in number of molecules of products
Answer:
(c) the number of molecules of reactants whose concentration determine the rate

11. The unit of rate constant for zero order reaction is
(a) t-1
(b) mol dm-3 t-1
(c) mol-1 dm3 t-1
(d) mol-2 dm6 t-1
Answer:
(b) mol dm-3 t-1

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

12. A → B is a first order reaction with rate 6.6 x 10-5 ms-1. When [A] is 0.6 m, rate constant of the reaction is-
(a) 1.1 x 10-5 s-1
(b) 1.1 x 10-4 s-1
(c) 9 x 10-5 s-1
(d) 9 x 10-4 s-1
Answer:
(b) 1.1 x 10-4 s-1

13. For a first order reaction, when the rate of a reaction is plotted against concentration of the reactant, then the graph obtained is
(a) a curve
(b) a straight line with negative slope
(c) a straight line with a positive slope
(d) a straight line with positive intercept
Answer:
(c) a straight line with a positive slope

14. For a chemical reaction, A → products, the rate of reaction doubles when the concentration of ‘A’ is increased by a factor of 4, the order of reaction is
(a) 2
(b) 0.5
(c) 4
(d) 1
Answer:
(b) 0.5

15. The order of reaction between equimolar mixture of H2 and Cl2 in the presence of sunlight is
(a) 0
(b) 1
(c) 2
(d) 3
Answer:
(a) 0

16. Molecularity of reaction can be
(a) zero
(b) integral
(c) fractional
(d) negative
Answer:
(b) integral

17. The reaction,
CH3COOC2H5 + H2O \(\stackrel{\mathrm{H}^{+}}{\longrightarrow}\) CH3COOH + C2H5OH is of
(a) zero order
(b) first order
(c) second order
(d) pseudo first order reaction
Answer:
(d) pseudo first order reaction

18. A reaction is first order with respect to reactant A and second order with respect to reactant B. The rate law for the reaction is given by
(a) rate = k[A][B]2
(b) rate = [A][B]2
(c) rate = k [A]2[B]
(d) rate = k[A]0[B]2
Answer:
(a) rate = k[A][B]2

19. Molecularity of an elementary reaction
(a) may be zero
(b) is always integral
(c) may be semi-integral
(d) may be integral, fractional or zero.
Answer:
(b) is always integral

20. The unit of rate constant for first order reaction is
(a) min-2
(b) s
(c) s-1
(d) min
Answer:
(c) s-1

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

21. The integrated rate equation for first order reaction A → products is given by
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 162
Answer:
(b)

22. Time required to complete 90% of the first order reaction is
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 163
Answer:
(a)

23. The rate constant of a first order reaction is given by
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 164
Answer:
(d)

24. The half-life of a first order reaction is 30 min and the initial concentration of the reactant is 0.1M. If the initial concentration of reactant is doubled, then the half-life of the reaction will be
(a) 1800s
(c) 15 min
(b) 60 min
(d) 900s
Answer:
(a) 1800s

25. The rate constant for a first order reaction is loos the time required for completion of 50% of reaction is-
(a) 0.0693 milliseconds
(b) 0.693 milliseconds
(c) 6.93 milliseconds
(d) 69.3 milliseconds
Answer:
(c) 6.93 milliseconds

26. The slope of the straight line obtained by plotting rate versus concentration of reactant for a first order reaction is
(a) – k
(b) – k/2.303
(c) k/2.303
(d) k
Answer:
(d) k

27. If C0 and C are the concentrations of a reactant initially and after time t then, for a first order reaction
(a) C = C0ekr
(b) C0 = 1/C e-kr
(c) C = C0e-kr
(d) CO = C ekr
Answer:
(b) C0 = 1/C e-kr

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

28. A graph corresponding to a first order reaction is
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 165
Answer:
(b)

29. For two first order reactions, A → products and B → products, k1 and k2 are the rate constants. The fIrst reaction (A) is slower than the second reaction (B). The graphical observation corresponding to this observation will be
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 166
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 167
Answer:
(b)

30. Half-life (t1/2) of first order reaction is
(a) dependent of concentration
(b) independent of concentration
(c) dependent of time
(d) dependent of molecularity
Answer:
(b) independent of concentration

31. For a first order reaction, the half-life period is
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 168
Answer:
(c)

32. When half-life period of a zero order reaction is plotted against concentration of the reactant at constant temperature, the graph obtained is
(a) a curve
(b) a straight line with a positive slope
(c) a straight line with a negative slope
(d) an exponential graph
Answer:
(b) a straight line with a positive slope

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

33. The rate of a reaction between A and B is R = k [A]n x [B]m On doubling the concentration of A and halving the concentration of B, the ratio of the new rate to the earlier rate of the reaction will be
(a) m + n
(b) n – m
(c) 2(n-m)
(d) \(\frac{1}{{ }_{2} n+m}\)
Answer:
(c) 2(n-m)

34. Consider the reaction
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 169
(a) 0,052 M/s
(b) 0.114 M/s
(c) 0.026 M/s
(d) -0.026 M/s
Answer:
(c)

35. The rate of the first order reaction A → products is 0.01 M/s, when reactant concentration is 0.2 M. The rate constant for the reaction will be
(a) 0.05 s-1
(b) 0.05 min-1
(c) 0.1 s-1
(d) 0.01 s-1
Answer:
(a) 0.05 s-1

36. The rate constant of a reaction
(a) decreases with increasing Ea
(b) decreases with decreasing Ea
(c) is independent of Ea
(d) decreases with increasing temperature
Answer:
(a) decreases with increasing Ea

37. The slope of a graph In [A]t versus t for a first order reaction is -2.5 x 10-3s-1. The rate constant for the reaction will be
(a) 5.76 x 10-3s-1
(b) 1.086 x 10-3s-1
(c) -2.5 x 10-3s-1
(d) 2.5 x 10-3s-1
Answer:
(d) 2.5 x 10-3s-1

38. For the reaction, Cl2 + 2I → 2CI + I2, the initial concentration of I was 0.2 mol L and the concentration after 20 minutes was 0.18 mol L-1. Then the rate of formation of I2 in mol L min-1 will be
(a) 1 x 10-3
(b) 5 x 10-4
(c) 1 x 10-4
(d) 2 x 10-3
Answer:
(b) 5 x 10-4

39. A catalyst increases the rate of the reaction by
(a) increasing Ea
(b) increasing T
(c) decreasing Ea
(d) decreasing T
Answer:
(c) decreasing Ea

40. The Arrhenius equation is
(a) A = ke-Ea/RT
(b) A/k = e-Ea/RT
(c) k = AeEa/RT
(d) k = Aee-RT/Ea
Answer:
(b) A/k = e-Ea/RT

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

41. The Arrhenius equation is
(a) k = Ae-RT/Ea
(b) A = keEa/RT
(c) k = Ae-RT/Ea
(d) A = keEa/RT
Answer:
(d) A = keEa/RT

42. When the initial concentration of the reactant is doubled, the half-life period of the reaction is also doubled. Hence the order of the reaction is
(a) one
(b) two
(c) fraction
(d) zero
Answer:
(d) zero

43. If k1 and k2 are the rate constants of the given reaction in the presence and absence of the catalyst, then
(a) k1 = k2
(b) k1 > k2
(c) k1 < k2
(d) k1 > k2
Answer:
(b) k1 > k2

44. If the ratio of rate constants at two temperatures for the given reaction is 2.5, the ratio of corresponding half-life periods is
(a) 2.5
(b) 4
(c) 5
(d) 0.4
Answer:
(d) 0.4

45. For a zero order reaction, if Co is the initial concentration, then the half life period will be
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 170
Answer:
(c)

46. The order of nuclear disintegration reaction is
(a) zero
(b) one
(c) two
(d) fraction
Answer:
(b) one

47. The unit of rate constant for zero order reaction is
(a) mol L-2 s-1
(b) mol-1Ls-1
(c) mol2L-2s-1
(d) mol L-1 s-1
Answer:
(d) mol L-1 s-1

48. When a graph of log10k is plotted against 1 /T, the slope of the line is,
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 171
Answer:
(d)

49. The slope of a graph obtained by plotting half-life period and initial concentration of the reactant in zero order reaction is
\((a) \frac{2.303}{k}
(b) \frac{1}{k}
(c) \frac{1}{2 k}
(d) \frac{k}{2.303}\)
Answer:
(c)

Maharashtra Board Class 12 Chemistry Important Questions Chapter 6 Chemical Kinetics

50. When a graph of log, 0k against 1/T is plotted, for reaction, a graph with slope equal to 1 x 103 is obtained. Hence the activation energy is
(a) 8.314 x 103 Jmor-1
(b) 3.61 kJ mol-1
(c) 4.85 x 103 Jmol-1
(d) 19.1 kJ mol-1
Answer:
(d) 19.1 kJ mol-1

51. The correct expression for activation energy is,
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 172
Answer:
(c)

52. In the reaction, 2A(g) → B(g), the initial pressure of A is 2.5 atm. After 10 minutes the pressure becomes 2.2 atm. Hence the pressure of A is
(a) 1.2 atm
(b) 1.9 atm
(c) 2.3 atm
(d) 0.3 atm
Answer:
(b) 1.9 atm

53. The half-life period of zero order reaction A → product is given by –
Maharashtra Board Class 12 Chemistry Solutions Chapter 6 Chemical Kinetics 173
Answer:
(c)

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

Balbharti Maharashtra State Board 12th Chemistry Important Questions Chapter 13 Amines Important Questions and Answers.

Maharashtra State Board 12th Chemistry Important Questions Chapter 13 Amines

Question 1.
What are amines?
Answer:
Amines : The alkyl or aryl derivatives of ammonia in which one, two or all the three hydrogen atoms attached to nitrogen are replaced by same or different alkyl or aryl groups are called amines. OR Amines are nitrogen-containing organic compounds having basic character.

Example : methyl amine : CH3 – NH2
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 1

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

Question 2.
Classify the following amines as primary, secondary and tertiary.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 7

Question 3.
Mention the functional group in :
(1) Primary amine
(2) Secondary amine
(3) Tertiary amine.
Answer:
(1) A primary amine has a functional group – NH2 (amino group).
Example : ethylamine, C2H5 – NH2
(2) A secondary amine has a functional group – NH – (imino group).
Example : Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 8
(3) A tertiary amine has a functional group Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 9 (tertiary nitrogen atom)

Example :
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 10

Question 4.
Write common and IUPAC names of following compounds :
Answer:
(A) Primary amines :
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 14
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 15
(B) Secondary amine :
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 16
(C) Tertiary Aimines :
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 17.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

Question 5.
Give the structures of the following :
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 22

Question 6.
Give the IUPAC names of the following amines :
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 23

Question 7.
Write the IUPAC names of the following amines :
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 24

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

Question 8.
Give the structures and IUPAC names of the following amines :
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 25

Question 9.
Classify the following amines as primary, secondary and tertiary and write the IUPAC names.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 26

Question 10.
Write the structures and classify the following amines as primary, secondary, tertiary amines.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 27

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

Question 11.
Write the common and IUPAC name of a tertiary amine in which one methyl, one ethyl and one w-propyl group is attached to nitrogen.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 28

Question 12.
How will you prepare ethanamine from ethyl iodide?
Answer:
When ethyl iodide is heated with excess of alcoholic ammonia, under pressure at 373 K ethanamine is obtained as a major product.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 29

Question 13.
How is a nitroalkane converted to a primary amine?
OR
What is the action of LiAlH4/ether on (i) 1-Nitropropane (ii) 2-MethyI-l-nitropropane?
Answer:
When a nitroalkane is refluxed with tin (or iron) and concentrated HCl it gives corresponding primary amine.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 33
For example, (1) nitromethane on reduction by refluxing with Sn and concentrated HCl gives methylamine.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 34

(2) 1-Nitropropane on reduction with Sn and concentrated HCl gives propan-1-amine.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 35

(3) Niirobenzcnc on reducion with tin and concentrated HCI or by using H2/Pd in ethanol gives anilinc.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 36

(4) When nitropropane is reduced in the presence of LiAlH4 in ether, n-propyl amine is obtained.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 37

(5) When 2-methyl-1-nitropropane is reduced in the presence of LiAlH4 in ether, 2-methyl propan-1-amine is obtained.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 38

Question 14.
How will you prepare aniline from nitrobenzene?
OR
How is aniline prepared from nitro compounds?
Answer:
Nitrobenzene is reduced to aniline by passing hydrogen gas in the presence of finely divided nickel, palladium or platinum.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 39

Question 15.
Identify the compounds A and B in the following reactions
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 40
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 41

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

Question 16.
How will you obtain a primary amine from an alkyl cyanide (nitrile)?
OR
Write a short note on Mendius reduction.
Answer:
Alkyl cyanides (nitriles) on reduction by sodium and ethyl alcohol form corresponding primary amines. This reaction is called Mendius reduction.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 42
For example; propionitrile on reduction by sodium and ethanol gives n-propyl amine (Propan-1-amine).
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 43
Methyl cyanide or acetonitrile on reduction by sodium and ethanol gives ethanaminc.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 44

Question 17.
How will you prepare ethylamine from acetonitrile?
OR
How is ethanamine prepared from methyl cyanide?
OR
What is the action of a mixture of sodium and alcohol on acetonitrile?
Answer:
Methyl cyanide or acetonitrile on reduction by sodium and ethyl alcohol forms ethanamine. The reaction is called Mendius reduction.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 45

Question 18.
How will convert phenyl acetonitrile to β-phenylethylamine?
Answer:
When phenyl acetonitrile is reduced in the presence of sodium and ethanol, β-phenyl ethylamine is obtained.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 46

Question 19.
How will you obtain primary amine from an acid amide?
Answer:
Acid amides on reduction with lithium aluminium hydride or sodium, ethanol form corresponding primary amines.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 50
For example : Acetamide on reduction with lithium aluminium hydride or sodium, ethanol gives ethylamines.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 51

Question 20.
Explain Hoffmann degradation of amides.
Write a note on Hoffmann bromamide degradation.
Answer:
The conversion of amides into amines in the presence of bromine and alkali is known as Hoffmann degradation of amides. An important characteristic of this reaction is that an amine with one carbon less than those in the amide is formed. Thus, decreasing the length of carbon chain. This reaction is an example of molecular rearrangement and involves the migration of an alkyl or aryl group from the carbonyl carbon to the adjacent nitrogen atom. For example,

(1) When propanamide is treated with bromine and aqueous or alcoholic sodium hydroxide, ethanamine is obtained which has one carbon atom less.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 53
(2) When benzamide is treated with bromine and aqueous or alcoholic sodium hydroxide, aniline is obtained.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 54

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

Question 21.
How will you obtain methyl amine from acetamide?
Answer:
When acetamide is treated with bromine and aq or alcoholic solution of KOH, methyl amine is obtained, which has one cabon atom less.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 55

Question 22.
How will you convert the following?

(1) Ethyl bromide to ethylamine.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 60

(2) Propionitrile to n-propyl amine.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 61

(3) Acetonitrile to ethylamine.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 62

(4) Phenyl acetonitrile to β-phenylethyl amine.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 63

(5) Acetamide to ethylamine.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 64

(6) Nitropropane to propan-l-amine.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 65

(7) Nitrobenzene to Aniline.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 66

(8) Benzamide to aniline.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 67

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

Question 23.
How will you prepare propan-l-amine from (1) butane nitrile (2) 1-nitropropane (3) propanamide (4) butanamide?
Answer:
(1) From butane nitrile :
When butane nitrile is reduced by sodium and ethanol, it gives propan-l-amine.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 68

(2) From 1-nitropropane :
When 1-nitropropane is reduced in the presence of tin and cone, hydrochloric acid, propan-l-amine is obtained.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 69

(3) From propanamide :
When propanamide is reduced in the presence of lithium aluminium hydride, propan-l-amine is obtained.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 70

(4) From butanamide :
When butanamide is treated with bromine and aq. KOH, propan-l-amine is obtained.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 71

Question 24.
Write a reaction to, convert acetic acid into methyl amine.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 78

Question 25.
Primary and secondary amines have boiling points higher than the tertiary amines. Explain why?
Answer:
(1) The N – H bond in amines is polar in nature because of electronegativities of nitrogen (3.0) and hydrogen (2.1) are different.
(2) Due to the polar nature of N – H bond, primary and secondary have strong intermolecular hydrogen bonding. Tertiary amines do not have intermolecular hydrogen bonding as there is no hydrogen atom on nitrogen of tertiary amine. Thus, intermolecular forces of attraction are strongest in primary and secondary amines and weakest in to tertiary amines. Hence, primary and secondary amines have boiling points higher than the tertiary amines.

Question 26.
Amines have boiling points higher than the hydrocarbon but lower than the alcohols of comparable masses. Explain, why?
Answer:
Amines are polar than alkanes but less polar than alcohols. Primary and secondary amines form intermolecular hydrogen bonds. This hydrogen bonding leads to an associated structure. The association is more in primary amines than that in secondary amines as there are two hydrogen atoms attached to the nitrogen atom. However, tertiary amines do not form intermolecular hydrogen bonds because they do not contain any hydrogen atoms attached to the nitrogen atom. Hence, amines have higher boiling points than the hydrocarbons but lower boiling points than the alcohols of comparable masses.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 79

Compound Molar mass Boiling points (K)
nC2H5CH(CH3)2 72 300
nC4H9NH2 73 350.8
nC4H9OH 74 391

Question 27.
Arrange the following compounds in the decreasing order of their solubility in water.
(a) Ethyl amine, diethyl amine and triethyl amine.
Answer:
Diethyl amine > triethyl amine > ethyl amine
(The reason that ethyl group has greater +1 effect than methyl group)

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

(b) Ethyl amine, n-propyl amine and n-butyl amine.
Answer: n-butyl amine < n-propyl amine < ethyl amine

(c) n-Butane, n -butyl alcohol and n-butyl amine
Answer:
n-butyl alcohol < n-butyl amine < n-butane

Question 28.
Arrange the following compounds in the decreasing order of their boiling points.
(a) Ethane, ethyl amine and ethyl alcohol.
Answer:
Ethyl alcohol < ethyl amine < ethane

(b) Ethyl amine, n-propyl amine and n-butyl amine.
Answer:
n-butyl amine < n-propyl amine < ethyl amine

(c) n-propyl amine, ethyl methyl amine and trimethyl amine.
Answer:
n-propyl amine < ethyl methyl amine < trimethyl amine.

(d) Ethyl alcohol, dimethyl amine and ethyl amine.
Answer:
Ethyl alcohol < ethyl amine < dimethyl amine.

Question 29.
Explain the basic nature of amines with a suitable examples.
OR
Explain why amines are basic.

Question 38.
Tertiary amine (R3N) or 3° amine is weaker base than secondary amine R2NH or 2° amine. Explain.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 81
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 82
The increase in basic strength from 1° amine to 2° amine is explained on the basis of increased stabilization of conjugate acids by +1 effect of the increased number of the alkyl group. However, decreased basic strength of 3° implies that the conjugate acid of 3° amine is less stabilized and is weak base though the +1 effect of three alkyl groups in R3NH is large.

R2NH is best stabilized by solvation while the stabilization by solvation is very poor in R3NH. Hence (R3N) or tertiary amine or 3° amine is weaker base than secondary amine (R2NH) or 2° amine.

Question 30.
Primary or aliphatic amine is a stronger base than ammonia. Explain.
Answer:
(1) The alkyl group in primary amines has +I effect i.e. (electron releasing).
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 83
The alkyl group tends to increase the electron density on the nitrogen atom. As a result, amines can donate the lone pair of electrons on nitrogen more easily than ammonia.

(2) The amine being a base, can donate a pair of electrons to an acid. The alkyl group with +I effect will disperse the positive charge on the cation more than ammonia.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 84

Due to +I effect of alkyl group cation formed by primary amine is more stable compared to cation formed from ammonia. Also it is seen that observed increasing basic strength from ammonia to primary amine is explained on the basis of increased stabilization of conjugate acids by +I effect for the presence of alkyl (R) groups. Hence, primary or aliphatic amine is a stronger base than ammonia.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

Question 31.
Aniline is less basic than ammonia. Explain.
Answer:
The less basic character of aniline can be explained on the basis of resonance shown by aniline.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 85

Due to resonance, the nitrogen atom of amino group in aniline acquires a positive charge, hence, lone pair of electrons is less available for protonation as compared to that of ammonia. Aniline is resonance stabilized by five resonance structures. On the other hand, aniline in aqueous medium, accepts a proton does not have lone pair of electrons on nitrogen to produce a very low concentration of anilium ion and anilium ion shows only two resonance structures and therefore less stabilized than anline.

Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 86

Thus, aniline is more stable than anilium ion. Hence aniline accepts proton less readily or less basic in nature than ammonia.

Question 32.
Explain the order of basicity in ammonia and aliphatic amines.
Answer:
Since nitrogen atom in ammonia molecule has a lone pair of electrons, it is a Lewis base.
Greater the availability of an electron pair, more is the basic character.

Since alkyl group (R -) is an electron releasing group with (+I) inductive effect, alkyl amines act as a stronger base than ammonia.

The decreasing order of basicity is –
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 87

The availability of a lone pair of electrons on a nitrogen atom in amines is influenced by steric factor due to crowding of alkyl groups which affects solvation along with inductive effect of alkyl groups.

Due to high energy of solvation of \(\mathrm{NH}_{4}^{+}\) ions, they acquire higher stability in aqueous solutions.

The presence of alkyl groups in secondary and tertiary amines, due to steric hindrance decrease the solvation energy.

This effect is more in tertiary amines making the tertiary ammonium ions (R3NH+) unstable as compared to secondary ammonium ion (R2N+H2).
Hence the cumulative effect on the order of basicity of amines is, secondary amine > primary amine > tertiary amine > ammonia (NH3).

Question 33.
Arrange the following amines in the decreasing order of their basic nature.
(a) Aniline, propan-l-amine and N-methylethanamine.
Answer:
N-methylethanamine < propan-l-amine < aniline

(b) Benzene-1, 4-diamine, ammonia and 4-aminobenzoic acid.
Answer:
Ammonia < benzene-1, 4-diamine < 4-aminobenzoic acid

(c) N-Methylaniline, phenylmethylamine and N-phenylaniline.
Answer:
N-Methylaniline < N-phenylaniline < phenylmethylamine

Question 34.
Arrange the following amines in the increasing order of their pKb values.
(a) Aniline, N-methylaniline and cyclohexalamine.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 88

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

(b) Phenylmethylamine, 2-aminotoluene and 2-fluoroaniline.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 89

(c) Aniline, 4-methoxyaniline and 4-nitroaniline.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 90

Question 35.
Arrange the following compounds in the decreasing order of their basic nature in the gaseous phase.
Ammonia, N-methylhexanamine, propan-1-amine and N, N-dimethylethanolamine.
Answer:
Propan-1-amine < N-methylethanamine < N,N-dimethylmethanamine < ammonia

Question 36.
Explain laboratory test for amines.
Answer:
(1) All amines are basic compounds. Aqueous solution of water soluble amines turns red litmus blue.

(2) When water insoluble amine is dissolved in aqueous HCl, forms water soluble substituted ammonium chloride, further a substituted ammonium chloride on reaction with excess aqueous NaOH regenerates the original insoluble amine.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 91

(3) Diazotization reaction/ Orange dye test: In a sample of aromatic primary amine, 1-2 mL of cone. HCl is added. The aqueous solution of NaNO2 is added with cooling. This solution is transfered to a test tube containing solution of β naphthol in NaOH. Formation of orange dye indicates presence of aromatic primary amino group. (It may be noted that temperature of all the solutions and reaction mixtures is maintained near 0 °C throughout the reaction).

Question 37.
Explain Hofmann’s exhaustive alkylation.
OR
Explain Hofmann’s exhaustive methylation of amines.
Answer:
Hofmann’s Exhaustive alkylation : When a primary amine is heated with excess of primary alkyl halide it gives a mixture of secondary amine, tertiary amine along with tetraalkylammonium halide
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 92

If excess of alkyl halide is used, tetraalkyl ammonium halide is obtained as major product. The reaction is known as exhaustive alkylation of amines.

Hofmann’s Exhaustive Methylation : The process of converting a primary, secondary or tertiary amine into quaternary ammonium halide by heating them with excess of methyl iodide, is called exhaustive methylation or Hoffmann’s exhaustive methylation.

Thus when methyl amine is heated with excess of methyl iodide it forms dimethylamine (secondary amine), then trimethylamine (a tertiary amine) and finally of quaternary ammonium iodide. The reaction is carried out in the presence of mild base NaHCO3, to neutralize the large quantity of HI formed.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 93

Question 38.
Predict the products of exhaustive methylation of following compounds.
(1) Ethylamine.
Answer:
A primary amine, ethylamine (CH3 – CH2 – NH2) on exhaustive methylation, i.e., on heating with excess methyl iodide, forms secondary amine, tertiary amine and finally a quaternary ammonium salt, ethyl-trimethyl ammonium iodide.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 97

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

(2) Benzylamine.
Answer:
Benzylamine C6H5CH2NH2 on exhaustive methylation i.e., on heating with excess methyl iodide forms benzylmethyl amine, benzyldimethyl ammonium chloride and finally benzyltrimethyl ammonium iodide.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 98

Question 39.
Explain Hofmann elimination.
OR
Write a note on Hoffmann elimination.
Answer:
When tetra alkyl ammonium halide is heated with moist silver hydroxide, a quaternary ammonium hydroxide is obtained. Quaternary ammonium hydroxides are deliquescent crystalline solids and are basic in nature. Quaternary ammonium hydroxides on strong heating undergo ^-elimination to give tertiaryamine, alkenes and water, the reaction is called Hofmann elimination. The major product is least substituted alkene.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 99

Question 40.
Write the bond line formula of the alkene which is obtained as major product from the following amines, on heating with excess of methyl iodide followed by strong heating with moist silver oxide.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 102
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 103

Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 104
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 105

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 106
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 107

Question 41.
Compound X with a molecular formula C5H13N did not react with nitrous acid, but reacted with one mole of CH3I to form a salt. What is the structure of X?
Answer:
The structure of compound X is Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 108 ethyl-N-methylethanamine since compound X is tertiary amine. It reacts with one mole of CH3I to give a quaternary ammonium salt.

Question 42.
What is the action of acetyl chloride on :
(1) ethyl amine (ethanamine)
(2) diethyl amine (N-Ethylethanamine)
(3) triethyl amine?
OR
Write a short note on acylation of amines.
Answer:
The reaction of amines with acetyl chloride is called acetylation of amines.

(1) Acetyl chloride on reaction with ethylamine forms monoacetyl derivative, N-ethylacetamide (or N-acetyl ethylamine).
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 109
(2) Diethyl amine on reaction with acetyl chloride forms N-acetyl dimethylamine.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 110
(3) Triethyl amine, being a tertiary amine does not have H atom attached to nitrogen of amine, hence it does not react with acetyl chloride.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 111

Question 43.
What is the action of acetic anhydride on aniline?
Answer:
Aniline on reaction with acetic anhydride forms N-phenyl acetamide.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 116

Question 44.
What is the action of benzoyl chloride on ethanamine?
Answer:
When benzoyl chloride is treated with ethanamine, N-ethyl benzamide is obtained.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 117

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

Question 45.
What is the action of nitrous acid on ethylamine?
Answer:
Ethyl amine on reaction with nitrous acid in cold forms aliphatic diazonium salt, (unstable intermediate), which decomposes immediately by reaction with solvent water to produce ethyl alcohol and nitrogen gas.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 123

Question 46.
What is the action of nitrous acid on aniline?
Answer:
Aniline reacts with nitrous acid in cold to form diazonium salt which has reasonable solubility at 273 K
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 124

Question 47.
How is benzenediazon|um chloride prepared?
Answer:
Benzenediazonium chloride is prepared by the action of nitrous acid on aniline at 273-278 K. Nitrous acid being unstable, is prepared in situ by the reaction between sodium nitrite and dilute hydrochloric acid.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 125

Question 48.
Write resonance stabilized structures of aryl diazonium salt.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 126

Question 49.
Write a note on Sandmeyer’s reaction.
OR
How is aryl chloride or aryl bromide or aryl cyanide prepared from diazonium salt?
Answer:
[Replacement by Cl, Br and -CN : Sandmeyer reaction.] Freshly prepared aromatic diazonium salt on reaction with cuprous chloride gives aryl chloride, on reaction with cuprous bromide gives aryl bromide and on reaction with cuprous cyanide give aryl cyanide. The reaction in which copper (I) salts are used to replace nitrogen in diazonium salt is called Sandmeyer reaction.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 128

Question 50.
How is aryl chloride or aryl bromide prepared by Gattermann reactions?
Answer:
The aryl chloride or bromides can also be prepared by Gattermann reactions in which diazonium salt reacts with
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 129

Question 51.
How is aryl iodide obtained from diazonium salt?
Answer:
When diazonium salt is warmed with potassium iodide, aryl iodide is obtained.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 130

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

Question 52.
Explain the reduction of arene diazonium salt?
OR
How is arene obtained from arene diazonium salt?
OR
What is the action of benzene diazonium chloride on ethanol?
Answer:
Arene diazonium salt on treatment with mild reducing agents like phosphinic acid (hypophosphoric acid) or ethanol, arene is obtained.

Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 131Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 132

Question 53.
How is phenol obtained from arene diazonium salt?
Answer:
When arene diazonium salt is slowly added to a large volume of boiling dilute sulphuric acid, phenol is obtained,
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 133

Question 54.
How is aryl fluoride obtained from diazonium salt?
Answer:
When fluoroboric acid is treated with the solution of diazonium salt, a precipitate of diazonium fluoroborate is obtained, which is filtered and dried. When dry diazonium fluoroborate is heated, it decomposes to give aryl fluoride. This reaction is called Balz-Schiemann reaction.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 134

Question 55.
How is nitrobenzene obtained from benzene diazonium fluoroborate?
Answer:
When benzene diazonium fluoroborate is heated with aqueous solution of sodium nitrite in the presence of copper powder, nitrobenzene is obtained.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 135
Benzene diazonium fluorobate can be obtained by reaction of benzene diazonium chloride with HBF4.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 136

Question 56.
What is meant by a coupling reaction? Explain with suitable examples.
OR
What is the action of benzene diazonium chloride on (a) phenol in alkaline medium (b) aniline?
OR
Write a note on the coupling reaction.
Answer:
Diazonium salts react with certain aromatic compounds having an electron-rich group (e.g.-OH, – NH2, etc.) to form azo compounds. This reaction is an electrophilic substitution and is called coupling reaction. Azo compounds are brightly coloured and are used as dyes and indicators. Coupling reaction is an electrophilic substitution reaction. Benzene diazonium chloride reacts with alkaline solution of phenol to give p-hydroxy azo benzene (orange dye).
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 139
Benzene diazonium chloride reacts with aniline in mild alkaline medium to give p-aminobenzene (yellow dye).
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 140

Question 57.
What is the action of p-toluene sulphonyl chloride on ethyl amine and diethyl amine?
Answer:
(1) When ethyl amine is treated with p-toluene sulphonyl chloride, N-ethyl p-toluene sulphonamide is obtained.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 144
(2) When diethyl amine is treated with p-toluene suiphonyl chloride. N.N-dicthyl p-toluene suiphonyl amide is formed.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 145

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

Question 58.
How will you distinguish between :
(1) Ethylamine, diethyl amine and triethyl amine by using (i) nitrous acid (ii) Hinsberg’s reagent.
(2) Diethyl amine and triethyl amine by using acetic anhydride.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 150
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 151

Question 59.
Give a chemical test to distinguish between following pairs of compounds.
(i) Ethylamine and diethyl amine :
Answer:
Ethylamine (C2H5NH2) is a primary amine while diethyl amine ( (C2H5)2NH) is a secondary amine. So the two can be distinguished by the following test.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 152

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

(ii) Ethyl amine and aniline :
Answer:
Ethylamine is an aliphatic amine, while aniline is an aromatic amine. So the two can be distinguished by the following test :
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 153

(iii) Aniline and benzyl amine :
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 154

(iv) Aniline and N-ethylaniline :
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 155

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

Question 60.
Compound ‘X’ with a molecular formula C4H11N did not react with Hinsberg’s reagent, but reacted with one mole of CH3I to form a salt. What is the structure of ‘X’?
Answer:
The structure of compound ‘X’ is :
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 156
Since the compound ‘X’ does not react with NaN02 and HC1 i.e. nitrous acid (HO – N = O), it must be a tertiary amine.

The tertiary amine reacts with one mole of CH3I to give a quaternary ammonium salt.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 157

Question 74.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 158
p-(dimethylamino) azobenzene is yellow dye which was formerly used as a colouring agent in margarine. Write the structures of the reactants used in the preparation of this dye.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 159

Question 61.
Convert 3-Methyl aniline into 3-nitrotoluene.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 160

Question 62.
How will you bring about following conversions?
(1) N.Methyl aniline into N-methyl benzanilide.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 161

(2) 1.4-Dichlorobutane Into hexane-1,6-diamlne.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 162

(3) Benzene into 3-bromo aniline.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 163

(4) Chlorobenzene into 4-chioroanilinc.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 164

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

(5) 11enaniide into toluene.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 165

Question 63.
What is the action of aqueous bromine on aniline?
Answer:
Action of aqueous bromine on aniline : When aniline is treated with bromine water at room temperature, a white precipitate of 2, 4, 6-tri bromoaniline is obtained.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 166

Question 64.
Explain the action of cone, nitric acid (nitrating mixture) on aniline.
Answer:
When aniline is warmed with a mixture of cone, nitric acid and cone, sulphuric acid (a nitrating mixture), a mixture of ortho, meta and para nitroaniline is obtained.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 169

Question 65.
What is the action of acetic anhydride on aniline?
Answer:
When aniline is heated with acetic anhydride, an acetanilide is obtained.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 170

Question 66.
How will you convert aniline to p-nltroanhline? (major product)
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 171

Question 67.
What is the action of cone, sulphuric acid on aniline?
Answer:
Aniline on treatment with cold sulphuric acid forms anilium hydrogen sulphate which on heating with sulphuric acid at 453 K-475 K gives sulphanilic acid, (p-aminobenzene sulphonic acid) as major product.Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 172
Sulphanilic acid exists as a salt; called dipolar ion or zwitter ion. It is produced by the reaction between an acidic group and a basic group present in the same molecule.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

Question 68.
How will you convert the following?
(1) Ethylamine to ethyl alcohol.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 173

(2) N-Methyl aniline to N-Nitroso-N-methyl aniline.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 174

(3) Diethylamine to N-nitrosodiethylamine
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 175

(4) Triethylamine to triethyl ammonium nitrite.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 176

(5) Ethyl amine to N-ethylacetamide.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 177

(6) Diethyl amine to N-acetyl diethylamine.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 178

(7) Aniline to acetanilide.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 179

(8) Aniline to N-ethyl henzamide.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 180

(9) Ethylamine to ethyl isocyanide.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 181

(10) Aniline to phenyl isocyanide.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 182

(11) Aniline to 2,4,6-tribromoaniline.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 183

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

Question 69.
Give a plausible explanation for each of the following statements :
(1) Ethylamine is soluble in water whereas aniline is not.
Answer:
Ethylamine is soluble in water due to intermolecular hydrogen bonding resulting in the formation of C2H5NH3 ion. Whereas in anline the hydrogen bonding with water is negligible due to the phenyl group (C6H5) is bulky and has -I effect. Therefore, aniline is nearly insoluble in water.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 184

(2) Butan-1-ol is more soluble in water than butani-amine.
Answer:
Rutan- l-al is more soluble in watcr duc to intermoiccular hydrogen bonding. In alcohols, hydrogen bonding is through oxygen atoms. WIereas hutani-amine is less soluble in water due to the larger hydrocarbon part is hydrophobic in nature. Hence, butan-l-ol is more soluble in water than butani-amine.

(3) Butan-1-amlne has higher boiling point than N-ethylethanamine.
Answer:
Due to the presence of two H-atoms on N-atom in butait- I -amine, they undergo extensive intermolecular H-bonding while in N-cthylethanamine due to the presence of one-H atom on the N-atom, they undergo least intermolecular H-bonding. Hence, butan- l-amine has higher boiling point than-N-ethyl ethanamine.

(4) AnIline Is less basic than ethyl afine.
Answer:
Aniline (Kb4-2 x 10-10) is less basic than ethyl amine (Kb5.1 x 10-4). This is because -I effect of phenyl group in aniline as compared to + 1 effect of ethyl group in ethyl amine.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 185
Due to resonance, the lone pair of electrons on the nitrogen atom gets delocalized over the benzene ring and thus less available for protonation. On the other hand, in ethyl anine, delocalization of the lone pair of electrons on the nitrogen atom by resonance is not possible. Further more, the electron density on the nitrogen atom is increased by +1 effect of the ethyl group. Hence, aniline is less basic than ethyl amine.

(5) pKb value of diethyl amine is less than that of ethyl amine.
Answer:
The basic strength of amines is expressed in terms of pKb values. Smaller is the value of pKb more basic is the amine. The pKb value of ethyl amine is 3.29 and that of diethyl amine is 3.00. Therefore, diethyl amine is more basic than ethyl amine.

(6) Aniline cannot be prepared by Gabriel phthalimide synthesis.
Answer:
In Gabriel-phthalimide synthesis of aniline, potassium phthalimide requires the treatment with chlorobenzene or bromobenzene. Since aryl halides do not undergo nucleophilic substitution reaction. Therefore, chlorobenzene or bromobenzene does not react with potassium phthalimide to give N-phenylphthalimide and hence aniline cannot be prepared by Gabriel phthalimide synthesis.

(7) Gabriel phthalimide synthesis is preferred for the preparation of aliphatic primary amines.
Answer:
In aromatic amines, the lone pair of electrons on the N-atom is delocalized over the benzene ring. As a result electron density on the nitrogen atom decreases. Whereas in aliphatic primary amines, due to +1 effect of alkyl group, electron density on nitrogen atom increases. As the pKh value of aliphatic amines is more than that of aromatic amines, aromatic amines are less basic than primary aliphatic amines. Hence, Gabriel phthalimide synthesis is preferred for the preparation of aliphatic amines.

(8) Arere diazonium salts are relatively more stable than alkyl diazonium salts.
Answer:
Arene diazonium salts are stable due to the dispersal of the positive charge over the benzene ring as shown below :
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 186
Alkane diazonium salts are unstable due to their tendency to eliminate a stable molecule of nitrogen to form carbocation. Aromatic diazonium salts have much lower tendency to remove nitrogen than aliphatic diazonium salts. Hence, arene diazonium salts are relatively more stable than alkyl diazonium salts.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 187

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

(9) Tertiary amines cannot be acylated.
Answer:
Tertiary amines do not react with acetic anhydride or acetyl chloride i.e. they can be acylated because they do not contain a H-atom on the N-atom.

(10) Besides the ortho and para derivatives, considerable amount of meta derivatives is also formed during nitration of aniline.
OR
Although amino group is o- and p-directing in electrophilic substitution reactions, aniline on nitration gives substantial amount of m-nitroaniline.
Answer:
In aromatic amines, -NH2 is an electron releasing or activating group. It activates the ortho and para positions in the benzene ring towards electrophilic substitution. When aniline is treated with nitrating mixture (cone. HNO3+ cone. H2SO4), a mixture of ortho and para nitroaniline is obtained. However, a substantial amount of m-nitroaniline is also formed. Aniline being a base gets protonated in acidic medium to form anilium cation, which deactivates the ring and the substitution takes place at the meta position.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 188

Question 70.
How will you convert :
(1) Aniline into benzyl alcohol.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 191

(2) Aniline into 4-bromoaniline.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 192

(3) Aniline into 1,3,5-tribromo benzene.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 193

(4) Aniline into 2,4,6-tribromo fluoro benzene.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 194

Question 71.
How will you convert :
(1) Propanoic acid into ethanoic acid.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 197

(2) Propanoic acid into ethanol
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 198

(3) Ethanamine into propan-l-amine.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 199

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

(4) Propan-l-amine into ethanamine.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 200

(5) Propanoic acid into ethanamine.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 201

(6) Ethanamine into propanoic acid.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 202

(7) Benzene to aniline.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 203

(8) Aniline to Benzene.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 204

(9) Aniline into benzoic acid.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 205

(10) Benzoic acid into aniline.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 206

(11) Aniline into benzamide.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 207

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

(12) 3-Nitrotoluene into 3-methyl aniline.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 208

(13) 3-Methyl aniline into 3-Nitrotoluene.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 209

Question 72.
An organic compound ‘A’ having molecular formula C2H6O evolves hydrogen gas on treatment with sodium metal and on treatment with red phosphorous and iodine gives compound ‘B’. The compound ‘B’ on treatment with alcoholic KCN and on subsequent reduction gives compound ‘C’. The compound ‘C’ on treatment with nitrous acid evolves nitrogen gas. Write the balanced chemical equations for all the reactions involved and identify the compounds ‘A’, ‘B’ and ‘C;.
Answer:
A = C2H5OH ethanol
B = C2H5I ethyl iodide
C = C2H5CH2NH2 n-propyl amine
Compound C2H6O = C2H5OH
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 215

Question 73
Identify B, C and D write complete reactions :
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 216
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 217
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 218

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

Question 74.
Identify the compounds B, C and D in the following series of reactions and rewrite the complete equations :
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 219
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 220

Question 75.
Identify the compounds ‘A’ and ‘B’ in the following equation :
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 221
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 222

Question 76.
Answer in one sentence :

(1) Arrange the following compounds in decreasing order of basic strength in their aqueous solutions. NH3, C2H5NH2, (CH3)2NH, (CH3)3N
Answer:
The decreasing order of basic strength is – (C2H5)2NH > (C2H5)3N > (C2H5)2NH > NH3
(The reason that ethyl group has greater +1 effect than methyl group).

(2) Arrange the following compounds in an increasing order of their solubility in water.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 226
Answer:
The solubility increases in order in which molecular mass decreases.
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 227

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

(3) What is Hinsberg’s reagent?
Answer:
Benzenesulphonyl chloride (C6H5SO2Cl) is known as Hinsberg’s reagent.

(4) Name the reaction in which a primary amine is formed from amide.
Answer:
Hoffmann bromamide degradation.

(5) NH3 is a Lewis base.
Answer:
Since nitrogen in ammonia molecule has a lone pair of electrons, it is a Lewis base.

(6) How many primary amines are possible for the compound C3H9N?
Answer:
For the compound C3H9N, two primary amines are possible.

(7) State the hybridization of the nitrogen atom in amines.
Answer:
The hybridization of nitrogen atom in amines is sp3.

(8) Arrange the following compounds in an increasing order of basic strength. Aniline, p-nitroaniline, p-toluidine.
Answer:
p-nitroaniline < aniline < p-toluidine.

(9) Which of the two is more basic and why? CH3NH2 or NH3
Answer:
Due to +1 effect of -CH3 group, electron density on N-atom increases, hence methyl amine is a stronger base than ammonia.

(10) Which of the two is more basic and why? p-toluidine or aniline.
Answer:
p-toluidine is more basic due to the presence of -CH3 group at para position. Due to +1 effect of -CH3 group, electron density on nitrogen increases, hence the tendency to donate pair of electrons increases.

Multiple Choice Questions

Question 77.
Select and write the most appropriate answer from the given alternatives for each subquestion :

1. Which of the following is an amine?
(a) C2H5N(COCH3)2
(b) (C2H5)2N – N = 0
(c) (C2H5)3N
(d) All of these
Answer:
(d) All of these

2. N-methyl-N-ethyl-n-propyl amine is
(a) a primary amine
(b) a secondary amine
(c) a tertiary amine
(d) an alkyl nitrile
Answer:
(c) a tertiary amine

3. Which of the following is a tertiary amine?
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 229
Answer:
(d)

4. Tertiary butyl amine is a
(a) primary amine
(b) secondary amine
(c) tertiary amine
(d) quaternary ammonium salt
Answer:
(a) primary amine

5. The IUPAC name of
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 230
(a) ethyl propanamine
(b) ethyl butylamine
(c) 2-pentanamine
(d) 3-hexanamine
Answer:
(d) 3-hexanamine

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

6. The IUPAC name of ethyl dimethyl amine is ……………..
(a) 2-amino propane
(b) N,N-dimethyl ethanolamine
(c) ethyl methanamine
(d) propanamine
Answer:
(b) N,N-dimethyl ethanolamine

7. Isopropyl amine and trimethyl amine are ……………..
(a) acidic in nature
(b) electrophilic compounds
(c) structural isomers
(d) optically active compounds
Answer:
(c) structural isomers

8. N, N-dimethylethanolamine is ……………
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 231
Answer:
(b)

9. IUPAC name of diethylmethyl amine is ………………
(a) methyl amino propane
(b) N-Ethyl-N-methylhexanamine
(c) methyl diethanamine
(d) amino pentane
Answer:
(b) N-Ethyl-N-methylhexanamine

10. Ethyl bromide reacts with excess of alcoholic ammonia, the major product is …………..
(a) ethyl amine
(b) diethylamine
(c) triethylamine
(d) tetraethyl ammonium bromide
Answer:
(a) ethyl amine

11. Isopropylamine is obtained by the reduction of
(a) acetoxime
(b) acetaldoxime
(c) formaldoxime
(d) aldoxime
Answer:
(a) acetoxime

12. Which of the following compounds can be converted into amines in the presence of Na and alcohol?
(a) Alkyl nitriles
(b) Aldoxime
(c) Ketoxime
(d) All of these
Answer:
(d) All of these

13. Chloroethane when boiled with excess of aqueous-alcoholic ammonia gives hydrochloric acid and
(a) triethyl amine
(b) trimethyl amine
(c) diethyl amine
(d) ethyl amine
Answer:
(d) ethyl amine

14. How many hydrogen atoms are required for the reduction of 1-nitropropane to n-propyl amine?
(a) Four
(b) Three
(c) Six
(d) Two
Answer:
(c) Six

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

15. A secondary alkyl halide is heated with excess of ammonia, the major product obtained is
(a) primary amine
(b) secondary amine
(c) tertiary amine
(d) quaternary ammonium salt
Answer:
(a) primary amine

16. The true statement about ethylamine is
(a) it is weaker base than ammonia
(b) it is stronger base than diethyl amine
(c) it is stronger base than triethyl amine
(d) it is stronger base than alkali
Answer:
(c) it is stronger base than triethyl amine

17. The reaction which is given only by primary amines is
(a) acetylation
(b) alkylation
(c) reaction with HNO2
(d) carbyl amine test
Answer:
(d) carbyl amine test

18. The amine which reacts with NaNO2 and dil. HCl to give yellow oily compound is
(a) ethylamine
(b) isopropylamine
(c) sec-butylamine
(d) dimethylamine
Answer:
(d) dimethylamine

19. The name of the compound ‘C’ in the following series of reactions, is Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 232
(a) propan-l-ol
(b) propan-2-ol
(c) butan-l-ol
(d) butan-2-ol
Answer:
(b) propan-2-ol

20. Triethylamine when treated with nitrous acid gives
(a) an alcohol
(b) a nitrosamine
(c) a monoacetyl derivative
(d) a soluble nitrite salt
Answer:
(d) a soluble nitrite salt

21. Ammes are basic in nature because
(a) of the nitrogen atom contain or lone pair of electrons
(b) they give H+ ions in aqueous medium
(c) they form quaternary ammonium salts when heated with acids
(d) both (a) and (c)
Answer:
(a) of the nitrogen atom contain or lone pair of electrons

22. An aqueous solution of primary amine contains
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 233
Answer:
(d)

23. The basic nature of amines in an aqueous solution is in the order of
(a) tert. > sec. > pri.
(b) sec. > pri. > tert.
(b) pri. > sec. > tert.
(d) pri. > tert. > sec.
Answer:
(b) pri. > sec. > tert.

24. In trimethyl ammonium ion, the number of sigma bonds attached to nitrogen are
(a) 2
(b) 3
(c) 4
(d) 5
Answer:
(b) 3

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

25. The number of coordinate bond/bonds in a trialkyl ammonium ion is
(a) one
(b) two
(c) three
(d) four
Answer:
(a) one

26. The number of electrons in the valence shell of nitrogen in methyl amine is
(a) 5
(b) 3
(c) 8
(d) 7
Answer:
(c) 8

27. Ethanamine reacts with excess of acetyl chloride to form
(a) C2H5NHCOCH3
(b) C2H5N(CH3)2
(c) C2H5N(COCH3)2
(d) C2H5N+H3Cl
Answer:
(c) C2H5N(COCH3)2

28. The compound used for acylation of amine is
(a) (CH3CO)2O
(b) CH3COOH
(c) CH3COCl
(d) both (a) and (c)
Answer:
(d) both (a) and (c)

29. Dimethyl amine reacts with acetyl chloride to give
(a) N-acetyl methyl amine
(b) N-acetyl ethyl amine
(c) N-acetyl dimethyl amine
(d) N-acetyl diethyl amine
Answer:
(c) N-acetyl dimethyl amine

30. Identify ‘A’ in the following reaction :
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 234
Answer:
(c)

31. n-propyl alcohol is obtained when HNO2 is treated with
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 235
Answer:
(c)

32. A mixture of CH3NH2, (CH3)2NH, (CH3)3N can be distinguished by using
(a) HCI
(b) HNO2
(c) HNO3
(d) H2SO4
Answer:
(b) HNO2

33. In the acetylation reaction the H-atom of an amine is replaced by
(a) a carbonyl group
(b) an alkyl group
(c) an acetyl group
(d) an imino group
Answer:
(c) an acetyl group

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

34. Amines are basic in nature
(a) as they have a fishy odour
(b) as they form quaternary ammonium salts with alkyl halides
(c) due to the presence of an unshared pair of electrons on the nitrogen atom
(d) all of these
Answer:
(c) due to the presence of an unshared pair of electrons on the nitrogen atom

35. The correct order of increasing basic strength is
(a) NH3 < CH3NH2 < (CH3)2NH
(b) CH3NH2 < (CH3)2NH < NH3
(c) CH3NH2 < NH3 < (CH3)2NH
(d) (CH3)2NH < NH3 < CH3NH2
Answer:
(a) NH3 < CH3NH2 < (CH3)2NH

36. Which of the following is the strongest base?
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 236
Answer:
(d)

37. Identify the weakest base amongst the following :
(a) p-methoxyaniline
(b) o-toluidine
(c) benzene-1, 4-diamine
(d) 4-aminobenzoic acid
Answer:
(d) 4-aminobenzoic acid

38. Amine that cannot be prepared by Gabriel phthalimide synthesis is
(a) aniline
(b) benzyl amine
(c) methyl amine
(d) iso-butyl amine
Answer:
(a) aniline

39. Which of the following exist as Zwitter ion?
(a) Salicylic acid
(b) Suphanilic acid
(c) p-Aminophenol
(d) p-Amino acetophenone
Answer:
(b) Suphanilic acid

40. Reduction of benzene diazonium chloride with Zn/HCl gives
(a) phenyl hydrazine
(b) hydrazine hydrate
(c) aniline
(d) ozo benzene
Answer:
(c) aniline

41. When primary amine reacts with CHCl3 in alcoholic KOH, the product is
(a) aldehyde
(b) alcohol
(c) cyanide
(d) an isocyanide
Answer:
(d) an isocyanide

42. Which of the following amines cannot be prepared by Gabriel phthalimide synthesis?
(a) sec-Propylamine
(b) tert-Butylamine
(c) 2-Phenylethylamine
(d) N-Methyl benzyl amine
Answer:
(d) N-Methyl benzyl amine

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

43. Which of the following compounds has highest boiling point?
(a) Ethane
(b) Ethanoic acid
(c) Ethanol
(d) Ethanamine
Answer:
(b) Ethanoic acid

44. Identify the statement about the basic nature of amines.
(a) Alkylamines are weaker bases than ammonia.
(b) Arylamines are stronger bases than alkylamines.
(c) Secondary aliphatic amines are stronger bases than primary aliphatic amines.
(d) Tertiary aliphatic amines are weaker bases than arylamines.
Answer:
(c) Secondary aliphatic amines are stronger bases than primary aliphatic amines.

45. The compounds ‘A’, ‘B’ and ‘C’ react with methyl iodide to give finally quaternary ammonium iodides. Only ‘C’ gives carbylamines test while only ‘A’ forms yellow oily compound on reaction with nitrous acid. The compounds ‘A’, ‘B’ and ‘C’ are respectively.
(a) butan-1-amine, N-ethylethanamine and
N, N-dimethylethanamine.
(b) N-ethylethanamine, N, N-dimethylethanamine and butan-1 – amine.
(c) N, N-dimethylethanamine, N-ethylethanamine and butan-1-amine.
(d) N-ethylethanamine, butan-1-amine and N-ethylethanamine.
Answer:
(b) N-ethylethanamine, N, N-dimethylethanamine and butan-1 – amine.

46. Which of the following amines is most basic in nature?
(a) 2, 4-Dichloroaniline
(b) 2, 4-Dimethylaniline
(c) 2, 4-Dinitroaniline
(d) 2, 4-Dibromoaniline
Answer:
(b) 2, 4-Dimethylaniline

47. How many moles of methyl iodide are required to convert ethylamine, diethylamine and triethylamine into quaternary ammonium salt, respectively?
(a) 1, 2 and 3
(b) 2, 3 and 1
(c) 3, 2 and 1
(d) 3, 1 and 2
Answer:
(c) 3, 2 and 1

48. Which of the following amines does not undergo acetylation?
(a) t-Butylamine
(b) Ethylamine
(c) Diethylamine
(d) Triethylamine
Answer:
(d) Triethylamine

49. n-Propylamine can be prepared by catalytic reduction of
(a) n-propyl cyanide
(b) propionaldoxime
(c) acetoxime
(d) nitroethane
Answer:
(b) propionaldoxime

50. Identify the compound ‘B’ in the following series of reactions :
Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 237
Answer:
(c)

Maharashtra Board Class 12 Chemistry Important Questions Chapter 13 Amines

51. Chloropicrin is used as
(a) antiseptic
(b) antibiotic
(c) insecticide
(d) anaesthetic
Answer:
(c) insecticide

52. Identify the compound B in the following series of reactions. Maharashtra Board Class 12 Chemistry Solutions Chapter 13 Amines 238
(a) n-propyl chloride
(b) propanamine
(c) n-propyl alcohol
(d) Isopropyl alcohol
Answer:
(c) n-propyl alcohol

53. Which of the following amines yields foul smelling product with haloform and alcoholic KOH?
(a) Ethyl amine
(b) Diethyl amine
(c) Triethyl amine
(d) Ethyl methyl amine
Answer:
(a) Ethyl amine

54. Which of the following compounds is NOT prepared by the action of alcoholic NH3 on alkyl halide?
(a) CH3NH2
(b) CH3-CH2-NH2
(c) CH3 – CH2 – CH2 – NH2
(d) (CH3)3CNH2
Answer:
(d) (CH3)3CNH2

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Balbharti Maharashtra State Board 12th Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements Important Questions and Answers.

Maharashtra State Board 12th Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 1.
What are d-block elements? Give their general electronic configuration.
Answer:
Definition : d-block elements are defined as the elements in which the differentiating electron enters d-orbital of the penultimate shell i.e. (n – 1) d-orbital where ‘n is the last shell.

The general electronic configuration can be represented as, (n – n) dn – 10, nsn – 2

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 2.
What is the position of the transition elements in the periodic table?
Answer:
The transition elements are placed in periods 4 to 7 and groups 3 to 12 of the periodic table.

Question 3.
In which block of the modern periodic table are the transition elements placed?
Answer:
Transition elements are placed in d-block of the modern periodic table.

Question 4.
Why are most of the d-block elements called transition elements?
Answer:

  • d-block elements have electronic configuration,(n – n) dn – 10, nsl – 2. They are all metals.
  • In the periodic table, they are placed between the ,s-block and p-block elements, i.e., in the groups between 2 and 13.
  • They show characteristic properties which are intermediate between those of the elements of s-block and p-block.
  • Hence, they show a transition in the properties from those of the most electropositive .v-block elements and less
  • electropositive (or electronegative) p-block elements.
  • Therefore, most of the d-block elements are called transition elements.

Question 5.
How many series of d-block elements are present in the long-form periodic table? Give their general electronic configuration.
Answer:
There are four series of d-block elements which are placed between 5 and p-block elements in the long-form periodic table as follows :

d-series Period Electronic configuration
(1) 3d-series fourth [Ar] 3d1 – 10, 4s1 – 2
(2) 4d-series fifth [Kr] 4d1 – 10, 5s1 – 2
(3) 5d-series sixth [Xe] 4f14 5d1 – 10 6s1 – 2
(4) 6d- series seventh [Rn] 5f14 6d1 – 10 7s2

Modern periodic table :
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 1

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 6.
Represent the elements in the four series of transition elements.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 2

Question 7.
In which period of the periodic table, will an element, be found whose differentiating electron is a 4d-electron?
Answer:
An element whose differentiating electron is a 4d-electron will be present in fifth period of the periodic table.

Question 8.
Write the condensed electronic configuration of each series of transition elements.
Answer:
Condensed Electronic Configuration of Transition Elements
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 3
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 4

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 9.
Write expected and observed electronic configuration of 3d-series block elements.
Answer:
Electronic configuration of 3d-series of d-block elements
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 5

Question 10.
Explain why transition elements with electronic configuration 3d44s2 and 3d94s2 do not exist.
Answer:
(1) d-orbitals are degenerate orbitals and they acquire extra stability when half-filled (3d5) or completely filled (3d10). Hence 3d4 and 3d9 electronic configurations are less stable.
(2) The energy difference between 3d and 4.s’ subshells is very low, hence there arises a transfer of one electron from 45 orbital to 3d orbital.
The electronic configuration changes as,
3d4, 4s2 → 3d5 4s1
3d9, 4s2 → 3d10 451
Therefore transition elements, with electronic configurations 3d4, 4s2 and 3d9, 4s2 do not exist.

Question 11.
Write observed electronic configuration of elements from first transition series having half-filled d-orbitals.
Answer:
There are two elements namely Cr and Mn which have half-filled d-orbitals.
24Crls22s22p63s23p63d54s1
25Mnls22s22p63s23p63d54s2

Question 12.
Explain the variable oxidation states of metals of first transition series.
Answer:

  • The transition metals (or, elements) exhibit variable oxidation states due to their electronic configuration, (n – 1) d1 – 10 ns1 – 2 for the first row.
  • They show only positive oxidation states due to loss of electrons from outer 45-orbital and the penultimate 3rf-orbital.
  • Loss of one 45 electron forms M+ ion. Loss of two 45 electrons form M2+ ion.
  • +2 is the common oxidation state of these elements.
  • Higher oxidation states are due to loss of 3 d-electrons along with 45 electrons.
  • As the number of unpaired electrons increases, the number of oxidation states shown by the element also increases.
  • Sc has only one unpaired electron and it shows two oxidation states ( + 2 and + 3)
  • Mn with 5 unpaired d electrons show six different oxidation states. They are +2, +3, +4, +5, +6 and + 7. Thus Mn has the highest oxidation state.
  • From Fe onwards variable oxidation states decreases as the number of unpaired electron decreases.
  • The last element in the series, Zn shows only one oxidation state ( + 2).

Question 13.
Show different oxidation states of 3d-series of transition elements.
Answer:
The following table shows, different oxidation states of 3d-series of transition elements.
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 7

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 14.
Write oxidation states and outer electronic configuration of first transition series elements.
Answer:
Oxidation states of first transition series elements
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 8
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 9

Question 15.
Zinc shows only one oxidation slate. Explain.
Answer:

  • The electronic conliguration of zinc is, 30Zn Is2 2s2 2p6 3s2 3p6 3d10 4s2 or [Ar] 3d10 4s2.
  • Due lo loss of two electrons from 4s suhshell Zn shows oxidation state +2. with elcctronic configuration. [Ar] 183d10.
  • Since Zn+2 acquires an extra stability of completely fIlled 3d10 orbital. it shows only one oxidation state + 2.

Question 16.
Why is manganese more stable in the + 2 state than the + 3 state and the reverse is true for iron?
Answer:

  • The electronic configuration of Mn is 25Mn [Ar] 3d5 4s2
  • In + 2 and + 3 oxidation states, the electronic configuration of Mn is, Mn2+ [Ar] 3d5 and Mn3+ [Ar] 3d4
  • Since half-filled d-orbital (3d5) has more stability and lower energy than 3d4, Mn2+ is more stable than Mn3+.
  • The electronic configuration of Fe is 26Fe [Ar] 3d6 4s2 In + 2 and + 3 oxidation states of Fe, the electronic configuration is, Fe2+ [Ar] 3d6 and Fe3+ [Ar] 3d5 Since half-filled orbital is more stable, + 3 state of Fe is more stable than + 2 state.

Question 17.
What are the electronic configurations of various ions of 3d-elements?
Answer:
Electronic configuration of various ions of 3d elements
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 10

Question 18.
Scandium shows only two oxidation states. Explain.
Answer:
Scandium has electronic configuration, 21Sc : Is2, 2s2, 2p6, 3s2, 3p6, 3d1, 4s2 Sc shows only two oxidation states namely + 2 and + 3.

  • Due to the loss of two electrons from the 4s-orbital, Sc acquires + 2 oxidation state Sc2 + : Is2 2s2 2p6 3s2 3p6 3d1.
  • Due to the loss of one more electron from the 3d-orbital, it acquires + 3 oxidation state with the extra stability of an inert element 18Ar. Sc+3 : Is2 2s2 2p6 3s2 3p6.
  • Since Sc3+ acquires extra stability of inert element [Ar]18, it does not form higher oxidation state.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 19.
Write different oxidation states of iron.
OR
Write the electronic configurations of
(i) Fe
(ii) Fe2+ and
(iii) Fe3+.
Answer:
Oxidation states of iron are +2, +3, +4, +5, +6.
(i) 26Fe : ls22s22p63s23p63d64s2
(ii) Fe2+ : Is2 2s2 2p6 3s2 3p6 3d6
(iii) Fe3+ : Is2 2s2 2p6 3s2 3p6 3d5.

Question 20.
Explain different oxidation states of chromium.
Answer:

  • The observed electronic configuration of chromium is, 24Cr [Ar] 3d5 4s1.
  • Different possible oxidation states of Cr are 4-1 (3d5), + 2 (3d4), + 3 (3d3), + 4 (3d2), + 5 (3d1) and + 6 (3d°).
  • Although in + 1 state, Cr gets extra stability of half-filled 3d5-orbital, it does not exhibit + 1 state in common except with pyridine.
  • Cr+2 has few stable salts like CrCl2, CrSO4 while Cr+3 forms very stable salts like CrCl3.
  • Cr+4 and Cr + 5 are unstable oxidation states.
  • Cr+6 is the most stable state due to inert gas [Ar] electronic configuration and form the salts like K2Cr2O7.

Question 21.
Manganese shows variable oxidation states. Give reasons.
Answer:

  • Manganese (25Mn) has electronic configuration. 25Mn [Ar]18 3d5 4s2.
  • Mn has stable half-filled d-subshell.
  • Due to a small difference in energy between 3d and 4s-orbitals, Mn can lose or share electrons from both the orbitals, hence shows variable oxidation states.
  • Mn shows oxidation states ranging from + 2 to + 7.

Question 22.
Write the different oxidation states of manganese. Why is + 2 oxidation state of manganese more stable than Mn3+?
Answer:

  • The different oxidation states of Mn are +2, +3, +4, +5, + 6 and +7.
  • The electronic configuration of Mn is Is2 2s2 2p6 3s2 3p6 3d5 4s2
  • + 2 oxidation state is very stable due to higher stability of half-filled 3d orbital.
  • Mn3+ has electronic configuration, ls22s2 2p63s23p63dA which is less stable.

Question 23.
Write the physical properties of first transition series.
Answer:
Physical properties of first transition series :

  • All transition elements of the first series are metals.
  • Except Zn, they are very hard and have low volatility.
  • They show characteristic properties of metals. They are lustrous, malleable and ductile.
  • They are good conductors of heat and electricity.
  • They have high melting points and boiling points.
  • Except Zn and Mn, they have one or more typical metallic structures at normal temperatures.

Question 24.
Which elements in the transition elements, 3d-series has
(i) the lowest density
(ii) the highest density?
Answer:
In 3d transition elements,
(i) Scandium (Sc) has lowest density and
(ii) Zinc (Zn) has the highest density.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 25.
Explain the variation in density of d-block elements.
Answer:
The densities of d-block elements are higher than 5-block elements due to higher nuclear charge which results in reduction in atomic size.

Question 26.
Explain the variation in melting points of the transition elements.
Answer:

  1. All transition elements are metals and the strength of metallic bonding increases as the number of unpaired electrons increases.
  2. In transition elements as atomic number increases, the number of unpaired electrons increases from (n – 1)d1 to (n – 1 )d5.
    For example in 3d-series, melting points increase from 21Sc to 24Cr in 4d-series from 39Y to 42Mo, and in 5d-series from 72Hf to 74W.
  3. After (n – l)d5 electronic configuration, the electrons start pairing, hence the number of unpaired electrons decrease, hence metallic character, melting points decrease from (n-1 )d6 to (n – 1)d10.
  4. In all transition series the melting point increases steadily up to d5 configuration and after this melting point decreases regularly.
    Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 11

Question 27.
The first ionisation enthalpies of third transition series elements are much higher than those of the elements of first and second transition series. Explain.
Answer:

  1. Third transition series elements have electronic configuration, 4f14 5d1 – 10 6s2.
  2. Thus, atoms of third series elements possess filled 4f-orbitals.
  3. 4f-orbitals due to their diffused shape, exhibit poor shielding effect and give rise to lanthanide contraction. Hence the valence electrons experience greater nuclear attraction and greater amount of energy is required to ionise the elements of third transition series namely (Hf to Au).
  4. Therefore the ionisation enthalpies of third transition series elements are much higher than those of the first and second transition series.

Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 13

Question 28.
Explain the metalic character of transition metals.
Answer:

  • All the transition elements are metals.
  • They are hard, lustrous, malleable, ductile and they have high tensile strength.
  • They have high melting points and boiling points.
  • Their metallic character is due to vacant or partially filled (n – 1) d-orbitals, and they involve both metallic and covalent bonding.
  • Since the strength of metallic bonds depends upon the number of unpaired electrons, it increases up to middle i.e., up to (n – 1 )d5, hence accordingly melting points and boiling points also increase.
  • After (n – l)d5 configuration, the electrons start pairing, hence the metallic strength, melting points and boiling points decrease with the increase in atomic number.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 29.
How does metallic character vary in 3d transition elements?
Answer:

  1. In 3d-series elements as atomic number increases from scandium (Sc [Ar]18 3d1 4s2) the number of unpaired electrons increases up to 3d5 in chromium.
  2. As the number of unpaired electrons increases, the metallic character increases, hence the melting points and boiling points increase from 21Sc(3d1) to 24Cr (3d5).
  3. After chromium the number of unpaired electrons goes on decreasing due to the pairing of electrons, hence metallic character, melting points and boiling points decrease from 25Mn to 29Cu.
  4. Zinc has all electrons paired, hence it is soft, has a low melting and boiling points.

Question 30.
Which are the common arrangement of the atoms in the structure of transition metals?
Answer:
Most of the transition metals have simple hexagonal closed packed (hep), cubic closed packed (ccp) or body centred cubic (bcc) lattices.

Question 31.
Why do the compounds of transition metals exhibit magnetic properties?
Answer:
The compounds of transition metals exhibit magnetic properties due to the presence of unpaired electrons in their atoms or ions.

Question 32.
What is the cause of paramagnetism and ferromagnetism?
Answer:
Paramagnetism and ferromagnetism is due to the presence of unpaired electrons in species.

Question 33.
When does species become diamagnetic?
Answer:
When there is no unpaired electron, i.e. all electron spins are paired, the species become diamagnetic.

Question 34.
How do metals Fe, Co, Ni acquire permanent magnetic moment?
Answer:
The transition metals Fe, Co and Ni are ferromagnetic. When the magnetic field is applied, all the unpaired electrons in these metals (and their compounds) align in the direction of the applied magnetic field. Due to this the magnetic susceptibility is enhanced and these metals can be magnetised, that is, they acquire permanent magnetic properties.

Question 35.
In which oxidation state, is vanadium diamagnetic?
Answer:

  • The electronic configuration of vanadium is, 23V [Ar] 3d3 4s2.
  • In +5 oxidation state, the electronic configuration is, V5+ [Ar].
  • Since in V5+ state, vanadium has all electrons paired, it is diamagnetic.

Question 36.
How is a magnetic moment expressed?
Answer:
The magnetic moment is expressed in Bohr magneton (B.M.). It is denoted by μ.

Question 37.
What is Bohr magneton (B.M.)?
Answer:
Bohr magneton (B.M.) is a unit of magnetic moment :
\(1 \mathrm{~B} . \mathrm{M} .=\frac{e h}{4 \pi m_{\mathrm{e}} c}\)
where, h : Planck’s constant (h = 6.626 x 10-34 Js)
e : electronic charge (1.60218 x 10-19 C)
me : mass of an electron (9.109 x 10-31 kg)
c : velocity of light. (2.998 x 108 ms-1)

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 38.
Explain the magnetic properties of transition (or d-block) elements.
Answer:

  • Most of the transition metal ions and their compounds are paramagnetic in nature due to the presence of one or more unpaired electrons in their (n – 1)d-orbitals. Hence they are attracted in the magnetic field.
  • As the number of unpaired electrons increases from 1 to 5 in J-orbitals, the paramagnetic character and magnetic moment increase.
  • The transition elements or their ions having all electrons paired are diamagnetic and they are repelled in the magnetic field.
  • Metals like Fe, Co and Ni possess very high paramagnetism and acquire permanent magnetic moment hence they are ferromagnetic.

Question 39.
Explain the effective magnetic moment of the species.
Answer:

  • The magnetic moment in the species arises due to the presence of unpaired electrons.
  • The magnetic moment depends upon the sum of orbitals and spin contribution for each unpaired electron present in the species.
  • In transition metal ions, the contribution of orbital magnetic moment is suppressed by the electrostatic field of other atoms, molecules or ions surrounding the metal ion in the compound.
  • Hence the net or effective magnetic moment arises mainly due to spin of electrons. The effective magnetic moment μeff, of a paramagnetic substance is given by 1 spin only’ formula represented as, \(\mu=\sqrt{n(n+2)}\) B.M. where n is the number of unpaired electrons.

Question 40.
What is the importance of magnetic moment (μ)?
Answer:

  • From the measurements of the magnetic moment (μ) of the species or metal complexes of the first row of transition elements, the number of unpaired electrons can be calculated with the spin-only formula.
  • As magnetic moment is directly related to the number of unpaired electrons, value of μ will vary directly with the number of unpaired electrons.
  • In 2nd and 3rd transition series, orbital angular moment is significant. Hence spin-only formula for the complexes of 2nd and 3rd transition series is not useful.

Question 41.
Calculate the magnetic moment of the following species :
(1) Cr3+
(2) Co
(3) Co3+
(4) Cu2 +.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 14

Question 42.
Explain : A slight difference in the calculated and observed values of magnetic moments.
Answer:
Magnetic moments are determined experimentally in solution or in solid state where the central atom or ion is hydrated or bound to ligands. Hence a slight difference is observed in calculated and experimentally obtained values of magnetic moment (μ).

Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 15

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 43.
Calculate the magnetic moment of a divalent ion in an aqueous solution, if its atomic number is 24.
Answer:
(1) The electronic configuration of divalent inri M2+ having atomic number 24 is.
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 18

The ion has number of unpaired electrons. n = 4.
By spin only’ formula, the magnetic μ is given by, \(\mu=\sqrt{n(n+2)}=\sqrt{4(4+2)}=4.90 \mathrm{~B} . \mathrm{M}\)
(This M2+ ion is Cr2+ ion)

Question 44.
When does a substance appear coloured?
Answer:
A substance appears coloured when it absorbs a portion of visible light. The colour depends upon the wavelength of absorption in the visible region of electromagnetic radiation.

Question 45.
Why do the d-block elements form coloured compounds?
Answer:

  • Compounds (or ions) of many d-block elements or transition metals are coloured.
  • This is due to the presence of one or more unpaired electrons in (n – 1) d-orbital. The transition metals have incompletely filled (n – 1) cf-orbitals.
  • The energy required to promote one or more electrons within the d-orbitals involving d-d transitions is very low.
  • The energy changes for d-d transitions lie in visible region of electromagnetic radiation.
  • Therefore transition metal ions absorb the radiation in the visible region and appear coloured.
  • Colour of ions of d-block elements depends on the number of unpaired electrons in (n – 1) d-orbital. The ions having equal number of unpaired electrons have similar colour.
  • The colour of metal ions is complementary to the colour of the radiation absorbed.

Question 46.
How is complementary colour of a compound identified?
Answer:

  1. The transition metal ions absorb the radiation in the visible region and appeared coloured.
  2. Metal ion absorbs radiation of certain wavelength from the visible region. Remaining light is transmitted and the observed colour corresponds to the complementary colour of the light observed.
  3. The complementary colour can be identified (with the diagram given).

For example if red colour is absorbed then transmitted complementary colour is green.
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 19

Question 47.
Write outer electronic configuration (d-orbital) and colour of 3d-series of transition metal ions.
Answer:
Colour of 3d-transition metal ions
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 20

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 48.
Mention the factors on which the colour of a transition metal ion depends.
Answer:
The factors on which the colour of transition metal ion depends are as follows :

  • The presence of incompletely filled d-orbitals in metal ions. (The compounds with the configuration d° and d’0 are colourless.)
  • The presence of unpaired electrons in d-orbitals.
  • d → d transitions of electrons due to absorption of radiation in the visible region.
  • Nature of groups (anions) (or ligands) linked to the metal ion in the compound or a complex.
  • Type of hybridisation in metal ion in the complex.
  • Geometry of the complex of the metal ion.

Question 49.
Give reasons : Zinc salts are colourless.
Answer:

  • Colour of the ions of d-block elements depends on the number of unpaired electrons in (n – 1) d-orbitals.
  • Zinc forms salts of Zn2+ ions.
  • The electronic configuration of Zn+2 is [Ar] 3d10.
  • Since Zn+2 does not have unpaired electrons in 3d-orbital, d→d transition cannot take place, hence, Zn+2 ions form colourless salts.

Question 50.
Explain : The compounds of Cu(II) are coloured.
Answer:

  • The electronic configuration of 29Cu [Ar] 3d10 4s1 and Cu2+ [Ar] 3d9.
  • In copper compounds Cu2+ ions have incompletely filled 3d-orbital (3d9).
  • Due to the presence of one unpaired electron in 3 d-orbital, Cu2+ ions absorb red light from visible spectrum and emit blue radiation due to d → d transition. Therefore, copper compounds are coloured.

Question 51.
Explain why the solution of Ti3+ salt is purple in colour.
OR
Why is Ti3+ coloured? (atomic number Ti = 22)
Answer:

  • Ti2+ ions in the aqueous solution exist in the hydrated complex form as [Ti(H2O)6]2+.
  • The electronic configuration of Ti is, 22Ti [Ar]18 3d2 4s2 and Ti3+ [Ar]18 3d1. Hence in complex, Ti3+ has one unpaired electron in 3d subshell.
  • Initially, the 3d electron occupies lower energy d-orbital (in t2g-orbitals).
  • On the absorption of radiations of about 500 nm in yellow green region by a complex, 3d1 electron is excited to the higher energy d-orbital (eg-orbitals).
  • When the electron returns back to the lower energy d-orbital (t2g), it transmits radiation of complementary colour i.e. red blue or purple colour. Hence, the solution of hydrated Ti3+ is purple.

Question 52.
What will be the colour of Cd2+ salts? Explain.
Answer:

  • The electronic configuration of, 48Cd [Kr]36 3d10 5s2 and Cd2+ [Kr]36 3d10.
  • Cd2+ ions have completely filled 3d subshell and there are no unpaired electrons in 3d-orbital.
  • Hence d → d transition is not possible.
  • Therefore, Cd2+ ions do not absorb radiations in the visible region and the salts of Cd2+ ions are colourless (or white).

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 53.
Indicate which of the ions may be coloured- V3+, Sc3+, Cr31, Cu2+, Ti3+, Cu+
Answer:

  • V3+ [Ar]18 3d2-((green)
    Since there are two unpaired electrons available, for d → d transition, it will show a Green colour.
  • Sc3+ [Ar]18 3d° (colourless/white).
    Since there are no unpaired electrons in the 3d subshell, it will not show colour.
  • Cr3+ [Ar]18 3d3 – (violet)
    There are three unpaired electrons in the 3d subshell, hence due to d → d transition, it will show violet colour.
  • Cu2+ [Ar]18 3d9 (blue)
    It has one unpaired electron that can undergo a d → d transition, hence it will show the colour blue.
  • Ti3+ [Ar]18 3d1 (purple)
    It has one unpaired electron that can undergo a d → d transition, hence it will show the colour purple.
  • Cu1+ [Ar]18 3d10 (colourless)
    There are no unpaired electrons in the 3d subshell, hence it will not show colour.

Question 54.
Explain why is cobalt chloride pink in colour when dissolved in water but turns deep blue when treated with concentrated hydrochloric acid.
Answer:

  • The electronic configuration of 27Co : [Ar] 3d14s2 and Co2+ [Ar] 3d1.
  • When dissolved in water cobalt chloride, Co2+ forms pink complex, [Co(H2O)6]2+.
  • The complex has octahedral geometry.
  • Due to absorption of radiation in the visible region and d – d transition, it forms pink coloured solution.
  • When CoCl2 solution is treated with concentrated HCl solution it turns deep blue.
  • This change is due to the formation of another complex, [CoC14]2+ which has a tetrahedral geometry.
  • Thus due to a change in geometry of the complex formed the colour of the solution changes from pink to deep blue.

Question 55.
Explain the catalytic properties of the rf-block or transition metals.
Answer:

  • d-block elements or transition metals and their compounds or complexes influence the rate of a chemical reaction and hence act as catalysts.
  • In homogeneous catalysis a catalyst forms an unstable intermediate compound which decomposes into products and regenerates the catalyst. But transition metals involve heterogeneous catalysis.
  • The transition metals have incompletely filled d-subshells which adsorb reactants on the surface and provide a large surface area for the reactants to react.
  • Since transition metals have variable oxidation states they are very good catalysts.
  • Hence, compounds of Fe, Co, Ni, Pt, Pd, Cr etc are used as catalysts in many reactions.

Question 56.
Explain the use of different transition metals as catalysts.
Answer:
The transition metals are very good catalysts.

  • MnO2 is used as a catalyst in the decomposition of KClO3.
    Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 21
  • In the manufacture of ammonia by Haber’s process, Mo/Fe is used as a catalyst.
    Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 22
  • In the synthesis of gasoline by Fischer Tropsch process, Co-Th alloy is used as a catalyst.
  • Finely divided Ni (formed by reduction of heated oxide in hydrogen) is very efficient catalyst in hydrogenation of ethene to ethane at 140 °C.
    Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 23
  • Commercially, hydrogenation with Ninkel as catalyst is used to convert inedible oils into solid fat for the production of margarine.
  • In the contact process of industrial production of sulphuric acid, sulphur dioxide and oxygen (from air) react reversibly over a solid catalyst of platinised asbestos.
    Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 24
  • Carbon dioxide and hydrogen are formed by the reaction of carbon monoxide and steam at 500 °C with Fe-Cr catalyst.
    Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 25

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 57.
What are interstitial compounds of transition metals?
Answer:

  • The interstitial compounds of the transition metals are those which are formed when small atoms like H, C or N are trapped inside the interstitial vacant spaces in the crystal lattices of the metals.
  • Sometimes, sulphides and oxides are also trapped in the crystal lattices of transition elements.
  • Presence of these elements in the crystal lattices of metals provide new properties to the metals.

Question 53.
Give one example of an interstitial compound.
Answer:
Steel and cast iron are examples of interstitial compounds of carbon and iron.

Question 54.
Give examples of interstitial compounds where the property of the transition metal is changed.
Answer:
Steel and cast iron are interstitial compounds of carbon and iron (carbides of iron). Due to the presence of carbon, the malleability and ductility of iron is reduced while its tenacity increases.

Question 55.
What are the properties of the interstitial compounds of transition metals?
Answer:

  • The chemical properties of the interstitial compounds are the same as that of parent transition metals.
  • They are hard and show the metallic properties like electrical and thermal conductivity, lustre, etc.
  • Since metal-non-metal bonds in the interstitial compounds are stronger than metal-metal bonds in pure metals, the compounds have very high melting points, higher than the pure metals.
  • They have lower densities than the parent metal.
  • The interstitial compounds containing hydrogen (i.e., hydrides of metals) are powerful reducing agents.
  • The compounds containing carbon, hence behaving as carbides, are chemically inert and extremely hard like diamond.
  • In these compounds, malleability and ductility are changed. For example steel and cast iron.

Question 56.
What are interstitial compounds? Why do these compounds have higher melting points than corresponding pure metals?
Answer:

  1. The interstitial compounds of the transition metals are those which are formed when small atoms like H, C or N are trapped inside the interstitial vacant spaces in the crystal lattice of the metals.
  2. Since metal-nonmetal bonds in the interstitial compounds are stronger than metal-metal bonds in pure metals, the compounds have very high melting points, higher than the pure metals.

Question 57.
Explain the formation of alloys of transition metals.
Answer:

  • The transition metals form a large number of alloys among themselves, which are hard with high melting points.
  • During alloy formation atoms of one metal are distributed randomly in the lattice of another metal.
  • The metals with similar atomic radii and similar properties readily form alloys.
  • These alloys have industrial importance.
  • The alloys can be ferrous alloys or nonferrous alloys.

Question 58.
How are the transition metal alloys classIfied?
Answer:
The transition metal alloys are classified into

  • Ferrous alloys
  • Nonferrous alloys.

Question 59.
Explain what are
(1) ferrous alloys and
(2) nonferrous alloys.
Answer:

  1. Ferrous alloys: In ferrous alloys, atoms of other elemems are distributed randomly in atoms of iron in the mixture. As the percentage of iron is more in these alloys, they are termed as ferrous alloys. For expamle : nickel steel, chromium steel, stainless steel, (All steels have abot 2% carbon)
  2. onferrous alloys : These are formed by mixing atoms of transition metal other than iron with a non transition elemeni. For example, brass is an alloy of Cu and Zn. Bronze is an alloy of Cu and Sn.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 60.
What are the uses of alloys?
Answer:

Name of alloy Important use in industry
(1) Bronze (Cu + Sn) In making statues, medals and trophies (as it is tough, strong and corrosion-resistant)
(2) Cupra-nickel (Cu + Ni) In making machinery parts of marine ships, boats, marine conden­ser tubes.
(3) Stainless steel In the construction of the outer fuselage of ultra-high-speed aircraft.
(4) Nichrome : (Ni+ Cr in the ration 80 : 20) For gas turbine engines.
(5) Titanium alloys For ultra-high-speed flight, fireproof bulkheads and exhaust shrouds (as they withstand high temperatures).

Question 61.
Write the preparation of potassium permanganate.
Answer:
Potassium permanganate (KMnO4) is prepared in the following steps,

(1) Chemical Oxidation : When finely divided manganese dioxide (Mn02) is heated strongly with fused caustic potash (KOH) and an oxidising agent potassium chlorate (KCIO3), dark green potassium manganate (K2MnO4) is obtained. (In neutral or acidic medium K2MnO4 disproportionates.)
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 26

The liquid is filtered through glass wool or sintered glass and evaporated. Potassium manganate crystallises as small, blackish crystals.

(2) Oxidation of K2MnO4 by
(i) Electrolytic oxidation : An alkaline solution of manganate ion is electrolysed between iron electrodes separated by a diaphragm. Manganate ion \(\left(\mathrm{MnO}_{4}^{2-}\right)\) undergoes oxidation at anode forming permanganate ion \(\left(\mathrm{MnO}_{4}^{-}\right)\). Oxygen evolved at anode converts \(\left(\mathrm{MnO}_{4}^{2-}\right)\) to \(\left(\mathrm{MnO}_{4}^{-}\right)\).

The overall reaction is as follows :
2K2MnO4 + H2O + [O] → 2KMnO4 + 2KOH

The electrolytic solution is filtered and evaporated to obtain deep purple black crystals of KMn04.

(ii) By passing CO2 through the solution of K2MnO4 :
3K2MnO4 + 4CO2 + 2H2O → 2KMnO4 + MnO2 + 4 KHCO3

Question 62.
What is meant by the disproportionation of an oxidation state? Explain giving example of manganese.
Answer:

  1. Disproportionation reaction is a chemical reaction in which atom or an ion of an element forms two or more species having different oxidation states, one lower and one higher.
  2. Manganese (Mn) shows different oxidation states + 2 to +7.
  3. When one oxidation state, lower or higher oxidation state becomes unstable as compared to another oxidation state, it undergoes disproportionation reaction.
  4. For example, + 6 oxidation state of Mn is less stable than + 7 and + 4.
    • Hence, in acidic medium \(\mathrm{Mn}^{6+} \text { in } \mathrm{MnO}_{4}^{2-}\) undergoes disproportionation reaction.
      Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 27
    • In neutral medium green K2MnO4 disproportionates to KMn04 and MnO2.
      Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 28

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 63.
Give examples of oxidising reactions of KMnO4.
Answer:
(1) KMnO4 in acidic medium :
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 57
(2) KMnO4 in neutral or alkaline medium in neutral or weakly alkaline medium :
(i) Iodide is oxidised to iodate ion.
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 33
(ii) Thiosulphate ion is oxidised to sulphate ion.
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 34
(iii) Manganous salt is oxidised to MnO2.
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 35

Question 64.
Balance the following equations :
KI + KMnO4 + H2SO4 → K2SO4 + MnSO4 + 8H2O + I2
H2S + KMnO4 + H2SO4 → K2SO4 + MnSO4 + H2O + S.
Answer:
10 KI + 2KMnO4 + 8H2SO4 → 6K2SO4 + 2MnSO4 + 8H2O + 5I2
5H2S + 2KMnO4 + 3H2SO4 → K2SO4 + 2MnSO4 + 8H2O + 5S.

Question 65.
Give the uses of potassium permanganate.
Answer:
Uses of potassium permanganate :

  • as an antiseptic.
  • as a powerful oxidising agent in laboratory and industry.
  • in the detection of unsaturation in organic compounds in the laboratory. (Baeyer’s reagent, alkaline KMnO4).
  • for detecting halides in qualitative analysis.
  • in volumetric analysis for the estimation of H2O2, FeSO4 etc.)

Question 66.
Write the formula of chromite ore.
Answer:
FeOCr2O3.

Question 67.
How is potassium dichromate manufactured from chromite ore (FeOCr2O3)?
Answer:
Manufacture of potassium dichromate (K2Cr2O2) from chrome iron ore (FeOCr2O3) involves following steps :
(1) Concentration of ore : The chromite ore (FeOCr2O3) is powdered and washed with current of water.
(2) Conversion of chromite ore into sodium chromate : The concentrated ore is mixed with anhydrous sodium carbonate (Na2CO3) and a flux of lime in excess air and heated in a reverberatory furnace.
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 36
Sodium chromate (Na2CrO4) formed in the reaction is then extracted with water so that Na2CrO4 dissolves into solution and insoluble substances separate out.
(3) Conversion of Na2CrO4 into sodium dichromate (Na2Cr4O7) : Na2CrO4 solution is acidified with concentrated H2SO2, so that sodium chromate is converted into sodium dichromate.
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 37
Less soluble sodium sulphate crystallises out as Na2SO4.10H2O. which is filtered off.
(4) Conversion of Na2Cr2O7 into K2Cr2O7 : Concentrated solution of Na2Cr2O7 is treated with KCl on by double decomposition, K2Cr2O7 is obtained.
Na2Cr2O7 + 2KCl → K2Cr2O7 + 2NaCl
On concentrating and cooling the solution, less soluble orange coloured K2Cr2O7 crystallises out which is filtered and purified by recrystallisation.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 68.
What happens when hydrogen sulphide gas (H2S) is passed through acidified K2Cr2O7 solution?
Answer:
When hydrogen sulphide (H2S) gas is passed into solution of K2Cr2O7, H2S is oxidised to a pale yellow solid (precipitate) of sulphur. Orange coloured solution becomes green due to formation of chromic sulphate (green coloured).

In the reaction, H2S is oxidised to S and K2Cr2O7 is reduced to Cr2(SO4)3.
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 38

Question 69.
What are the common physical properties of d-block elements?
Answer:
The common physical properties of d-block elements are :

  • All d-block elements are lustrous and shining.
  • They are hard and have high density
  • They have high melting and boiling points.
  • They are good electrical and thermal conductors.
  • They have high tensile strength and malleability.
  • They can form alloys with transition and nontransition elements
  • Many metals and their compounds are paramagnetic.
  • Most of the metals are efficient catalysts.

Question 70.
What are the common chemical properties of d-block elements?
Answer:
The common chemical properties of the d-block elements are :

  • All d-block elements are electropositive metals.
  • They exhibit variable oxidation states and form coloured salts and complexes.
  • They are good reducing agents.
  • They form insoluble oxides and hydroxides.
  • Iron, cobalt, copper, molybdenum and zinc are biologically important metals.
  • They catalyse biological reactions.

Question 71.
Give examples to show that elements of first row of d-block elements differ from second and third row with respect to the stabilisation of higher oxidation states.
Answer:

  • Highest oxidation state for the first row element is + 7 as in Mn.
    For the second row, the highest oxidation state is + 8 as in Ru (RuO4).
    For the third row, the highest oxidation state is + 8 as in Os (OsO4).
  • Compounds of Mo(V) of 2nd row and W(VI) of 3rd row of transitional elements are more stable than Cr(VI) and Mn (VIII) of first row elements.

Question 72.
How do metals occur in nature?
Answer:
In nature, few metals occur in earth’s crust in free state or native state while other metals occur in the combined form.
(1) Elements in free state or native state : The metals which are non-reactive with air, water, CO2 and non-metals occur in free state or native state. For example, gold, platinum, palladium occur in free state. Metals like Cu, Ag and Hg occur partly in the free state.

(2) Combined form : The metals which are reactive occur in the combined state with other elements forming compounds like oxides, sulphides, sulphates, carbonates, silicates, etc.

Question 73.
What are minerals?
Answer:
Minerals : They are naturally occurring chemical substances in the earth’s crust containing metal in free state or in combined form and obtainable from mining are called minerals. For example, haematite Fe203, galena PbS, etc.

Question 74.
What are ores?
Answer:
Ores : The minerals containing a high percentage of metals from which metals can be profitably extracted are called ores.
[Note : Every ore is a mineral but every mineral is not an ore.]

Question 75.
Write names of minerals and ores of Iron, Copper and Zinc.
Answer:

Metals Mineral Ore
Iron Haematite Fe2O3
Magnetite Fe3O4
Limonite 2Fe2O3, 3H2O
Iron pyrites FeS2
Siderite FeCO3
Haematite
Copper Chalcopyrite CuFeS2 Chalcocite Cuprite Cu2O Chalcopyrite
Chalcocite
Zinc Zinc blende ZnS
Zincite ZnO
Calamine ZnCO3
Zinc blende

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 76.
What is metallurgy?
Answer:
Metallurgy : The process of extraction of metal in a pure state from its ore is called metallurgy.

Question 77.
Define the following:
(1) Pyrometallurgy
(2) Hydrometallurgy
(3) Electrometallurgy.
Answer:

  1. Pyrometallurgy : It is a process of extraction of metal from metal oxide from concentrated ore by reduction with a suitable reducing agent like carbon, hydrogen, aluminium, etc. at high temperature.
  2. Hydrometallurgy : It is a process of extraction of metals by converting their ores into aqueous solutions of metal compounds and reducing them by suitable reducing agents.
  3. Electrometallurgy : It is a process of extraction of highly electropositive metals like Na, K, Al, etc. by electrolysis of fused compounds of the metals where metal ions are reduced at cathode forming metals.

Question 78.
What is gangue?
Answer:
Gangue : The earthly and undesired impurities of various substances like sand (SiO2), metal oxides, etc. present in the ore are called gangue or matrix.

Question 79.
Define concentration of an ore.
Answer:
Concentration : A process of removal of gangue or unwanted impurities from the ore is called concentration of an ore. It is also called benefaction or dressing of an ore.

Question 80.
What are common methods of concentration of an ore?
Answer:
The concentration of an ore involves different methods depending upon the differences in physical properties of compounds or the metal present and the nature of the gangue.

The common methods of concentration of ore are as follows :

  1. Gravity separation or hydraulic washing :
    This can be carried out by two processes as follows :

    • Hydraulic washing by using Wilfley’s table method
    • Hydraulic classifier methods.
  2. Magnetic separation
  3. Froth floatation process.
  4. Leaching.

The method depends upon the nature of ore.

Question 81.
What is leaching?
Answer:
Leaching : ft is a (chemical) process used in the concentration of an ore by extracting soluble material from an insoluble solid by dissolving in a suitable solvent. This method is used in the concentration process of ores of Al, Ag, Au, etc.

Question 82.
What is roasting of an ore?
Answer:
Roasting : It is a process of strongly heating a concentrated ore in the excess of air below melting point of metal, to convert it into oxide form. It is used for a sulphide ore. For example, ZnS ore on roasting forms ZnO.

Question 83.
Write an equation to show how zinc blende (ZnS) is converted to ZnO.
Answer:
When zinc blende is roasted, it is converted to ZnO.
\(\mathrm{ZnS}+\mathrm{O}_{2} \stackrel{\Delta}{\longrightarrow} \mathrm{ZnO}+\mathrm{SO}_{2}\)

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 84.
Explain the term : Smelting
Answer:
Smelting : The process of extraction of a metal from its ore by heating and melting at high temperature is called smelting. Reduction of ore is carried out during smelting.

Question 85.
What is calcination?
Answer:
Calcination is a process in which the ore is heated to a high temperature below the melting point of the metal in the absence of air or limited supply of air in a reverberatory furnace.

It is generally used for carbonate and hydrated oxides to convert them into anhydrous oxides.

Question 86.
Define the terms :
(1) Flux
(2) Slag
Answer:
(1) Flux : A flux is a chemical substance which is added to the concentrated ore during smelting in order to remove the gangue or impurities by chemical reaction forming a fusible mass called slag.
(2) Slag : It is a waste product formed by combination of a flux and gangue (or impurities) during the extraction of metals by smelting process.

Iron is the fourth most abundant element in the earth’s crust.

Question 87.
What is the composition of haematite ore?
Answer:
Composition of Haematite ore is Fe2O3 + SiO2 + Al2O3 + phosphates

Question 88.
Which impurities (gangue) are present in haematite ore?
Answer:
SiO2 and Al2O3 are the impurities present in the haematite ore.

Question 89.
Which reducing agents are used to reduce haematite ore into metallic iron?
Answer:
Haematite ore is reduced using coke and CO. Carbon in the coke is converted to carbon monoxide. Carbon and carbon monoxide together reduce Fe203 to metallic iron.

Fe2O3 + 3C → 2Fe + 3CO.
Fe2O3 + 3CO → 2Fe + 3CO2.

Question 90.
Why is limestone used in the extraction of iron?
Answer:

  • The ore of iron contains acidic gangue or impurity of silica, SiO2.
  • To remove silica gangue, basic flux like calcium oxide CaO, is required, which is obtained from the decomposition of limestone, CaCO3. \(\mathrm{CaCO}_{3} \stackrel{\Delta}{\longrightarrow} \mathrm{CaO}+\mathrm{CO}_{2}\)
  • Silica reacts with CaO and forms a fusible slag of CaSiO3.
    \(\mathrm{SiO}_{2}+\mathrm{CaO} \stackrel{\Delta}{\longrightarrow} \mathrm{CaSiO}_{3}\)

Therefore in the extraction of iron, lime is used.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 91.
Name the furnace in which iron is extracted from Haematite ore.
Answer:
Extraction of iron is carried out in Blast furnace.

Question 92.
Explain the extraction of iron from haematite.
Answer:
Iron is mainly extracted from haematite, Fe2O3 by reduction process.
Haematite ore contains silica (SiO2), alumina (Al2O3) and phosphates as impurity or gangue.

Coke is used for the reduction of ore.

To remove acidic gangue SiO2, a basic flux CaO is used which is obtained from lime stone CaCO3.

The extraction process involves following steps :
(1) Concentration of an ore : The powdered ore is concentrated by gravity separation process by washing it in a current of water. The lighter impurities (gangue) are carried away leaving behind the ore.
(2) Roasting : The concentrated ore is heated strongly in a limited current of air. During this, moisture is removed and the impurities like S, As and phosphorus are oxidised to gaseous oxides which escape.
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 41
After roasting, the ore is sintered to form small lumps.
(3) Reduction (or smelting) : The roasted or calcined ore is then reduced by heating in a blast furnace.
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 42
The blast furnace is a tall cylindrical steel tower about 25 m in height and has a diameter about 5-10m lined with fire bricks inside.

Blast furnace has three parts :

  • the hearth,
  • the bosh and
  • the stack.

At the top, there is a cup and cone arrangement to introduce the ore and at the bottom, tapping hole for withdrawing molten iron and an outlet to remove a slag.

The roasted ore is mixed with coke and limestone in the approximate ratio of 12 : 5 : 3.

A blast of hot air at about 1000 K is blown from downwards to upwards by layers arrangement. The temperature range is from bottom 2000 K to 500 K at the top. The charge of ore from top and the air blast from bottom are sent simultaneously. There are three zones of temperature in which three main chemical reactions take place.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

(i) Zone of combustion : The hot air oxidises coke to CO which is an exothermic reaction, due to which the temperature of furnace rises.
C + 1/2 O2 → CO ΔH= – 220kJ
Some part of CO dissociates to give finely divided carbon and O2.
2CO → 2C + O2
The hot gases with CO rise up in the furnace and heats the charge coming down. CO acts as a fuel as well as a reducing agent.

(ii) Zone of reduction : At about 900 °C, CO reduces Fe2O3 to spongy (or porous) iron.
Fe2O3 + 3CO → 2Fe + 3CO2
Carbon also reduces partially Fe203 to Fe.
Fe2O3 + 3C → 2Fe + 3CO

(iii) Zone of slag formation : At 1200 K limestone, CaCO3 in the charge, decomposes and forms a basic flux CaO which further reacts at 1500 K with gangue (SiO2, Al2O3) and forms a slag of CaSiO3 and Ca3AlO3.
CaCO3 + CaO + CO2.
CaO + SiO2 → CaSiO3
12CaO + 2Al2O3 → 4Ca3AlO3 + 3O2

The slag is removed from the bottom of the furnace through an outlet.

(iv) Zone of fusion : The impurities in ore like MnO2 and Ca3(PO4)2 are reduced to Mn and P while SiO2 is reduced in Si. The spongy iron moving down in the furnace melts in the fusion zone and dissolves the impurities like C, Si, Mn, phosphorus and sulphure. The molten iron collects at the bottom of furnace. The lighter slag floats on the molten iron and prevents its oxidation.

The molten iron is removed and cooled in moulds. It is called pig iron or cast iron. It contains about 4% carbon.

Question 93.
Write the reaction involved in the zone of reduction in blast furnace during extraction of iron.
Answer:
Zone of reduction : At about 900 °C, CO reduces Fe2O3 to spongy (or porous) iron.
Fe2O3 + 3CO → 2Fe + 3CO2
Carbon also reduces Fe2O3 to Fe.
Fe2O3 + 3C → 2Fe + 3CO

Question 94
Write reactions involved at different temperatures in the blast furnace.
Answer:

Temperature K Change taking place in the blast furnace Reactions
1. 500 K Haematite ore loses moisture ore xH2O → ore
2. 900 K Reduction of ore by CO Fe2O3 + 3CO → 2Fe + 3CO
3. 1200K Limestone decomposes CaCO3 → CaO + CO2
4. 1500K Reduction of ore by C Fe2O3 + 3C → 2Fe + 3CO
5. 1600 K (i) Reduction of FeO by C
(ii) Fusion of iron and slag formation
FeO + C → Fe + CO
CaO + SiO2 → CaSiO3
6. 2000 K Combustion of coke 2C + O2 → CO

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 95.
What is the action of carbon on Fe203 in blast furnace?
Answer:
Fe2O3 + 3C → 2Fe + 3CO

Question 96.
What is refining of metals?
Answer:
Refining of metals : The purification of impure or crude metals by removing metallic and nonmetallic impurities is known as refining of metals. H

Question 97.
How is pure iron obtained from crude iron?
Answer:
Pure iron can be obtained by electrolytic refining.

Question 98.
Name the methods of refining of metals.
Answer:
Methods of refining of metals :

  • Electrorefining
  • Liquefaction
  • Distillation
  • Oxidation m

Question 99.
What are the factors that govern the choice of extraction technique of metals?
Answer:
The choice of extraction technique is governed by the following factors.

  • Nature of ore
  • Availability and cost of reducing agent. (Generally, cheap coke is used).
  • Availability of hydraulic power.
  • Purity of metal required.
  • Value of by-products. For example. SO2 obtained during the roasting of sulphide ores is important for the manufacture of H2SO4.

Question 100.
Which are the commercial forms of iron?
Answer:
Commercial forms of iron are :

  • Cast iron
  • wrought iron
  • steel. H

Question 101.
(A) What are f-block elements?
(B) What are inner transition elements?
Answer:
(A)

  • Elements in which differentiating electron enters into the pre-penultimate shell the (n – 2) f-orbital are known as f.block elements.
  • They include 28 elements with atomic numbers ranging from 58-71 and atomic numbers 90 to 103 collectively.
  • There are two f-series or two f-block elements, namely 4f and 5f series.
  • The f-block includes two inner transition series namely the lanthanoid series. Cerium (58) to LuteUum (71) or the 4 f-block elements and the actinoid series. Thorium (90) to I.awrencium (103) or the 5f block elements.

(B) f-block elements are called inner transition elements since f-orbital lies much inside the f-orbital in relation to the transition metals, These elements have 1 to 14 electrons in their f-orbital.

Question 102.
What are fIrst inner transition elements?
Answer:

  1. 4f-hlock elements are called (first) inner transition elements and have partly filled inner orbitaIs or (4f) orbitais.
  2. They have general outer electronic configuration \((n-2) f^{1-14},(n-1) d^{0-1}, n s^{2}\).
  3. There are two f-series, namely 4f and 5f series, called lanthanoids and acùnoids respectively.
  4. They shos intermediate properties as compared to electropositive s-block elements and electronegative p-block elements. Hence they are called (first) inner transition elements.

Question 103.
What are lanthanoids (or lanthanides)?
OR
What is the lanthanoid series?
Answer:

  • Lanthanoids or Lanthanoid series or Lanthanones : The series of fourteen elements from 58Ce to 71Lu in which a differentiating electron enters 4f sub-shell and follows lanthanum is called lanthanoid series and the elements are called lanthanoids.
  • They have general electronic configuration, [Xe] 4f1-14 ,5d0-1, 6s2.
  • They follow Lanthanum (Z = 57) in 3d-series.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 104.
What are rare earths?
Answer:

  • Lanthanoids or 4f-block elements are called rare earths.
  • Lanthanoids are never found in free state, and their minerals are not pure.
  • They exhibit similar chemical properties hence cannot be extracted and separated by normal metallurgical processes.
  • Lanthanoid metals are available on small scale. Therefore they are called rare earths.

Question 105.
Explain the position of lanthanoids in the periodic table.
OR
How is the position of lanthanoids justified?
Answer:

  1. Position of Lanthanoids in the periodic table : Group – 3; Period – 6.
  2. They interrupt the third transition series of t/-block elements (i.e. 5 d series) in the sixth period.
  3. They are 14 elements from 58Ce to 71Lu and their position is in between La and Hf. Since they follow lanthanum, they are called lanthanoids.
  4. They are called 4f-series elements and for the convenience, they are placed separately below the main periodic table.
  5. The actual position of lanthanoids is in between Lanthanum (Z = 57) and Hafnium (Z = 72).
  6. Their position is justified due to following reasons :
    • All these elements have the same electronic configuration in ultimate and penultimate shells, one electron in 5d-orbital and two electrons in 6s-orbital.
    • Group valence of all lanthanoids is 3.
    • All lanthanoids from 58Ce to 71Lu have similar physical and chemical properties.

Question 106.
Explain the meaning of inner-transition series.
Answer:
A series of f-block elements having electronic configuration (n – 2)f1-14 (n – I) d0-1 ns2 placed separately in the periodic table represents inner transition series. The f-orbitals lie much inside the e/ orbitals.

Since the last electron enters pre-penultimate shell, these elements are inner transition elements.

There are two inner transition series as follows :
4f-series 58Ce → 71Lu
5f-series 90Th → 103Lr

Question 107.
Draw a skeletal diagram of the periodic table to show the position of d and/- block elements.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 44

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 108.
What are the properties of lanthanoids?
Answer:

  • Lanthanoids are soft metak with silvery white colour, Colour and brightness reduces on exposure to air.
  • They are good conductors of heat and electricity.
  • Except promethium (Pm), all are non-radioactive in nature.
  • The atomic and ionic radii decrease from La to Lu. (Lanthanoid contraction).
  • Coordination numbers arc greater than 6.
  • They are paramagnetic.
  • They become ferromagnetic at lower temperature.
  • Their magnetic and optical properties are independent of environment.
  • They are called rare earths as their exiractioli was difficult.
  • They are abundant in earth’s crust
  • All lanthanoids fonn hydroxides which are ionic and basic. l3asicity decreases with atomic number,
  • They react with nitrogen to give nitrides and with halogen to give halides.
    Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 45
  • When heated with carbon at very high temperature give carbides
    Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 46

Question 109.
Explain the variations in ionisation enthalpy of lanthanoids.
Answer:

  • The first ionisation enthalpy of lanthanoids is nearly same. It is very high for Gd and Yb.
  • The ionisation enthalpy increases from first (IE1] to third (IE3).

First, second and third ionization enthalpies of lanthanoids in kj/mol

Lanthanoid IE1 IE2 IE3
La 538.1 1067 1850.3
Ce 528.0 1047 1949
Pr 523.0 1018 2086
Nd 530.0 1034 2130
Pm 536.0 1052 2150
Sm 543.0 1068 2260
Eu 547.0 1085 2400
Gd 592.0 1170 1990
Tb 564.0 1112 2110
Dy 572.0 1126 2200
Ho 581.0 1139 2200
Er 589.0 1151 2190
Tm 596.7 1163 2284
Yb 603.4 1175 2415
Lu 523.5 1340 2022

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 110.
Give the general electronic configuration of 4f-series elements (OR lanthanoids).
Answer:

  • The general electronic configuration of 4f-series elements is, Ln[Xe]54 4f1-14 5d0-1 6s2 where Ln is a lanthanoid.
  • Xenon has electronic configuration, [Xe] : Is2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6.
  • In lanthanoids, the differentiating electron enters prepenultimate shell, 4f m

Question 111.
What are the important features of the electronic configuration of lanthanoids?
Answer:

  1. Lanthanoids show two types of electronic configurations
    (a) an expected or idealized
    (b) an observed electronic configuration.
    In the idealized electronic configuration, the filling of the 4/-orbitals is regular but in the observed configuration, there is the shift of a single electron from 5d to 4/ sub-shell.
  2. Lanthanum (57) has an electronic configuration [Xe] 4f° 5d16s2. It does not have any f-electron.
  3. The next incoming electron does not enter the 5d sub-shell but goes to the 4f sub-shell.
  4. 14 electrons are progressively filled in the 4f sub-shell as the atomic number increases by one unit from La to Lu.
  5. La, Gd and Lu are the only elements which possess one electron in a 5d orbital, while in all other lanthanoids the 5d sub-shell is empty.
  6. La-(4f°), Gd-(4f7) and Lu-(4f14) posses extra stability due to their empty, half-filled and completely filled 4f-orbitals respectively.
  7. The 4f-electrons in the prepenultimate shell are shielded by the outermost higher orbitals, 5s2, 5p6, 5d1, 6s2, i.e. by eleven electrons, hence they are less effective in chemical bonding.

Electronic configuration (Idealised and observed)
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 48
[Xe]54 ls22s22p63s23p63d104s24p64d105s25p6

Question 112.
Write the expected electronic configuration of (a) Nd (Z = 60) (b) Tm (Z = 69).
Answer:
Expected electronic configuration :
(a) Nd = [Xe] 4f3 5d1 6s2
(b) Tm= [Xe] 4f145d16s2

Question 113.
Write electronic configurations of
(i) Gd
(ii) Yb.
Answer:
(i) 64Gd [Xe] 4f75d16s2 (Observed)
(ii) 70Yb [Xe] 4f145d°6s2 (Observed)

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 114.
Write expected and observed electronic configurations of
(i) Ce
(ii) Tb.
Answer:

Element Expected (Idealised) Observed
(i) 58Ce [Xe] 4f15d16s2 [Xe] 4f25d°6s2
(ii) 65Tb [Xe] 4f85d16s2 [Xe] 4f95d°6s2

Question 115.
Why are the expected and observed ground state electronic configurations of gadolinium and lawrencium same?
Answer:

  • The degenerate orbitals like 4f and 5f acquire extra stability when they are half filled (4f7) or completely filled (5f14).
  • The expected and observed electronic configuration of gadolinium is, 64Gd [Xe] 4f7 5d1 6s2.
  • The expected and observed electronic configuration of lawrencium is 103Lr [Rn] 5f14 6d1 7s2.

Question 116.
Explain oxidation states of lanthanoids.
Answer:

  • The common oxidation state of the Lanthanoids is 3 + due to the loss of 2 electrons from outermost 6s orbital and one electron from the penultimate 5d sub-shell.
  • Gd3+ and Lu3+ show extra stability due to their half-filled and completely filled f-orbitals, Gd3+ = [Xe]4f7, Lu3+ = [Xe]4f14
  • Ce and Tb attain the 4f° and 4f7configurations in the 4 + oxidation states. Eu and Yb attain the 4f7 and 4f14 configurations in the 2 + oxidation states. Sm and Tm also show the 2+ oxidation state although their stability can be explained based on thermodynamic factors.
  • Some lanthanoids show 2 + and 4 + oxidation states even though they do not have stable electronic configuration of 4f°, 4f7 or 4f14. E.g. Pr4+ (4f1), Nd2+ (4f4), Sm2+ (4f6), Dy4+ (4f8) etc

Question 117.
Write the. electronic configuration of the following ions :
(1) La3 + ;
(2) Gd3+;
(3) Eu3+;
(4) Ce3+.
Answer:
(1) La3 + = [Xe]
(2) Gd3+ = [Xe] 4f7
(3) Eu3+ = [Xe] 4f6
(4) Ce3+ = |Xe] 4f1

Question 118.
Write the electronic configuration of
(1) Nd2+
(2) Nd3+
(3) Nd4+.
Answer:
(1) Nd2+ [Xe] 4f4
(2) Nd3+ [Xe] 4f3
(3) Nd4+ [Xe] 4f2

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 119.
Among the following lathanoids, which elements show only one oxidation state 3 +? Why? Dy, Gd, Yb, Lu.
Answer:
Gd and Lu show only one oxidation state 3 +, since they acquire electronic configurations with extra stability namely 4f7 and 4f14 respectively.

Question 120.
Write the expected electronic configurations of :
(1) europium (Z = 63),
(2) erbium (Z = 68).
Answer:
(1) Europium (63Eu) [Xe]544f6 5d1 6s2
(2) Erbium (68Er) [Xe]544f11 5d1 6s2

Question 121.
Why does lanthanum form La3+ ion, while cerium forms Ce4+ ion? (Atomic number La = 57 and Ce = 58).
Answer:

  1. Electronic configuration Lanthanum is La [Xe] 4f° 5d1 6s2. By losing three electrons, La acquires stable electronic configuration of Xe and forms La3+.
  2. Electronic configuration of Cerium is Ce [Xe] 4f1 5d1 6s2. By losing four electrons, Ce acquires stable electronic configuration of Xe and forms Ce4+.

Question 122.
63EU and 70Yb show 2 + oxidation state. Explain.
Answer:
63EU has electronic configuration, [Xe] 4f7 5d°6s2. By losing 2 electrons from 6s orbital, it acquires stable configuration and 4f-orbital is half-filled.
70Yb has electronic configuration, [Xe] 4f14 5d° 6s2. By losing 2 electrons from 6 s orbital, it acquires stable configuration and 4/-orbital is completely filled.
Hence Eu and Yb show 2 + oxidation states.

Question 123.
Display electronic configuration, atomic and ionic radii of lanthanoids.
Answer:
Answers are given in bold.

Electronic configuration and atomic ionic radii of lanthanoids
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 49

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 124.
Explain the trend in atomic and ionic sizes of lanthanoids.
Answer:

  • From 57La (187 pm) to first element of 4f-series 58Ce (183 pm), the contraction in atomic radius is very large, 4 pm.
  • But from Ce onwards as atomic number increases atomic radius decreases very steadily so that total decrease in atomic radius from Ce to Lu is only 10 pm.
  • In case of tripositive ions due to large pull by nucleus, the decrease in ionic radii is slightly more, i.e. 18 pm. For example, Ce3+ (103 pm) to Lu3+ (85 pm ).
  • Hence all lanthanoids have similar properties. Therefore they cannot be separated from each other easily by normal metallurgical methods but require special methods.
    Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 50

Question 125.
What is meant by lanthanoid contraction?
Answer:
Lanthanoid contraction : The gradual decrease in atomic and ionic radii of lanthanoids with the increase in atomic number is called lanthanoid contraction.

Question 153.
Explain the causes of the lanthanoid contraction.
Answer:
The causes of the lanthanoid contraction are as follows :

  • As the atomic number of lanthanoids or 4f-block elements increases the positive nuclear charge increases and correspondingly electrons are added to the prepenultimate 4f sub-shell.
  • The attraction of nucleus on 4 f-electrons increases with the increase in atomic number.
  • The outer eleven electrons namely, 5s2, 5p6, 5d3 and 6s2 do not shield inner 4 f-electrons from the nucleus.
  • There is imperfect shielding of each 4f-electron from other 4 f-electrons.
  • As compared to d sub-shell, the extent of shielding for 4 f-electrons is less.
  • Due to these cumulative effects, 4 f-electrons experience greater nuclear attraction and hence valence shell is pulled towards the nucleus to the greater extent decreasing atomic and ionic radii appreciably.
  • From 57La to 58Ce, there is a sudden contraction in atomic radius from 187 pm to 183 pm but the further decrease up to the last 4f-element, 71Lu is comparatively low (about 10 pm).

Question 126.
Explain lanthanoid contraction effect with respect to (1) decrease in basicity, (2) ionic radii of post-lanthanoids.
Answer:
The lanthanoid contraction has a definite effect on the properties of lanthanoids as well as on the properties of post-lanthanoid elements.
(1) Decrease in basicity :

  • In lanthanoids due to lanthanoid contraction, as the atomic number increases, the size of the lanthanoid atoms and their try positive ions decreases, i.e. from La3+ to Lu3+.
  • As size of the cation decreases, according to Fajan’s rule, the polarizability increases and thus the covalent character of the M-OH bond increases, and ionic character decreases.
  • Therefore the basic nature of the hydroxides decreases.
  • Basicity and ionic character decrease in the order La(OH)3 > Ce(OH)3 > … Lu(OH)3.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

(2) Ionic radii of post-lanthanoids :

  • Elements following the lanthanoids in the 6th period (third transition series, i.e. 5d-series) are known as post-lanthanoids.
  • Due to lanthanoid contraction the atomic radii (size) of elements which follow lanthanum in the 6th period (3rd transition series – Hf, Ta, W, Re)-are similar to the elements of the 5th period (4d-series Zr, Nb Mo, Tc).
  • Due to similarity in their size, post-lanthanoid elements (5d-series) have closely similar properties to the elements of the 2nd transition series (4d-series) which lie immediately above them.
  • Pairs of elements namely Zr-Hf(Gr-4), Nb-Ta (Gr-5), Mo-W(Gr-6), Tc-Re (Gr-7) are called chemical twins since they possess almost identical sizes and similar properties.

Question 127.
Why do lanthanoids form coloured compounds?
Answer:

  • The colour in lanthanoid ions is due to the presence of unpaired electrons in partially filled 4f sub-shells.
  • Due to the absorption of radiations in the visible region there arises the excitations of the unpaired electrons from f-orbital of lower energy to the f-orbital of higher energy-giving f → f transitions.
  • The observed colour is complementary to the colour of the light absorbed.
  • The colour of try positive ions (M3+) depends upon the number of unpaired electrons in f-orbitals. Hence the lanthanoid ions having equal number of unpaired electrons have similar colour.
  • The colours of M3+ ions of the first seven lanthanoids, La3+ to Eu3+ are similar to those of seven elements Lu3+ to Tb3+ in the reverse order.

Question 128.
Explain, why Ce3+ ion is colourless.
Answer:

  • The electronic configuration of Ce3+ is, [Xe] 4f7
  • Even though there is one unpaired electron in 4f sub-shell, the f → f transition involves very low energy. Hence, Ce3+ ion does not absorb radiation in the visible region.

Therefore Ce3+ ion is colourless.

Question 129.
Explain why Gd3+ is colourless.
Answer:

  • Gd3+ has electronic configuration, [Xe] 4f7
  • Due to extra stability of half filled orbital, it does not allow f → f transition, and hence does not absorb radiations in the visible region.

Hence Gd3+ is colourless.

Question 130.
The salts of (1) La3+ and (2) Lu3+ are colourless. Explain.
Answer:
(1) (i) La3+ has electronic configuration, [Xe] 4f°
(ii) Since there are no unpaired electrons in 4 f-orbital, f → f transition is not possible. Hence La3+ ions do not absorb radiations in visible region, and they are colourless.

(2) (i) LU3+ has electronic configuration [Xe] 4 f14
(ii) Since there are no unpaired electrons in 4f-orbital, f → f transition is not possible. Hence Lu3+ ions do not absorb radiations in visible region and they are colourless.

Question 131.
Explain giving examples, the colour of nf electrons is about the same as those having (14-n) electrons.
Answer:
(1) Consider Pr3+ and Tm3+ ions.
Tm3+ (4f12) has nf electron 12 electrons.
Pr2+ (4f2) has (14 – n) = (14 – 2) = 12 electrons. Both, Tm3+ and Pr3+ are green.

(2) Consider Nd3+ and Er3+ ions. Er3+ (4f11) has nf electrons 11.
Nd3+ (4f3) has (14 – n) is (14 – 3) = 11 electrons. These both ions Er3+, Na3+ are pink in colour.

Question 132.
Lu3+ has observed magnetic moment zero. How many unpaired electrons are present?
Answer:
Since magnetic moment is zero, it has no unpaired electrons.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 133.
What are the application of lanthanoids?
Answer:

  1. Lanthanoid compounds are used inside the colour television tubes and computer monitor. For example mixed oxide (Eu, Y)2 O3 releases an intense red colour when bombarded with high energy electrons.
  2. Lanthanoid ions are used as active ions in luminescent materials. (Optoelectronic application)
  3. Nd : YAG laser is the most notable application. (Nd : YAG = neodymium doped ytterium aluminium garnet)
  4. Erbium doped fibre amplifiers are used in optical fibre communication systems.
  5. Lanthanoids are used in cars, superconductors and permanent magnets.

Question 134.
What are actinoids? Give their general electronic configuration.
Answer:

  • Actinoids : The series of fourteen elements from 90Th to 103Lr which follow actinium (89Ac) and in which differentiating electrons are progressively filled in 5f-orbitals in prepenultimate shell are called actinoids.
  • Their general electronic configuration is, [Rn]86 5f1-14 6d0-1 7s2.

Question 135.
Why are actinoids called inner transition elements?
Answer:

  • Actinoids are 5f-series elements in which electrons progressively enter into 5f-orbitals, which are inner orbitals.
  • They have electronic configuration [Rn]86 5f1-14 6d0-1 7s2.
  • They show intermediate properties as compared to electropositive 5-block elements and electronegative p-block elements. Hence they are called second inner transition elements.

Question 136.
Explain the position of actinoids in the periodic table.
OR
What is the position of actinoids in the periodic table?
Answer:

  • Position of actinoids in the periodic table : Group-3; Period-7.
  • They interrupt the fourth transition series (6d series) in the seventh period in the periodic table.
  • After Actinium, 89Ac which has electronic configuration [Rn] 6d17s2, the electrons enter progressively 5f orbital and they have general electronic configuration, [Rn] 5f1 – 14 6d0 – 1 7s2.
  • They are fourteen elements from 90Th to 103Lr and since they follow actinium, they are called actinoids.
  • They are called 5f series or second inner transition series elements and for the convenience they are placed separately below the periodic table.

Question 137.
Write idealised and observed electronic configuration of actinoids.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 52

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 138.
Explain the oxidation states of actinoids.
Answer:

  • Due to availability of electrons in 5f, 6d and 7s sublevels, lanthanoids show varied oxidation states.
  • The most common oxidation state is + 3 due to loss of one electron from 6d and two electrons from 6s-orbitals.
  • Ac, Th and Am show + 2 oxidation state.
  • Th, Pa, U, Np, Pu, Am and Cm show + 4 oxidation state.
  • Np and Pu show the highest oxidation state + 7.
  • U, Np, Bk, Cm and Am show stable oxidation state + 4.
  • In + 6 oxidation state, due to high charge density the actinoid ions form oxygenated ions, e.g. \(\mathrm{UO}_{2}^{+}, \mathrm{NpO}_{2}^{+},\) etc.

Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 53

Question 139.
Why do actinoids show variable oxidation states?
Answer:

  • The large number of variable oxidation states of actinoids is due to very small energy difference between 5f, 6d and 7s subshells.
  • The electronic configuration of actinoids is, [Rn] 5f1-14 6d0-1, 7s2
  • Due to the loss of three electrons from 6d1 and 7s2, the common oxidation state is + 3, but due to further loss of electrons from 5f subshell, actinoids show higher oxidation states.
  • The variable oxidation states are + 2 to + 7.

Electronic configuration of actinoids and their ionic radii in + 3 oxidation state
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 54

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 140.
What is meant by actinoid contraction?
Answer:
Actinoid contraction: The gradual decrease in atomic and ionic radii of actinoids with the increase in atomic number is called actinoid contraction.

Question 141.
The extent of actinoid contraction is greater than lanthanoid contraction. Explain Why?
Answer:

  • The electronic configurations of :
    Lanthanoids [Xe] 4f1 – 14 5d0 – 1 6s2
    Actinoids [Rn] 5f1 – 14, 6d0 – 1 7s2
  • The mutual screening offered in case of 5f-electrons is less than that in the 4f-electrons.
  • Hence, the outer orbitals are pulled to the greater extent by nuclei in actinoids (5f-series) than in lanthanoids (4f-series).
  • Therefore, actinoid contraction is greater than lanthanoid contraction.

Question 142.
Describe the important properties of actinoids.
Answer:
Properties of actinoids :

  • Actinoids are silvery white ( similar to lanthanoids).
  • They are highly reactive radioactive elements.
  • Most of these elements are not found in nature. They are radioactive and man made.
  • They experience decrease in the atomic and ionic radii from Ac to Lw, known as actinoid contraction.
  • The common oxidation state is +3. Elements of the first half of the series exhibit higher oxidation states.

Question 143.
What are the applications of actinoids?
Answer:

  • Thorium oxide (ThO2) with 1% CeO2 is used as a major source of indoor lighting, as well as for outdoor camping.
  • Uranium is used in the nuclear reactors.
  • The isotopes of Thorium and Uranium have very long half-life, so that we get very negligible radiation from them: Hence they can be used safely.

Question 144.
What are transuranic elements?
Answer:

  • The man-made elements heavier titan Uranium (Z = 92) in the Actinoid señes are called transuranic elements.
  • These are synthetically or artificially prepared (man-made) elements starting from Neptunium (Z= 93).
  • Transuranic elements arc generally considered to be from Neptunium (Z = 93) to Lawrencium (Z = 103).
  • Recently elements from atomic number 104 (Rf) to atomic number 118 (Og) or (Uuo) in 6 d series have also been identified as transuranic elements.
  • All transuranic elements are radioactive.

Question 145.
What are post actinoid elements?
Answer:

  • Elements from atomic number 104 to 118 are called postactinoid elements.
  • The post actinoid elements known so far are transition metals.
  • They can be synthesised in the nuclear reactions.
  • As they have very short half life period, it is difficult to study their chemistry.
  • Ruiherfordium forms a chloride (RfCl4) similar to zirconium and hafnium in + 4 oxidation state.
  • Dubniurn resembles niobium and protactinium.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 146.
Name the transuranic elements.
Answer:
Names of transuranic elements

Name Symbol Atomic number
Neptunium Np 93
Plutonium Pu 94
Americium Am 95
Curium Cm 96
Berkelium Bk 97
Californium Cf 98
Einsteinium Es 99
Ferminum Fm 100
Mendelevium Md 101
Nobelium No 102
Lawrencium Lr 103
Rutherfordium Rf 104
Dubnium Db 105
Seaborgium Sg 106
Bohrium Bh 107
Hassium Hs 108
Meitnerium Mt 109
Darmstadtium Uun/Ds 110
Roentgenium Uuu/Rg 111
Copernicium Uub/Cn 112
Ununtrium Uut 113
Ununquadium Uuq 114
Ununpentium Uup 115
Ununhexium Uuh 116
Ununseptium Uus 117
Ununoctium Uuo 118

In the transuranic elements, elements from atomic number 93 to 103 are actinoids and from atomic number 104 to 118 are called postactinoid elements.

Question 147.
What are the similarities between lanthanides and actinides.
Answer:
Lanthanides and actinides show similarities as follows :

  • Both, lanthanides and actinides show+ 3 oxidation state.
  • In both the series, the f-orbitals are filled gradually.
  • Ionic radius of the elements in both the series decreases with increase in atomic number.
  • Electronegativity in both the series is low for all the elements.
  • They all are highly reactive.
  • The nitrates, perchlorates and sulphates of all elements are soluble while their hydroxides, theorides and carbonates
    are insoluble.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Question 148.
Differentiate between lanthanoids and actinoids.
Answer:

Lanthanoids Actinoids
Electronic configuration [Xe] 4f1-14 5d0-1, 6s2 Electronic configuration [Rn] 5f1-14 6d0-1, 7s2
The differentiating electron enters the 4f subshell. The differentiating electron enters the 5f subshell.
Except for Promethium all other elements occur in nature. Except for Uranium and Thorium, all others are synthesized in the laboratory.
The binding energy of 4f electrons is higher. 5f-orbitals have lower binding energy.
Only Promethium is radioactive. All elements are radioactive.
Besides 3 + oxidation state they show 2 + and 4 + oxidation states. Besides 3 + oxidation state they show 2 + , 4 + , 5 + , 6 + , 7 + oxidation states.
They have a less tendency to form complexes. They have greater tendency to form complexes.
Many lanthanoid ions are colourless. Their colour is not as deep and sharp as actinoids. Actinoids are coloured ions. Their colour is deep, e.g. U3+ is red and U4+ is green.
Lanthanoids cannot form oxo-cations. Actinoids form oxo-cations such as – UO2+, PuO2+, UO22+, PuO22+.
Lanthanoid hydroxides are less basic. Actinoid hydroxides are more basic.
Lanthanoid contraction is relatively less. Actinoid contraction from element to element is comparatively more.
Mutual shielding of 4f electrons is more. Mutual shielding effect of 5f electrons is less.

Question 149.
Compare Pre-transition metals, Lanthanoid and transition metals.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 8 Transition and Inner Transition Elements 55

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

Multiple Choice Questions

Question 150.
Select and write the most appropriate answer from the given alternatives for each sub-question :

1. In transition elements, the different electron enters into
(a) ns subshell
(b) np subshell
(c) (n – 1) d subshell
(d) (n – 2)f subshell
Answer:
(c) (n – 1) d subshell

2. Chromium (Z = 24) has electronic configuration
(a) [Ar]4dA 4s2
(b) [Ar] 4d5 451
(c) [Ar] 3d5 3s1
(d) [Ar] 3d5 4s1
Answer:
(d) [Ar] 3d5 4s1

3. Manganese achieves the highest oxidation state in its compounds
(a) Mn3O4
(b) KMnO4
(c) K2MnO4
(d) MnO2
Answer:
(b) KMnO4

4. The group which belongs to transition series is
(a) 2
(b) 7
(c) 13
(d) 15
Answer:
(b) 7

5. The last electron of transition element is called
(a) s-electron
(b) p-electron
(c) d-electron
(d) f-electron
Answer:
(c) d-electron

6. Which one of the following elements does NOT belong to first transition series?
(a) Fe
(b) V
(c) Ag
(d) Cu
Answer:
(c) Ag

7. The incomplete d-series is
(a) 3d
(b) 4d
(c) 5d
(d) 6d
Answer:
(d) 6d

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

8. The electronic configuration of Sc is
(a) [Ar] 3d2 4s2
(b) [Ar] 3d1 4s2
(c) [Kr] 3d1 4s2
(d) [Kr] 3d2 4s1
Answer:
(b) [Ar] 3d1 4s2

9. The observed electronic configuration of copper is
(a) [Ar]18 3d9 4s2
(b) [Kr] 3d10 451
(c) [Kr] 3d9 4s2
(d) [Ar] 3d10 451
Answer:
(d) [Ar] 3d10 451

10. Fe belongs to the
(a) 3d-transition series elements
(b) 4d-transition series elements
(c) 5d-transition series elements
(d) 6d-transition series elements
Answer:
(a) 3d-transition series elements

11. Which one of the following elements does not exhibit variable oxidation states?
(a) Iron
(b) Copper
(c) Zinc
(d) Manganese
Answer:
(c) Zinc

12. In KMnO4, oxidation number of Mn is
(a) 2+
(b) 4 +
(c) 6 +
(d) 7+
Answer:
(d) 7+

13. Which one of the following transition elements shows the highest oxidation state?
(a) Sc
(b) Ti
(c) Mn
(d) Zn
Answer:
(c) Mn

14. The colour of transition metal ions is due to
(a) s → s transition
(b) d → d transition
(c) p → p transition
(d) f → f transition
Answer:
(b) d → d transition

15. Which one of the following compounds is expected to be coloured?
(a) AgNO3
(b) CuSO4
(c) ZnCl2
(d) CuCl
Answer:
(b) CuSO4

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

16. The metal ion which is NOT coloured, is
(a) Fe3+
(b) V2+
(c) Zn2+
(d) Ti3+
Answer:
(c) Zn2+

17. A pair of coloured ion is
(a)Cu2+, Zn2+
(b)Cr3+ , Cu+
(c) Cd2+, Mn5+
(d) Fe2+, Fe3+
Answer:
(d) Fe2+, Fe3+

18. The highest oxidation state is shown by
(a) Fe
(b) Mn
(c) Os
(d) Cr
Answer:
(c) Os

19. Transition elements are good catalysts since
(a) they show variable oxidation states
(b) they have partially filled d-orbitals
(c) they have low I.P
(d) they have small atomic radii
Answer:
(a) they show variable oxidation states

20. Highest magnetic moment is shown by the ion
(a) V3+
(b) Co3+
(c) Fe3+
(d) Cr3+
Answer:
(c) Fe3+

21. The most common oxidation state of lanthanoids is
(a) +4
(b) +3
(c) +6
(d) +2
Answer:
(b) +3

22. Which one of the following elements belong to the actinoid series?
(a) Cerium
(b) Lutetium
(c) Thorium
(d) Lanthanum
Answer:
(c) Thorium

23. The total number of elements in each of f-series is
(a) 10
(b) 12
(c) 14
(d) 15
Answer:
(c) 14

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

24. The general electronic configuration of Lanthanoids is
(a) [Xe] 4f1 – 14 5d0 – 1 6s2
(b) [Xe] 4f2 – 14 5d0 – 1 6s2
(c) [Xe] 4f1 – 13 5d0 – 1 6s2
(d) [Xe] 4f0 – 14 5d0 – 1 6s1
Answer:
(a) [Xe] 4f1 – 14 5d0 – 1 6s2

25. f-block elements are called ………………….
(a) transition elements
(b) representative elements
(c) inner transition elements
(d) alkalin earth metals
Answer:
(c) inner transition elements

26. Actinoids form coloured salts due to the transition of electrons in
(a) d – d
(b) f – f
(c) f – d
(d) s – f
Answer:
(b) f – f

27. In the periodic table, Gadolinium belongs to
(a) 4th Group 6th period
(b) 4th group 4th period
(c) 3rd group 5th period
(d) 3rd group 7th period.
Answer:
(d) 3rd group 7th period.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 8 Transition and Inner Transition Elements

28. The transuranic elements are prepared by
(a) addition reaction
(b) substitution reactions
(c) decomposition reaction
(d) nuclear reactions
Answer:
(d) nuclear reactions

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

Balbharti Maharashtra State Board 12th Chemistry Important Questions Chapter 14 Biomolecules Important Questions and Answers.

Maharashtra State Board 12th Chemistry Important Questions Chapter 14 Biomolecules

Question 1.
What are biomolecules? Give examples of biomolecules.
Answer:
Biomolecules: The lifeless, complex organic molecules which combine in a specific manner to produce life or control biological reactions are called biomolecules.

Examples: Carbohydrates, lipids (fats and oils), nucleic acids, enzymes.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

Question 2.
What is the importance of biomolecules?
Answer:
Biomolecules are organic molecules which combine in a particular fashion to give complex substances which help to sustain life and produce identical daughter cells and play an important role in the actions of an organism.

  • Carbohydrates are the major constituents of food and source of energy.
  • Proteins help in proper functioning of living beings. They are important constituents of skin, hair, muscles. Enzymes which catalyse chemical reactions that take place in cells are proteins.
  • Lipids (fats and oils) function as the storehouses of energy.
  • Nucleic acids, the ribonucleic acid (RNA), and deoxyribonucleic acid (DNA) are responsible for genetic characteristics and synthesis of proteins.

Question 3.
What are carbohydrates?
OR
Define the term : Carbohydrates.
Answer:
Carbohydrates : Carbohydrates are optically active polyhydroxy aldehydes or polyhydroxy ketones, or the compounds which on hydrolysis produce polyhydroxy aldehydes or polyhydroxy ketones.

Examples : Glucose, sucrose, fructose.

Question 4.
What is monosaccharide?
Answer:
The basic unit of all carbohydrates which is a simple carbohydrate and cannot be hydrolysed further is known as monosaccharide. The monosaccharide is crystalline and soluble in water. E.g. Glucose, fructose, ribose.

Question 5.
Mention the names of monosaccharides or simple carbohydrates.
Answer:
Monosaccharides are (1) glucose (2) fructose (3) ribose.

Question 6.
State the basic unit of all carbohydrates.
Answer:
The basic unit of all carbohydrates which is a simple carbohydrate and cannot be hydrolysed further is known as monosaccharide.

Question 7.
How are carbohydrates classified?
OR
Classification of carbohydrates with examples.
Answer:
Carbohydrates are classified as monosaccharides oligosaccharides and polysaccharides.
(1) Monosaccharides : These carbohydrates cannot be further hydrolysed into smaller units. They are basic units of all carbohydrates, and are called monosaccharides.

Examples : Glucose, fructose, ribose

(2) Oligosaccharides : An oligosaccharide is a carbohydrate (sugar) which on hydrolysis gives two to ten monosaccharide units.
Depending on the number of monosaccharides produced on hydrolysis, oligosaccharides are further classified as :
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 1

Oligosaccharide is homogeneous. In this, each molecule of oligosaccharide contains the same number of monosaccharide units joined together in the same order as every other molecule of the same oligosaccharide.

(3) Polysaccharides : These are carbohydrates which on hydrolysis give a large number of monosaccharides.

Polysaccharides are tasteless, amorphous, insoluble in water. They are long chain, naturally αcurring polymers of carbohydrates.

Example : Cellulose, starch, glycogen.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

Question 8.
Classify the following carbohydrates into Monosaccharide, Disaccharide, Oligosaccharide, Polysaccharide.
(1) Glucose
(2) Starch
(3) Sucrose
(4) Maltose
(5) Galactose
(6) Lactose
(7) Ribose.
Answer:

Carbohydrates Class
(1) Glucose Monosaccharide
(2) Starch Polysaccharide
(3) Sucrose Disaccharide
(4) Maltose Disaccharide
(5) Galactose Monosaccharide
(6) Lactose Disaccharide
(7) Ribose Monosaccharide

Question 9.
Classify the following carbohydrates.
(1) Cellulose,
(2) Maltose,
(3) Raffinose,
(4) Fructose.
Answer:

Carbohydrates Class
(1)     Cellulose

(2)     Maltose

(3)     Raffinose

(4)     Fructose

Polysaccharide

Disaccharide

Trisaccharide

Monosaccharide

Question 10.
Classify the following into monosaccharides, oligosaccharides and polysaccharides.
(1) Starch
(2) Glucose
(3) Stachyose
(4) Maltose
(5) Raffinose
(6) Cellulose
(7) Sucrose
(8) Lactose.
Answer:

Monosaccharides Glucose
Oligosaccharides Stachyose, maltose, raffinose, sucrose, lactose
Polysaccharides Starch, cellulose

Question 11.
Classify the following into monosaccharides and disaccharides.
Ribose, maltose, galactose, fructose and lactose (~2 mark each)
Answer:

Monosaccharides Ribose, galactose, fructose
Disaccharides Maltose, lactose

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

Question 12.
Give the preparation of glucose from sucrose or cane sugar.
OR
Describe the laboratory method of preparation of glucose.
Answer:
Preparation of glucose from sucrose (cane sugar) : Laboratory method.

Glucose is prepared in the laboratory by hydrolysis of sucrose by boiling it with dilute hydrαhloric acid or dilute sulphuric acid for about two hours. On hydrolysis, sucrose gives one molecule of glucose and one molecule of fructose.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 5
Alcohol is added during cooling to separate glucose and fructose since, glucose is almost insoluble in alcohol, hence it crystallizes out first. Fructose remains in the solution as it is more soluble than glucose.

Crystals of glucose are separated out by filtration and purified by recrystallization.

Question 13.
Give the preparation of glucose from starch.
OR
How is glucose prepared on commercial scale?
Answer:
Commercially, on a large scale, glucose is prepared by hydrolysis of starch with dilute sulphuric acid. Starchy material is mixed with water and dilute sulphuric acid and heated at 393 K under 2 to 3-atm pressure. Starch is hydrolysed to give glucose.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 6

Question 14.
Explain the structure of glucose.
Answer:
Molecular formula of glucose is C6H12O6.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 7
Glucose has an aldohexose structure. In other words, glucose molecule contains one aldehydic, that is, formyl group and the remaining five carbons carry one hydroxyl group (-OH) each. The six carbons in glucose form one straight chain.

Question 15.
Describe the action of following reagents on glucose :
(1) HI
(2) Hydroxyl amine (NH2OH)
(3) Hydrogen cyanide
(4) Bromine water
(5) dil. Nitric acid
(6) Acetic anhydride.
Answer:
(1) Action of HI : Glucose on prolonged heating with HI gives n-hexane, indicates that all the six carbon atoms are linked in straight chain.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 8

(2) Action of hydroxyl amine : Glucose reacts with hydroxyl amine in an aqueous solution to form glucose oxime. This indicates the presence of CHO group in glucose.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 9

(3) Action of hydrogen cyanide : Glucose reacts with hydrogen cyanide to form glucose cyanohydrin.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 10

(4) Action of bromine water : Glucose on oxidation with mild oxidising agent like bromine water gives gluconic acid, which shows that the carbonyl group in glucose is aldehyde group.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 11

(5) Action of dll. nitric acid : Glucose on oxidation with dilute nitric acid forms dicarboxylic acid, saccharic acid. This indicates the presence of a primary alcoholic group (-CH2OH) in glucose.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 12

(6) Action of acetic anhydride : When glucose is heated with acetic anhydride in the presence of catalyst pyridine, glucose penta acetate is formed. It indicates that glucose is a stable compound and contains five hydroxyl groups.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 13

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

Question 16.
Write Fischer projection formulae for
(1) Glucose
(2) Gluconic acid
(3) Saccharic acid.
Answer:
Fischer projection formulae of glucose, gluconic acid and saccharic acid :
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 17

Question 17.
Explain D and L configuration in sugars.
Answer:
The simplest carbohydrates glyceraldehyde is chosen as the standard, to assign D and L configuration to monosaccharides. Glyceraldehyde contains one asymmetric carbon atom and exist in two enantiomeric forms
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 18

The dextro entantiomer is represented as (+) glyceraldehyde and it is referred as D-configuration i.e., D-glyceraldehyde. The laevo enantiomer of glyceraldehyde is represented as ( -) glyceraldehyde and it corelated as L-configuration i.e., L-glyceraldehyde.

In Fischer projection formula, a monosaccharide is assigned D-configuration if the (- OH) hydroxyl group at the last chiral carbon and lies towards right hand side. On the other hand it is assigned L-configuration if the – OH group on the last chiral carbon atom and lies on the left hand side. In monosaccharides, the most oxidised carbon (i.e., -CHO) is at the top.

Examples :
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 19

Question 18.
Write Fischer projection formulae for (a) L-( + )-erythrose (b) L-( +) ribulose.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 23

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

Question 19.
Is the following sugar, D-sugar or L-sugar?
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 24
Answer:
The compound is L-sugar.
The compound is L-sugar.

Question 20.
Assign D/L configuration to the following monosaccharides.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 25
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 26
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 27

Question 21.
Explain ring structure of glucose.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 28
Glucose has two cyclic structures (II and III) which are in equilibrium with each other through the open chain structure (I) in aqueous solution.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

The ring structure of glucose is formed by reaction between the formyl ( – CHO) group and the alcoholic (- OH) group at C – 5. Thus, the ring structure is called a hemiacetal. The two hemiacetal structures (II and III) differ only in the configuration of C – I (Fig.), the additional chiral centre resulting from ring closure. The two ring structures are called α- and β- anomers of glucose and C-l is called the anomeric carbon. The ring of the cyclic structure of glucose contains five carbons and one oxygen. Thus, it is a six membered ring. It is called pyranose structure, in analogy with the six membered heterαyclic compound pyran (IV). Hence glucose is also called glucopyranose.

Question 22.
Write the structures of α-D-( + )-glucopyranose and β-D-( +) glucopyranose.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 29

Question 23.
Explain Haworth formula of glycopyranose.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 30
In the Haworth formula the pyranose ring is considered to be in a perpendicular plane with respect to the plane of paper. The carbons and oxygen in the ring are in the places as they appear in figure. The lower side of the ring is called α-side and the upper side is the β-side. The α-anomer has its anomeric hydroxyl (- OH) group (at C-l) on the α-side, whereas the β-anomer has its anomeric hydroxyl (- OH) group (at C-l) on the β-side. The groups which appear on right side in the Fischer projection formula appear on α-side in the Haworth formula, and the groups which appear on left side in the fischer projection formula appear on a β-side in the Haworth formula.

Question 24.
Explain the structure of fructose.
Answer:
Fructose has molecular formula C6H12O6. It contains ketonic functional group at carbon number 2 and six carbon atoms in straight chain. It belongs to D-series and is a laevo rotatory compound. It is written as D-( – )-fructose. Being an α-hydroxy keto compound fructose is a reducing sugar.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 31

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

Question 25.
Draw mirror images of glucose and fructose.
Answer:
(1) Glucose
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 32
(2) Fructose
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 33

Question 26.
Write the two cyclic structures of α-D-( – )-fructofuranose and β-D-( – )-fructofuranose exist in equilibrium with open chain structure.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 34

Question 27.
Write the Haworth projection formulae for α -D-( -) – Fructofuranose and β – D – ( -) – Fructo- furanose.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 35

Question 28.
Explain the structure of sucrose.
Answer:
Sucrose is a hexasaccharide and has molecular formula C12H22O11. The structure of shcrose contains glycosidic linkage between C – 1 of α-glucose and C – 2 of β-fructose. Since aldehyde and ketone groups of both monosaccharide units are involved in the formation of glycosidic bond, sucrose is a nonreducing sugar.

Sucrose is dextrorotatory, on hydrolysis with dilute acid or an enzyme invertase gives equimolar mixture of dextrorotatory glucose and laevorotatory fructose.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 36
The solution is laevorotatory because laevo rotation of fructose (- 92.4°) is more than dextrorotation of glucose ( + 52.50), hence the sign of rotation is changed from (+) to (-) after hydrolysis, the product is called invert sugar.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 37

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

Question 29.
Explain the structure of maltose.
Answer:
Maltose is another disaccharide obtained by partial hydrolysis of starch or made of two units of D-glucose. In maltose, C-l of one α-D-glucose is linked to C-4 of another α-D-glucose molecule by glycosidic linkage. The glucose ring which uses its hydroxyl group at C-1 is α – 1 → 4 glycosidic linkage. It is a reducing sugar because a free aldehyde group can be produced at C1 of second glucose molecule. Maltose on hydrolysis with dilute acids gives glucose.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 38

Question 30.
Draw a neat diagram for Haworth formula of maltose.

Question 31.
Explain the structure of lactose.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 39
Lactose (C12H22O11) is a disaccharide. It is found in milk, therefore, it is also known as milk sugar. It is formed from two monosaccharide units, namely D – galactose and D – glucose. The glycosidic linkage is formed between C-l of β-D-galactose and C -4 of glucose. Therefore the linkage in lactose is called β – 1,4 – glycosidic linkage. The hemiacetal group at C-l of the glucose unit is not involved in glycosidic linkage but is free. Hence lactose is a reducing sugar. The above figure shows Haworth formula of lactose.

Question 32.
What are the hydrolysis products of (1) lactose (2) sucrose?
Answer:
(1) Lactose on hydrolysis in presence of an acid or enzyme lactase gives one molecule each of glucose and galactose
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 40
(2) Sucrose on hydrolysis in the presence of dii. acid or the enzyme invertase gives one molecule each of glucose and fructose.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 41

Question 33.
Explain the structure of starch.
Answer:
Starch is found in cereal grains, roots, tubers, potatoes, etc. It is a polymer of α-D-glucose and consists of two components, amylose and amylopectin.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

Amylose is water soluble component forms blue coloured complex with iodine. It constitutes about 20 % of starch. Amylose contains 200 to 1000 α-D-glucose units linked together by glycosidic linkage between C-l of one unit and C-4 of another unit. i.e. α-1, 4 glycosidic linkages.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 43
Amylopectin is insoluble in water and constitutes about 80 % starch which forms blue-violet coloured complex with iodine. It is a branched chain polymer. In amylopectin, α-D-glucose molecules are linked together by glycosidic linkage between C1 – of one unit and C-4 of another unit to form long chain and branching αcurs by glycosidic linkage between C-l and C6 glycosidic linkage.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 44

Question 34.
What are polysaccharides?
Answer:
A large number of same or different monosaccharides are joined together by glycosidic linkages are called polysaccharides. They have general formula (C6H10O5)n.

Question 35.
Explain the structure of cellulose.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 45
Cellulose mainly αcurs in plants. Cell wall of plant cells is made up of cellulose. It is a long chain polymer. In cellulose, β-D-glucose units are linked by glycosidic linkage between C1-of one unit of glucose and C4 of another glucose unit. Thus cellulose contains 1 → 4β glycosidic linkages like those in cellobiose.

Question 36.
Explain the structure of glycogen.
Answer:
The glucose is stored in animal body in the form of glycogen. It is also known as animal starch because its structure is similar to amylopectin. Glycogen is highly branched. Whenever the body is required glucose, enzymes breaks the glycogen to glucose.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

Question 37.
How is glycogen different from starch?
Answer:
Starch is the main storage molecules of plants whereas glycogen is the main storage molecule of animals. Starch is found in cereals, roots, tubers, etc. Glycogen is present in liver, muscles and brain.

Question 38.
What do you understand by the term glycosidic linkage?
Answer:
The linkage between two monosaccharide units through oxygen atom is called glycosidic linkage.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 46

Question 39.
What is the basic structural difference between starch and cellulose?
Answer:
Starch is a polymer of a-glucose and consists of two components-amylose and amylopectin. In amylose α-D-D-( + )-glucose units held by C,-C4 glycosidic linkage and in amylopectin, α-D-glucose units held by C1-C4 glycosidic linkage whereas branching αcurs by C1-C6 glycosidic linkage. [Refer Question 35 (i) (ii) Fig.] Cellulose is a straight chain polysaccharide composed only of β-D-glucose units held by C1-C4 glycosidic linkage. (Refer Question 37 Fig.)

Question 40.
Define the term : Protein OR What are proteins?
Answer:
Chemically proteins are polyamides which are high molecular weight polymers of the monomer units i.e. α-amino acids. OR It can also be defined as Proteins are the biopolymers of a large number of a-amino acids and they are naturally occurring polymeric nitrogenous organic compounds containing 16% nitrogen and peptide linkages (-CO-NH-).

Question 41.
Write the common sources of protein.
Answer:
Common sources of proteins are milk, pulses, peanuts, eggs, fishes, cheese, cereals, etc. They are also the principal materials of muscle, nerves, tendons, skin, blood, enzymes, many hormones and antibiotics.

Question 42.
What are the products of hydrolysis of proteins?
Answer:
On hydrolysis, proteins give a mixture of α-anlino acids.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 47
The α-carbon in α-amino acids ohtained by hydrolysis of proteins has ‘L’ configuration.

Question 43.
What are the a-amino acids?
Answer:
α-Amino acids are carboxylic acids having an amino (- NH2) group bonded to the α-carbon, i.e. the carbon next to the carboxyl (- COOH) group.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 48
α-amino acids are derivatives of carboxylic acids, obtained by replacing – H atom by amino group. They are bifunctional compounds containing acidic Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 49 and basic – NH2 groups.
Example : Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 50 (where R is an alkyl group or aryl group).

The amino acids are colourless, crystalline, water soluble, high melting solids. These acids in their aqueous solutions behave like salts due to presence of both acidic, Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 51 and basic. (- NH2) groups in the same molecule.

Such a doubly charged ion is known as zwitter ion. Example : Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 52
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 53

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

Question 44.
What are the final products of hydrolysis of proteins?
Answer:
Proteins on hydrolysis with dilute solution of acids, alkalies or enzymes give a mixture of large number of a-amino acids as final products.

For example :
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 54

Question 45.
Write the classification of amino acids, giving examples.
Answer:
The amino acids are of three types : acidic, basic and neutral. The symbol ‘R’ in the structure of a-amino acids represents side chain and may contain additional functional groups.

(1) Acidic amino acids : If ‘R’ contains a carboxyl (- COOH) group the amino acid is acidic amino acid, i.e. If carboxyl groups are more in number than amino groups, then amino acids are acidic in nature.

Examples : Glutamic acid HOOC-CH2-CH2-; Aspartic acid HOO-CH2

(2) Basic amino acids : If ‘R’ contains an amino (1°, 2°, or 3°) group, it is called basic amino acid i.e. If amino groups are more in number than carboxyl groups then amino acids are basic in nature.

Examples : Arginine Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 55

(3) Neutral amino acids : The other amino acids having neutral or no functional group in ‘R’ are called neutral amino acids, i.e. The amino acids having equal number of amino and carboxyl groups are neutral amino acids.

Examples : Alanine CH3-; Valine (CH3)2-CH

Question 46.
What are essential and non-essential amino acids? Give two examples of each.
Answer:
The amino acids, which cannot be synthesised in the body and are supplied through diet are called essential amino acids. Examples : Lysine H2N-(CH2)4-; Valine (CH3)2CH- The amino acids which are synthesized in the body are called non-essential amino acids.

Examples : Glutamic acid HOO-CH2-CH2-; Serine HO-CH2

Question 47.
What is meant by Zwitter ion?
Answer:
An a-amino acid molecule contains both acidic carboxyl ( – COOH) group as well as basic amino (- NH2) group. Proton transfer from acidic group to basic group of amino acid forms a salt, which is a dipolar ion called a zwitterion.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 61

Question 48.
Draw zwitter ion of alanine and other two forms.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 62

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

Question 49.
What is a peptide bond (peptide linkage)?
OR
Define peptide bond.
Answer:
Proteins are the polymers of a-amino acids and they are connected to each other. The bond that connects a-amino acids to each other is called peptide bond (peptide linkage, – CONH -).

Question 50.
How is peptide linkage (dipeptide linkage) formed in proteins? How is tripeptide formed?
Answer:
Peptide linkage is formed by condensation of acidic Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 63 group of one molecule of a-amino acid and basic -NH2 group of other molecule of α-amino acid with elimination of water.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 64

When one more molecule of amino acid combines with dipeptide, it forms tripeptide.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 65
Thus, it forms tetra, penta and finally a polypeptide chain i.e. proteins. Hence, proteins are basically polypeptides.

Question 51.
Write the structures of all possible dipeptides which can be obtained from glycine and alanine.
Answer:
(1) Dipeptide from glycine :
Carboxylic group of glycine reacting with amino group another molecule of glycine to form dipeptide
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 73
(2) Dipeptide from alanine :
Carboxylic goup of alanine reaction with amino goup of another molecule of alamine to form dipeptide
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 74
(3) Dipeptide from glycine and alanine :
Carboxylic group of glycine reacting with amino group another molecule of alanine to form dipeptide
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 75

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

Question 52.
How are proteins classified on the basis of molecular shapes?
Answer:
On the basis of their molecular shapes proteins are classified as :
(1) Fibrous proteins : The proteins in which the polypeptide chains lie parallel (side by side) to form fibre-like structure, are called fibrous proteins. The polypeptide chains held together by hydrogen bonds. These proteins are insoluble in water.

The fibrous proteins are tough and insoluble in water, and dilute acids or bases.

Example : myαin (in muscles), keratin (in hair, nails, skin), fibroin (in silk), collagen (in tendons), etc.

(2) Globular proteins : The proteins have spherical shape. This shape results from coiling around of the polypeptide chain of protein, and have intramolecular hydrogen bonding are called globular proteins.

They are soluble in water and dilute acids or bases.

Example : Haemoglobin (in blood), albumin (in eggs), insulin (in pancreas), etc.

Question 53.
Distinguish between globular and fibrous proteins.
Answer:

Globular proteins Fibrous proteins
(1) The chains of polypeptides of protein coil around to give a spherical shape.
(2) Globular proteins are soluble in water.
(3) They are sensitive to small changes of temperature and pH.
(4) They possess biological activity.
(1) The proteins in which the polypeptide chains lie parallel to form fibre like structure.
(2) Fibrous proteins are insoluble in water.
(3) They are stable to moderate changes of temperature and pH.
(4) They do not possess biological activity.

Question 54.
Draw a neat labelled diagram for the secondary structure of protein.
Answer:
Secondary structure of proteins : The three-dimensional arrangement of lαalized regions of a long polypeptide chain is called the secondary structure of protein. Hydrogen bonding between N-H proton of one amide linkage and C = O oxygen of another gives rise to the secondary structure. There are two different types of secondary structures i.e. α-helix and β-pleated sheet.

α-Helix : In a-helix structure, a polypeptide chain gets coiled by twisting into a right handed or clαkwise spiral known as a-helixn. The characteristic features of α-helical structure of protein are :
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 78
(1) Each turn of the helix has 3.6 amino acids.
(2) A C = O group of one amino acid is hydrogen bonded to N – H group of the fourth amino acid along the chain.
(3) Hydrogen bonds are parallel to the axis of helix while R groups extend outward from the helix core.
Myosin in muscle and a-keratin in hair are proteins with almost entire a-helical secondary structure.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

β-Pleated sheet : In secondary structure, when two or more polypeptide chains (strands) line up side-by-side is called β-pleated sheets. The β-picate sheet structure of protein consists of extended strands of polypeptide chains held together by intermolecular hydrogen bonding. The characteristics of β-pleated sheet structure are :
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 79

  • The C = O and N – H bonds lie in the planes of the sheet.
  • Hydrogen bonding occurs between the N – H and C = O groups of nearby amino acid residues in the neighbouring chains.
  • The R groups are oriented above and below the plane of the sheet.

The β-pleated sheet arrangement is favoured by amino acids with small R groups.

Question 55.
What is denaturation of proteins? How is denaturation brought about?
OR
What is the effect of denaturation on the structure of proteins?
Answer:
The prαess by which the molecular shape of protein changes without breaking the amide / peptide bonds that form the primary structure is called denaturation. OR Proteins gets easily precipitated. It is an irreversible change and the prαess is called denaturation of proteins.

Denaturation uncoils the protein and destroys the shape and thus loses their characteristic biological activity. Denaturation is brought about by heating the protein with alcohol, concentrated inorganic acids or by salts of heavy metals. During denaturation secondary and tertiary and quternary structures are destroyed but primary structure remains intact.

Example : Boiling of egg to coagulate egg white, conversion of milk to curd.

Question 56.
Define : Enzymes
Answer:
All biological reactions are catalysed by bio-catalyst in living organisms called enzymes.

Question 57.
What are enzymes? Explain with suitable example.
Answer:
All biological or bio-catalysts which catalyse the reactions in living organisms are called enzymes. Chemically all enzymes are proteins. They are required in very small quantities as they are catalyst also they reduce the activation energy for a particular reaction.

Example : Enzyme maltase converts maltose to glucose.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 84

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

Question 58.
Explain the catalytic action of enzymes.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 85
Answer:
Mechanism of enzyme catalysis : Action of an enzyme on a substrate is known as lock-and-key mechanism.

Accordingly, the enzyme has active site on its surface. A substrate molecule can attach to this active site only if it has the right size and shape. Once in the active site, the substrate is held in the correct orientation, enzymes provide functional group which will attack the substrate and forms the products of reaction. The products leave the active site and the enzyme is ready to act as catalyst again.

Question 59.
Give examples of industrial application of enzyme catalysis.
Answer:

  • Glucose Isomerase (enzyme) is used in conversion of glucose to sweet-tasting fructose.
  • New antibiotics are manufactured using penicillin acylase (enzyme).
  • Laundry detergentts are manufactured using proteases (enzyme).
  • Esters used in cosmetics are manufactured using genetically engineered enzyme.

Question 60.
Draw a neat diagram for enzyme catalysis.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 85

Question 61.
State the main functions of enzymes.
Answer:
Enzymes are biological catalyst and they are highly specific in nature. The two main functions are as follows :
(1) They lower the requirement of activation energy.
(2) They speed up the rate of reaction.
E.g. Enzyme maltase catalyses maltose to glucose.
\(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \stackrel{\text { Maltase }}{\longrightarrow} 2 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\)

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

Question 62.
What are nucleic acids?
Answer:
Nucleic acids are unbranched polymers of repeating monomers i.e. nucleotides. In other words, nucleic acids have a polynucleotide structure which in turn consists of a base, a pentose sugar and phosphate moiety.

Nucleic acids are biomolecules which are found in the nuclei of all living cells in the form of nucleoproteins or chromosomes.

(Nucleoproteins = Proteins + Nucleic acid)
(prosthetic group)

Question 63.
State the types of nucleic acids.
Answer:
The types of nucleic acids are : Ribonucleic acid (RNA) and deoxy ribonucleic acid (DNA). DNA molecules contain several million nucleotides while RNA molecules contain a few thousand nucleotides.

Question 64.
Explain chemical composition of nucleic acids.
Answer:
Nucleic acids have a polynucleotide structure. Nucleic acids (RNA and DNA) consists of three components :
(1) monosaccharide (sugar)
(2) nitrogen containing base and
(3) phosphate group.

(1) Monosaccharides : Nucleotides of both RNA consist of five membered monosaccharide ring (furanose), called as simply sugar component.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 86
In RNA, the sugar component of nucleotide units is D-ribose and in DNA 2-deoxy-D-ribose.
2 – deoxy means no – OH group at C2 position.

(2) Nitrogen containing base : Total five nitrogen – containing bases are present in nucleic acids. Three bases with one ring (cytosine, uracil and thymine) are derived from the parent compound pyrimidine. Two bases with two rings (adenine and guanine) are derived from the parent compound purine. Each base in designated by a one-letter symbol. Uracil (U) αcurs only in RNA while thymine (T) ocurs only in DNA.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 87

(3) Phosphate group : The sugar units are joined to phosphate through C3 and C5 hydroxyl groups.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

Question 65.
What is meant by nucleosides?
OR
Write the structure of nucleoside. Give examples.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 89
A nucleoside contains two basic components of nucleic acids i.e. a pentose sugar and a nitrogenous base.

A nucleoside is formed when 1 -position of a pyrimidine (cytosine, thymine or uracil) or 9-position of guanine or adenine base is attached to C- l of sugar by β-linkage.

Examples: Formation of nucleoside:
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 90

Question 66.
What is meant by nucleotide?
OR
Write the structure of nucleotide. Give example.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 91
A nucleotide contains all three basic components of nucleic acids i.e., a pentose sugar, a phosphoric acid and a nitrogenous base. These are obtained by esterification of \(\mathrm{C}_{5}^{1}-\mathrm{OH}\) group of the pentose sugar by phosphoric acid. Nucleotides are joined together through phosphate ester linkage. Thus, nucleotides are monophosphates of nucleosides. Abridged names of some nucleotides are AMP, dAMP, UMP, dTMP and so on. Here, the first capital letter is derived from the corresponding base. MP stands for monophosphate. Small letter ‘d’ in the beginning indicates deoxyribose in the nucleotide.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

Example :
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 92

 

Question 67.
Write the structure of nucleic acids.
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 95
Answer:
Nucleic acids, both DNA and RNA, are polymers of nucleotides, formed by joining the 3′ – OH group of one nucleotide with 5′ – phosphate of another nucleotide. Two ends of polynucleotide chain are distinct from each other. One end having free phosphate group of 5′ position is called 5′ end. The other end is 3′ end and has free OH – group at 3′ position.

Question 68.
Draw a schematic representation of polynucleotide structure of nucleic acids.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 96

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

Question 69.
Explain double helix.
OR
State the salient features of the Watson and Crick mode of DNA.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 98
The Salient features are :

  1. DNA is made of two polynucleotide strands that wind into a right-handed double helix.
  2. The two strands run in opposite directions: one from the Y end to the 3’ end, while the other from the 3’ end to the Y end.
  3. Pcrpcndicular to the axis of the helix, the sugar – phosphate backbone lies on the outside of the helix and the bases lic on the inside.
  4. The hydrogen bonding between the hases of the two DNA strands stabilizes the double helix. This gives rise to a ladder-like structure of DNA double helix.
  5. Adenine always forms two hydrogen bonds with thymine and guanine forms three hydrogen bonds with cytosinc. Thus A – T arid C – G arc complementary hase pairs and the Two strands of the double helix arc complementary to each other.

Question 70.
Give scientific reasons :
1. In the preparation of glucose from sucrose, ethyl alcohol is added at the time of cooling.
Answer:
Hydrolysis of sucrose with dilute hydrαhloric acid gives glucose along with fructose.

Ethyl alcohol is added at the time of cooling in the preparation of glucose, to separate glucose from fructose. Glucose being insoluble in alcohol, crystallizes out first, while fructose being more soluble in alcohol, remains in the solution.

Question 71.
Answer in one sentence :

(1) How is glucose stored in the animal body?
Answer:
Glucose is stored in the form of glycogen in the animal body.

(2) Write other term used for carbohydrates.
Answer:
Carbohydrates are often termed as saccharides or sugars.

(3) How many moles of acetic anhydride will be required to form glucose penta acetate from 1 mole of glucose?
Answer:
10 moles of acetic anhydride.

(4) What are reducing sugars?
Answer:
Reducing sugars : Carbohydrates which reduce Fehling solution to red ppt of Cu20 or Tollen’s reagent to shining metallic silver are called reducing sugars. All monosaccharides and oligosaccharides except sucrose are reducing sugars.

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

(5) What are non-reducing sugars?
Answer:
Non-reducing sugars : Carbohydrates which do not reduce Fehling solution and Tollen’s reagent are called non-reducing sugars. E.g. sucrose.

(6) Give an example each of reducing and non-reducing sugars.
Answer:
Reducing sugars : Maltose or lactose
Non-reducing sugars : Sucrose.

(7) Name the linkage which joins two monosaccharide units through oxygen atom.
Answer:
The linkage which joins two monosaccharide units through oxygen atom is called glycosidic linkage.

(8) Name the sugar present in DNA.
Answer:
The sugar present in DNA is deoxyribose.

(9) A nucleotide from DNA containing thymine is hydrolysed. What are the products formed?
Answer:
When nucleotide from DNA containing thymine is hydrolysed, 2-deoxy-D-ribose, thymine and phosphoric acid is obtained.

(10) How is zwitterion formed?
Answer:
In aqueous solution, the carboxyl group loses a proton while the amino group accepts it, as a result, a dipolar or zwitter ion is formed.

(11) Name the amino acids which are synthesized in the body.
Answer:
The amino acids which are synthesized in the body are called non-essential amino acids. Examples : Glutamic acid, serine.

(12) Name the four bases present in DNA which of these is not present in RNA.
Answer:
Purines-adenine (A) and guanine (G); Pyrimidines-thymine (T) and cytosine (C), these four bases are present in DNA. Out of these, thymine (T) is not present in RNA.

(13) What are different types of RNA which are found in the cell?
Answer:
There are three different types of RNA found in the cell. (1) The messenger RNA which carries the message to the ribosome (2) Ribosomal RNA where synthesis of protein takes place (3) The transport RNA.

(14) State the functions of RNA and DNA.
Answer:
RNA and DNA are responsible for generic characteristics : DNA preserves the information and uses it by producing duplicate identical DNA molecules. RNA carries messages and transports them.

Multiple Choice Questions

Question 72.
Select and write the most appropriate answer from the given alternatives for each subquestion :

1. Which of the following is not sugar?
(a) Sucrose
(b) Starch
(c) Fructose
(d) Glucose
Answer:
(b) Starch

2. Which of the following is the example of disaccharide?
(a) Glucose
(b) Raffinose
(c) Cellulose
(d) Sucrose
Answer:
(d) Sucrose

3. Fructose is
(a) aldopentose
(b) aldohexose
(c) ketopentose
(d) ketohexose
Answer:
(d) ketohexose

4. Oxidation product of glucose with bromine water is
(a) sorbitol
(b) gluconic acid
(c) glutamic acid
(d) saccharic acid
Answer:
(b) gluconic acid

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

5. The general formula of carbohydrates is
(a) C(H2O)
(b) Cx(H2O)y
(c) Cx(H2O)
(d) Cx(H2O)x
Answer:
(b) Cx(H2O)y

6. Monosaccharides containing aldehyde group are called
(a) aldoses
(b) ketoses
(c) polysaccharides
(d) disaccharides
Answer:
(a) aldoses

7. Which of the following sugars can be used to prepare glucose on a large scale?
(a) Cellulose
(b) Cane sugar
(c) Galactose
(d) Starch
Answer:
(d) Starch

8. Which of the following carbohydrates cannot undergo hydrolysis?
(a) Glucose
(b) Sucrose
(c) Cellulose
(d) Maltose
Answer:
(a) Glucose

9. Glucose differs from fructose in
(a) the functional group
(b) the number of chiral carbon atoms
(c) the number of carbon atoms
(d) both (a) and (b)
Answer:
(d) both (a) and (b)

10. The example of aldopentose is
(a) arabinose
(b) glucose
(c) fructose
(d) sucrose
Answer:
(a) arabinose

11. Dextrose, grape sugar and blood sugar αcurs in
(a) fructose
(b) glucose
(c) sucrose
(d) starch
Answer:
(b) glucose

12. The example of ketopentose is
(a) galactose
(b) ribose
(c) raffinose
(d) maltose
Answer:
(b) ribose

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

13. Cane sugar on hydrolysis gives
(a) glucose and maltose
(b) glucose and lactose
(c) glucose and fructose
(d) only glucose
Answer:
(c) glucose and fructose

14. On commerical scale, glucose is prepared from
(a) starch
(b) potato pulp
(c) sucrose
(d) both (a) and (b)
Answer:
(d) both (a) and (b)

15. The number of monosaccharide units formed on hydrolysis of glucose are
(a) zero
(b) one
(c) two
(d) three
Answer:
(a) zero

16. Which of the following is NOT TRUE about glucose?
(a) It is monosaccharide
(b) It is a polyhydroxy aldehyde
(c) It is polyhydroxy ketone
(d) It contains six carbon atoms
Answer:
(c) It is polyhydroxy ketone

17. Final hydrolysis product of simple protein is
(a) carboxylic acid
(b) α-amino acid
(c) mineral acid
(d) acetic acid
Answer:
(b) α-amino acid

18. Haemoglobin is the example of-
(a) simple protein
(b) derived protein
(c) fibrous protein
(d) conjugated protein
Answer:
(d) conjugated protein

19. Protein are also called
(a) polysaccharides
(b) polypeptides
(c) polyglycerides
(d) polyster
Answer:
(b) polypeptides

20. The simplest amino acid is
(a) glycine
(b) oxalic acid
(c) adipic acid
(d) caprolactam
Answer:
(a) glycine

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

21. Amino acids usually exist in the form of zwitter ion which consist of
(a) the basic group-NH2 and the acidic group -COOH
(b) the acidic group -N+H3 and the basic group COO
(c) the acidic group -COO+ and the acidic group NH3-
(d) acidic or basic group
Answer:
(b) the acidic group -N+H3 and the basic group COO-

22. The water insoluble protein is
(a) casein of milk
(b) albumin
(c) serum albumin
(d) keratin of hair
Answer:
(d) keratin of hair

23. The main structural feature of a protein molecule is the presence of
(a) an ester linkage
(b) an ether linkage
(c) a peptide linkage
(d) all of these
Answer:
(c) a peptide linkage

24. Milk sugar is
(a) sucrose
(b) lactose
(c) maltose
(d) glucose
Answer:
(b) lactose

25. The carbohydrates used for silvering of mirror is
(a) fructose
(b) starch
(c) glucose
(d) cellulose
Answer:
(c) glucose

26. Which one of the following is NOT produced by human body?
(a) DNA
(b) Hormones
(c) Enzymes
(d) Vitamins
Answer:
(c) Enzymes

27. A biological catalyst is essentially
(a) an amino acid
(b) an enzyme
(c) a nitrogen molecule
(d) a carbohydrate
Answer:
(d) a carbohydrate

28. Which one of the following is not a constituent of RNA?
(a) Ribose
(b) Uracil
(c) Thymine
(d) Phosphate
Answer:
(b) Uracil

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

29. DNA is a polymer of units of
(a) sugars
(b) ribose
(c) amino acids
(d) nucleotides
Answer:
(c) amino acids

30. Which one of the following molecules will form zwitter ion?
(a) CH3COOH
(b) CH3CH2NH2
(c) CCl3NO2
(d) NH2CH2COOH
Answer:
(d) NH2CH2COOH

31. In metabolic prαess the maximum energy is given by
(a) carbohydrates
(b) proteins
(c) vitamins
(d) fats
Answer:
(d) fats

32. DNA has a structure of helix was reported by
(a) Herman Fischer
(b) Fedrick Sauger
(c) Andreas Marggraf
(d) Watson and Crick
Answer:
(d) Watson and Crick

33. The secondary structure of a protein is determined by
(a) co-ordinate bond
(b) covalent bond
(c) ionic bond
(d) hydrogen bond
Answer:
(d) hydrogen bond

34. In maltose, glycosidic linkage is present between the two glucose units at positions
(a) 1, 2
(b) 1, 1
(c) 1, 3
(d) 1, 4
Answer:
(d) 1, 4

35. Which of the following amino acids is basic in nature?
(a) Valine
(b) Tyrosine
(c) Arginine
(d) Luecine
Answer:
(c) Arginine

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

36. Sucrose molecules consists of
(a) a glucofuranose and a fructopyranose
(b) a glucofuranose and a fructofuranose
(c) a glucopyranose and a fructopyranose
(d) a glucopyranose and a’ fructofuranose
Answer:
(d) a glucopyranose and a’ fructofuranose

37. Which one of the following statements is not correct about DNA molecule?
(a) It has double helix structure
(b) It serves as hereditary material
(c) The two DNA strands are exactly similar
(d) Its replication is called semi-conservative mode of replication
Answer:
(c) The two DNA strands are exactly similar

38. Glycine on heating forms
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 107
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 108
Answer:
(a)

39. Acidic amino acid is
(a) Glutamine
(b) Glutamic acid
(c) Tyrosine
(d) Lysine
Answer:
(b) Glutamic acid

40. Basic amino acid is
(a) Lysine
(b) Glycine
(c) Cystine
(d) Alanine
Answer:
(a) Lysine

41. Precipitation of protein is referred to as
(a) destruction of proteins
(b) separation of proteins
(c) denaturation of proteins
(d) fragmentation of proteins
Answer:
(c) denaturation of proteins

42. An amino acid containing sulphur is
(a) serine
(b) cysteine
(c) valine
(d) asparagine
Answer:
(b) cysteine

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

43. Rhamnose is a
(a) carbohydrate
(b) protein
(c) lipid
(d) vitamin
Answer:
(a) carbohydrate

44. Lactose on hydrolysis gives
(a) glucose + glucose
(b) glucose + fructose
(c) glucose + galactose
(d) fructose + galactose
Answer:
(c) glucose + galactose

45. Raffinose on hydrolysis gives
(a) glucose + glucose + galactose
(b) glucose + fructose + galactose
(c) glucose + galactose + galactose
(d) fructose + galactose + galactose
Answer:
(b) glucose + fructose + galactose

46. Naturally αcurring glucose is
(a) dextro rotatory
(b) laevo rotatory
(c) racemic mixture
(d) all of these
Answer:
(a) dextro rotatory

47. Amylopectin is
(a) soluble in water and constitutes about 80% of starch
(b) insoluble in water and constitutes about 80% of starch
(c) Soluble in alcohol and constitutes about 60% of starch
(d) in soluble in alcohol and constitutes about 60% of starch
Answer:
(b) insoluble in water and constitutes about 80% of starch

48. Insulin contains
(a) 51 amino acids
(b) 151 amino acids
(c) 15 amino acids
(d) 115 amino acids
Answer:
(a) 51 amino acids

49. Pyranose structure of glucose is
(a) an open chain structure of glucose
(b) a structure of reduction product of glucose
(c) a cyclic six-membered structure of glucose
(d) a four-membered cyclic form of glucose
Answer:
(c) a cyclic six-membered structure of glucose

50. The number of – OH groups present in ribulose is
(a) 3
(b) 4
(c) 6
(d) 5
Answer:
(b) 4

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

51. Peptide linkage is
Maharashtra Board Class 12 Chemistry Solutions Chapter 14 Biomolecules 109
Answer:
(d)

52. Stachyose is an example of
(a) monosaccharides
(b) disaccharides
(c) trisaccharides
(d) tetrasaccharides
Answer:
(d) tetrasaccharides

53. How many moles of (CH3CO)2O will be required to form glucose pentaacetate form 2 moles of glucose?
(a) 2
(b) 5
(c) 10
(d) 2.5
Answer:
(c) 10

54. Which of the following NOT present in DNA?
(a) Adenine
(b) Guanine
(c) Thymine
(d) Uracil
Answer:
(d) Uracil

Maharashtra Board Class 12 Chemistry Important Questions Chapter 14 Biomolecules

55. Maltose is a
(a) polysaccharide
(b) disaccharide
(c) trisaccharide
(d) monosaccharide
Answer:
(b) disaccharide

12th Chemistry Chapter 4 Exercise Chemical Thermodynamics Solutions Maharashtra Board

Class 12 Chemistry Chapter 4

Balbharti Maharashtra State Board 12th Chemistry Textbook Solutions Chapter 4 Chemical Thermodynamics Textbook Exercise Questions and Answers.

Chemical Thermodynamics Class 12 Exercise Question Answers Solutions Maharashtra Board

Class 12 Chemistry Chapter 4 Exercise Solutions Maharashtra Board

Chemistry Class 12 Chapter 4 Exercise Solutions

1. Select the most apropriate option.

Question 1.
The correct thermodynamic conditions for the spontaneous reaction at all temperatures are
(a) ΔH < 0 and ΔS > 0
(b) ΔH > 0 and ΔS < 0
(c) ΔH < 0 and ΔS < 0
(d) ΔH < 0 and ΔS = 0
Answer:
(a) ΔH < 0 and ΔS > 0

Question ii.
A gas is allowed to expand in a well-insulated container against a constant external pressure of 2.5 bar from an initial volume of 2.5 L to a final volume of 4.5 L. The change in internal energy, ΔU of the gas will be
(a) -500 J
(b) +500J
(c) -1013 J
(d) +1013 J
Answer:
(a) -500 J

Question iii.
In which of the following, entropy of the system decreases ?
(a) Crystallisation of liquid into solid
(b) Temperature of crystalline solid is increased from 0 K to 115 K
(c) H2(g) → 2H(g)
(d) 2NaHCO3(s) → Na2CO3(s) + CO2(g) + H2O(g)
Answer:
(a) Crystallisation of liquid into solid

Question iv.
The enthalpy of formation for all elements in their standard states is
(a) unity
(b) zero
(c) less than zero
(d) different elements
Answer:
(b) zero

Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics

Question v.
Which of the following reactions is exothermic ?
(a) H2(g) → 2H(g)
(b) C(s) → C(g)
(c) 2Cl(g) → Cl2(g)
(d) H2O(s) → H2O(l)
Answer:
(c) 2Cl(g) → Cl2(g)

Question vi.
6.24 g of ethanol are vaporized by supplying 5.89 kJ of heat. Enthalpy of vaporization of ethanol will be
(a) 43.4 kJ mol-1
(b) 60.2 kJ mol-1
(c) 38.9 kJ mol-1
(d) 20.4 kJ mol-1
Answer:
(a) 43.4 kJ mol-1

Question vii.
If the standard enthalpy of formation of methanol is -238.9 kJ mol-1 then entropy change of the surroundings will be
(a) -801.7 JK-1
(b) 801.7 JK-1
(c) 0.8017 JK-1
(d) -0.8017 JK-1
Answer:
(b) 801.7 JK-1

Question viii.
Which of the following are not state functions ?
1. Q + W 2. Q 3. W 4. H-TS
(a) 1, 2 and 3
(b) 2 and 3
(c) 1 and 4
(d) 2, 3 and 4
Answer:
(b) 2 and 3

Question ix.
For vaporization of water at 1 bar, ΔH = 40.63 kJ mol-1 and ΔS =108.8 JK-1 mol-1. At what temperature, ΔG = 0?
(a) 273.4 K
(b) 393.4 K
(c) 373.4 K
(d) 293.4 K
Answer:
(c) 373.4 K

Question x.
Bond enthalpies of H – H, Cl – Cl and H – Cl bonds are 434 kJ mol-1, 242 kJ mol-2 and 431 kJ mol-1, respectively. Enthalpy of formation of HCl is
(a) 245 kJ mol-1
(b) -93 kJ mol-1
(c) -245 kJ mol-1
(d) 93 kJ mol-1
Answer:
(b) -93 kJ mol-1

Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics

2. Answer the following in one or two sentences.

Question i.
Comment on the statement: No work is involved in an expansion of a gas in vacuum.
Answer:
(1) When a gas expands against an external pressure Pex, changing the volume from V1 to V2, the work obtained is given by
W = -Pex (V2 – V1).
(2) Hence the work is performed by the system when it experiences the opposing force or pressure.
(3) Greater the opposing force, more is the work.
(4) In free expansion, the gas expands in vaccum where it does not experience opposing force, (P = 0). Since external pressure is zero, no work is obtained.
∴ W = -Pex (V2 – V1)
= -0 × (V2 – V1)
= 0
(5) Since during expansion in vacuum no energy is expended, it is called free expansion.

Question ii.
State the first law of thermodynamics.
Answer:
The first law of thermodynamics is based on the principle of conservation of energy and can be stated in different ways as follows :

  1. Energy can neither be created nor destroyed, however, it may be converted from one form into another.
  2. Whenever, a quantity of one kind of energy is consumed or disappears, an equivalent amount of another kind of energy appears.
  3. The total mass and energy of an isolated system remain constant, although there may be interconservation of energy from one form to another.
  4. The total energy of the universe remains constant.

Question iii.
What is enthalpy of fusion?
Answer:
Enthalpy of fusion (ΔfusH) : The enthalpy change that accompanies the fusion of one mole of a solid into a liquid at constant temperature and pressure is called enthalpy of fusion.
For example,
Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics 1
This equation describes that when one mole of ice melts (fuses) at 0 °C (273 K) and 1 atmosphere, 6.1 kJ of heat will be absorbed.

Question iv.
What is standard state of a substance?
Answer:
The thermodynamic standard state of a substance (compound) is the most stable physical state of it at 298 K and 1 atmosphere (or 1 bar). The enthalpy of the substance in the standard state is represented as ΔfH0.

Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics

Question v.
State whether ∆S is positive, negative or zero for the reaction 2H(g) → H2(g). Explain.
Answer:
(i) The given reaction, 2H(g) → H2(g) is the formation of H2(g) from free atoms.
(ii) Since two H atoms form one H2 molecule, ∆n = 1 – 2= -1 and disorder is decreased. Hence entropy change ∆S < 0 (or negative).

Question vi.
State second law of thermodynamics in terms of entropy.
Answer:
The second law of thermodynamics states that the total entropy of the system and its surroundings (universe) increases in a spontaneous process.
OR
Since all the natural processes are spontaneous, the entropy of the universe increases.
It is expressed mathematically as
∆ STotal = ∆ Ssystem + ∆Ssurr > 0
∆ SUniverse = ∆ Ssystem + ∆ Ssurr > 0

Question vii.
If the enthalpy change of a reaction is ∆H how will you calculate entropy of surroundings?
Answer:
(i) For endothermic reaction, ∆H > 0. This shows the system absorbs heat from surroundings.
∴ ∆surr H < 0.
∵ Entropy change = ∆surr S = \(\frac{-\Delta_{\text {surr }} H}{T}\)
There is decrease in entropy of surroundings.
(ii) For exothermic reaction, ∆H < 0, hence for surroundings, ∆surr H > 0

∴ ∆surr > 0.

Question viii.
Comment on spontaneity of reactions for which ∆H is positive and ∆S is negative.
Answer:
Since ∆H is +ve and ∆S is -ve, ∆G will be +ve at all temperatures. Hence reactions will be non-spontaneous at all temperatures.

Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics

3. Answer in brief.

Question i.
Obtain the relationship between ∆G° of a reaction and the equilibrium constant.
Answer:
Consider following reversible reaction, aA + bB ⇌ cC + dD
The reaction quotient Q is,
Q = \(\frac{[\mathrm{C}]^{c} \times[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a} \times[\mathrm{B}]^{b}}\)
The free energy change ∆G for the reaction is ∆G = ∆G° + RT in Q
Where ∆G° is the standard free energy change.
At equilibrium
Q = \(\frac{[\mathrm{C}]_{e}^{c} \times[\mathrm{D}]_{e}^{d}}{[\mathrm{~A}]_{e}^{a} \times[\mathrm{B}]_{e}^{b}}=\mathrm{K}\)
∴ ∆G = ∆G° + RT In K
∵ at equilibrium ∆G = 0
∴ 0 = AG° + RT In K
∴ ∆G° = -RT In K
∴ ∆G°= -2.303 RT log10K.

Question ii.
What is entropy? Give its units.
Answer:
(i) Entropy : Being a state function and thermodynamic function it is defined as entropy change (∆S) of a system in a process which is equal to the amount of heat transferred in a reversible manner (Qrev) divided by the absolute temperature (T), at which the heat is absorbed. Thus,
Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics 2
(ii) Units of entropy are JK-1 in SI unit and cal K-1 in c.g.s. units. It is also expressed in terms of entropy unit (e.u.). Hence 1 e.u. = 1 JK-1.
(iii) Entropy is a measure of disorder in the system. Higher the disorder, more is entropy of the system.

Question iii.
How will you calculate reaction enthalpy from data on bond enthalpies?
Answer:
(i) In chemical reactions, bonds are broken in the reactant molecules and bonds are formed in the product molecules.
(ii) Energy is always required to break a chemical bond while energy is always released in the formation of the bond.
(iii) The enthalpy change of a gaseous reactions (ΔfH0) involving substances with covalent bonds can be calculated with the help of bond enthalpies of reactants and products. (In case of solids we need lattice energy or heat of sublimation while in case of liquids we need heat of evaporation.)
Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics 3
If the energy required to break the bonds of reacting molecules is more than the energy released in the bond formation of the products, then the reaction will be endothermic and ∆H0 reaction will be positive. On the other hand if the energy released in the bond formation of the products is more than the energy required to break the bonds of reacting molecules then the reaction will be exothermic and ∆H0 reaction will be negative.

Question iv.
What is the standard enthalpy of combustion ? Give an example.
Answer:
Standard enthalpy of combustion or standard heat of combustion : it is defined as the enthalpy change when one mole of a substance in the standard state undergoes complete combustion in a sufficient amount of oxygen at constant temperature (298 K) and pressure (1 atmosphere or 1 bar). It is denoted by ∆cH0.
E.g. CH3OH(l) + \(\frac {3}{2}\) O2(g) = CO2(g) + 2H2O
cH0= -726 kJ mol-1
(∆cH0 is always negative.)
[Note : Calorific value : It is the enthalpy change or amount of heat liberated when one gram of a substance undergoes combustion.
Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics 4

Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics

Question v.
What is the enthalpy of atomization? Give an example.
Answer:
Enthalpy of atomisation (∆atomH) : it is the enthalpy change accompanying the dissociation of one mole of gaseous substance into its atoms at constant temperature and pressure.
For example : CH4(g) → C(g) + 4H(g)atomH = 1660 kJ mol-1

Question vi.
Obtain the expression for work done in chemical reaction.
Answer:
Consider n1 moles of gaseous reactants A of volume V1 change to n2 moles of gaseous products B of volume V2 at temperature T and pressure P.
Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics 5
In the initial state, PV1 = n1RT
In the final state, PV2 = n2RT
PV2 – PV1 = n2RT – n1RT = (n2 – n1)RT = ∆nRT
where ∆n is the change in number of moles of gaseous products and gaseous reactants.
Due to net changes in gaseous moles, there arises change in volume against constant pressure resulting in mechanical work, -P∆V.
∴ W = -P∆V = -P(V2 – V1) = – ∆nRT
(i) If n1 – n2, ∆n = 0, W = 0. No work is performed.
(ii) If n2 > n1, ∆n > 0, there is a work of expansion by the system and W is negative.
(iii) If n2 < n1, ∆n < 0, there is a work of compression, hence work is done on the system and W is positive.

Question vii.
Derive the expression for PV work.
Answer:
Consider a certain amount of an ideal gas enclosed in an ideal cylinder fitted with massless, frictionless rigid movable piston at pressure P, occupying volume V1 at temperature T.
Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics 6
Fig. 4.8 : Work of expansion
As the gas expands, it pushes the piston upward through a distance d against external force F, pushing the surroundings.
The work done by the gas is,
W = opposing force × distance = -F × d
-ve sign indicates the lowering of energy of the system during expansion.
If a is the cross section area of the cylinder or piston, then,
W = \(-\frac{F}{a}\) × d × a
Now the pressure is Pex = \(\frac{F}{a}\)
while volume change is, ΔV = d × a
∴ W = -Pex × ΔV
If during the expansion, the volume changes from V1 and V2 then, ΔV = V2 – V1
∴ W= -Pex(V2 – V1)
During compression, the work W is +ve, since the energy of the system is increased,
W = +Pex(V2 – V1)

Question viii.
What are intensive properties? Explain why density is intensive property.
Answer:
(A) Intensive property : It is defined as a property of a system whose magnitude is independent of the amount of matter present in the system.
Explanation :

  1. Intensive property is characteristic of the system, e.g., refractive index, density, viscosity, temperature, pressure, boiling point, melting point, freezing point of a pure liquid, surface tension, etc.
  2. The intensive properties are not additive.

(B) Density is a ratio of two extensive properties namely, mass and volume. Since the ratio of two extensive properties represents an intensive property, density is an intensive property. It does not depend on the amount of a substance.

Question ix.
How much heat is evolved when 12 g of CO reacts with NO2 ? The reaction is :
4 CO(g) + 2 NO2(g) → 4CO2(g) + N2(g), ∆H0 = -1200 kJ

Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics

4. Answer the following questions.

Question i.
Derive the expression for the maximum work.
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics 7
Consider n moles of an ideal gas enclosed in an ideal cylinder fitted with a massless and frictionless movable rigid piston. Let V be the volume of the gas at a pressure P and a temperature T.
If in an infinitesimal change pressure changes from P to P – dP and volume increases from V to V + dV. Then the work obtained is, dW = -(P-dP) dV
= -PdV + dPdV
Since dP.dV is negligibly small relative to PdV
dW= -PdV
Let the state of the system change from A(P1, L1) to B (P2, V2) isothermally and reversibly, at temperature T involving number of infinitesimal steps.
Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics 8
Then the total work or maximum work in the process is obtained by integrating above equation.
Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics 9
At constant temperature,
Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics 10
where n, P, V and T represent number of moles, pressure, volume and temperature respectively. For the process,
ΔU = 0, ΔH = 0.
The heat absorbed in reversible manner
Qrev, is completely converted into work.
Qrev = -Wmax.
Hence work obtained is maximum.

Question ii.
Obtain the relatioship between ∆H and ∆U for gas phase reactions.
Answer:
Consider a reaction in which n1 moles of gaseous reactant in initial state change to n2 moles of gaseous product in the final state.
Let H1, U1, P1, V1 and H2, U2, P2, V2 represent enthalpies, internal energies, pressures and volumes in the initial and final states respectively then,
Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics 11
The heat of reaction is given by enthalpy change ΔH as,
ΔH = H2 – H1
By definition, H = U + PV
∴ H1 = U1 + P1V1 and H2 = U2+ P2V2
∴ ΔH = (U2 + P2V2) – (U1 + P1V1)
= (U2 – U1) + (P2V2 – P1V1)
Now, ΔU = U2 – U1
Since PV = nRT,
For initial state, P1V1= n1RT
For final state, P2V2 = n2RT
∴ P2V2 – P1V1 = n2RT – n1RT
= (n2 – n1) RT
= ΔnRT
where Δn
Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics 12
∴ ΔH = ΔU + ΔnRT
If QP and QV are the heats involved in the reaction at constant pressure and constant volume respectively, then since QP = ΔH and QV = ΔU.
∴ QP = QV = ΔnRT

Question iii.
State Hess’s law of constant heat summation. Illustrate with an example. State its applications.
Answer:
Statement of law of constant heat summation : It states that, the heat of a reaction or the enthalpy change in a chemical reaction depends upon initial state of reactants and final state of products and independent of the path by which the reaction is brought about (i.e. in single step or in series of steps).
OR
Heat of reaction is same whether it is carried out in one step or in several steps.
Explanation :
Consider the formation of CO2(g).
Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics 13
Hess’s law treats thermochemical equations mathematically i.e., they can be added, subtracted or multiplied by numerical factors like algebraic equations.

Applications : Hess’s law is used for :

  1. To calculate heat of formation, combustion, neutralisation, ionization, etc.
  2. To calculate the heat of reactions which may not take place normally or directly.
  3. To calculate heats of extremely slow or fast reactions.
  4. To calculate enthalpies of reactants and products.

Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics

Question iv.
Although ∆S for the formation of two moles of water from H2 and O2 is -327 JK-1, it is spontaneous. Explain. (Given ∆H for the reaction is -572 kJ).
Answer:
Given : ΔS= -327 JK-1; ΔH = -572 kJ
ΔG = ΔH – TΔS, and ΔH << ΔS
∴ ΔG < 0, and hence the formation of H2O(l) is spontaneous.

Question v.
Obtain the relation between ∆G and ∆STotal. Comment on spontaneity of the reaction.
Answer:
(i) Gibbs free energy, G is defined as,
G = H – TS
where H is the enthalpy, S is the entropy of the system at absolute temperature T.
Since H, T and S are state functions, G is a state function and a thermodynamic function.

(ii) At constant temperature and pressure, change in free energy ΔG for the system is represented as, ∆G = ∆H – T∆S
Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics 14
This is called Gibbs free energy equation for ∆G. In this ∆S is total entropy change, i.e., ∆STotal.

(iii) The SI units of ∆G are J or kJ (or Jmol-1 or kJmol-1).
The c.g.s. units of ∆G are cal or kcal (or cal mol-1 or kcal mol-1.)

The second law explains the conditions of spontaneity as below :
(i) ∆Stotal > 0 and ∆G < 0, the process is spontaneous.
(ii) ∆Stotal < 0 and ∆G > 0, the process is nonspontaneous.
(iii) ∆Stotal = 0 and ∆G = 0, the process is at equilibrium.

Question vi.
One mole of an ideal gas is compressed from 500 cm3 against a constant external pressure of 1.2 × 105 Pa. The work involved in the process is 36.0 J. Calculate the final volume.
Answer:
Given : V1 = 500 cm3 = 0.5 dm3;
Pex = 1.2 × 105 Pa = 1.2 bar; W= 36 J;
1 dm3 bar = 100 J; V2 = ?
W = -Pex (V2 – V1)
36 J = – 1.2 (V2 – 0.5) dm3 bar
= -1.2 × 100 (V2 – 0.5) J
∴ V2 – 0.5 = \(\frac{-36}{1.2 \times 100}=-0.3\)
∴ V2 = 0.5 -0.3 = 0.2 dm3 = 200 cm3
Ans. Final volume = 200 cm3.

Question vii.
Calculate the maximum work when 24g of O2 are expanded isothermally and reversibly from the pressure of 1.6 bar to 1 bar at 298 K.
Answer:
Given : W02 = 24 g, P1 = 1.6 bar, P2 = 1 bar
T = 298 K, Wmax = ?
Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics 15

Question viii.
Calculate the work done in the decomposition of 132 g of NH4NO3 at 100 °C.
NH4NO3(s) → N2O(g) + 2 H2O(g)
State whether work is done on the system or by the system.
Answer:
NH44NO3(s) → N2O(g) + 2 H2O(g)
mNH4NO3 = 132 g; MNH4NO3 = 80 g mol-1
T = 273 + 100 = 373 K; Δn = ?
For the reaction,
Δn = Σn2 gaseous products – Σn1 gaseous reactants
= 3 – 0 = 3 mol
Since there is an increase in number of gaseous moles, the work is done by the system.
nNH4NO3 = \(\frac{m_{\mathrm{NH}_{4} \mathrm{NO}_{3}}}{M_{\mathrm{NH}_{4} \mathrm{NO}_{3}}}\)
= \(\frac{132}{80}\)
= 1.65 mol
For 1 mol NH4NO3(s) Δn = 3 mol
∴ For 1.65 mol NH4NO3(s) Δn = 3 × 1.65 = 4.95 mol
W = -ΔnRT = -4.95 × 8.314 × 373
= – 15350 J
= – 15.35 kJ
Ans. Work is done by the system.
Work done = – 15.35 kJ

Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics

Question ix.
Calculate standard enthalpy of reaction,
Fe2O3(s) + 3CO(g) → 2 Fe(s) + 3CO2(g),
from the following data.
fH0(Fe2O3) = -824 kJ/mol,
fH0(CO) = -110 kJ/mol,
fH0(CO2) = -393 kJ/mol
Answer:
Given : ∆fH0Fe2O3 = -824 kJ/mol-1;
fH0(CO) = – 110 kJ mol-1
fH0(CO2) = – 393 kJ/mol-1; ∆fH0 = ?
Required equation,
Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g)
∆H1 = ? – (I)
Given equations :
Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics 16
= -(-824) -3 (-110) + 3(-393)
= 824 + 330 – 1179
fH0 = -25 kJ
Ans. ∆fH0 = -25 kJ

Question x.
For a certain reaction ∆H0 =219 kJ and ∆S0 = -21 J/K. Determine whether the reaction is spontaneous or nonspontaneous.
Answer:
Given : ∆H0 = 219 kJ; ∆S0 = -21 J/K, ∆G0 = ?
For standard state, T = 298 K
∆G0 = ∆H0 – T∆S0
= 219 – 298 × (-21) × 10-3
= 219 + 6.258
= 225.3 kJ
Since ∆S < 0 and ∆G0 > 0, the reaction is non-spontaneous.

Question xi.
Determine whether the following reaction is spontaneous under standard state conditions.
2 H2O(l) + O2(g) → 2H2O2(l)
if ∆H0 = 196 kJ, ∆S0 = -126 J/K
Does it have a cross-over temperature?
Answer:
Given : 2H2O(l) + O2(g) → 2H2O2(l)
∆H0 = +196 kJ
∆S0 = -126 JK-1 =0.126 kj K-1
T= 298 K
∆G0 = ?
Cross over temperature = T = ?
∆G0 = ∆H0 – T∆S0
= 196 – 298 (-0.126)
= 196 + 37.55
= + 233.55 kJ
∵ ∆G0 > 0, the reaction is non-spontaneous.
∆H0 > 0, ∆S0 < 0,
Since at all temperatures, ∆G0 > 0, there is no cross over temperature.
Ans. The reaction is non-spontaneous.
There is no cross-over temperature for the reaction.

Question xii.
Calculate ∆U at 298 K for the reaction,
C2H4(g) + HCl(g) → C2H5Cl(g), ∆H = -72.3 kJ
How much PV work is done?
Answer:
Given : C2H4(g) + HCl(g) → C2H5Cl(g)
T = 298 K; ∆H = -72.3 kJ; PV = ?;
∆U = ?
∆n = Σn2gaseous products – Σn1gaseous reactants
= 1 – (1 + 1)= -1 mol
For PV work :
W = -∆nRT
= – (- 1) × 8.314 × 298
= 2478 J = 2.478 kJ
∆H = ∆U + ∆nRT
∴ ∆U = ∆H – ∆nRT
= – 72.3 – (-2.478)
= – 69.82 kJ
Ans. PV work = 2.478 kJ
∆U = -69.82 kJ

Question xiii.
Calculate the work done during synthesis of NH3 in which volume changes from 8.0 dm3 to 4.0 dm3 at a constant external pressure of 43 bar. In what direction the work energy flows?
Answer:
Given : V1 = 8.0 dm3; V2 = 4.0 dm3; Pex = 43 bar
W = ? What direction work energy flows ?
W = -Pex(V2 – V1)
= -43 (4 – 8)
= 172 dm3 bar
= 172 × 100 J
= 17200 J
= 17.2 kJ
In this compression process, the work is done on the system and work energy flows into the system.

Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics

Question xiv.
Calculate the amount of work done in the
(a) oxidation of 1 mole HCl(g) at 200 °C according to reaction.
4HCl(g) + O2(g) → 2 Cl2(g) + 2 H2O(g)
(b) decomposition of one mole of NO at 300 °C for the reaction
2 NO(g) → N2(g) + O2
Answer:
Given :
(a) 4HCl(g) + O2(g) → 2Cl2(g) + 2H2O(g)
nHCl = 1 mol; T = 273 + 200 = 473 K, W = ?
For 4 mol HCl ∆n = (2 + 2) – (4 + 1) = – 1 mol
∴ For 1 mol HCl ∆n = –\(\frac {1}{4}\) = -0.25 mol
W = -∆nRT = – (-0.25) × 8.314 × 473 = 983.11
(b) ∆n = (1 + 1) – 2 = 0 mol
W = -∆nRT = -(0) × 8.314 × 473 = 0
Ans. (a) W = 983.1 J
(b) W = 0.0 J

Question xv.
When 6.0 g of O2 reacts with CIF as per
2CIF(g) + O2(g) → Cl2O(g) + OF2(g)
The enthalpy change is 38.55 kJ. What is standard enthalpy of the reaction ?
Answer:
Given : The given reaction is for 1 mol O2 or 32 g O2.
∵ For 6.0 g O2
∆ H0 = 38.55 kJ
∴ For 32 g O2
∆ H0 = \(\frac{32 \times 38.55}{6}\)
= 205.6 kJ
Ans. ∆H0 = 205.6 kJ

Question xvi.
Calculate the standard enthalpy of formation of CH3OH(l) from the following data:
i. CH3OH(l) + \(\frac {3}{2}\) O2(g) → CO2(g) + 2H2O(l), ∆H0 = -726 kJ mol-1
ii. C (Graphite) + O2(g) → CO2(g), ∆cH0 = -393 kJ mol-1
iii. H2(g) + \(\frac {1}{2}\) O2(g) → H2O(l), ∆fH0 = -286 kJ mol-1
Answer:
Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics 17
Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics 18
∴ ∆H0
= –\(\Delta H_{2}^{0}\) + \(\Delta H_{3}^{0}\) + 2∆\(\Delta H_{4}^{0}\)
= – (- 726) + (- 393) + 2(- 286)
= 726 – 393 – 572
= – 239 kJ mol-1
Ans. Standard enthalpy of formation = ∆fH0= -239 kJ mol-1

Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics

Question xvii.
Calculate ∆H0 for the following reaction at 298 K
H2B4O7(s) + H2O(l) → 4HBO2(aq)
i. 2H3BO3(aq) → B2O3(s) + 3H2O(l), ∆H0 = 14.4 kJ mol-1
ii. H3BO3(aq) → HBO2(aq) + H2O(l), ∆H0 = -0.02 kJ mol-1
iii. H2B4O7(s) → 2B2O3(s) + H2O(l), ∆H0 = 17.3 kJ mol-1
Answer:
Given equations :
i. 2H3BO3(aq) → B2O3(s) + 3H2O(l), ……….(i)
∆H0 = 14.4 kJ mol-1
ii. H3BO3(aq) → HBO2(aq) + H2O(l) ……….(ii)
∆H0 = -0.02 kJ mol-1
iii. H2B4O7(s) → 2B2O3(s) + H2O(l), ……….(iii)
∆H0 = 17.3 kJ mol-1
Required equation :
(iv) H2B4O7(s) + H2O(l) → 4HBO2(aq) ……. (iv)
\(\Delta H_{4}^{0}=?\)
To obtain eq. (iv) add 4 times equation (ii) and eq.
(iii) and subtract 2 times equation (i).
∴ eq. (iv) = 4 eq. (ii) + eq. (iii) – 2eq. (i)
∴ \(\Delta H_{4}^{0}=4 \Delta H_{2}^{0}+\Delta H_{3}^{0}-2 \Delta H_{1}^{0}\)
= 4(-0.02) + 17.3 – 2(14.4)
= -0.08 + 17.3 – 28.8
= -11.58 kJ
∴ Enthalpy change for the reaction
= ∆rH0 = -11.58 kJ
Ans. ∆rH0 for the given reaction = -11.58 kJ

Question xviii.
Calculate the total heat required (a) to melt 180 g of ice at 0 °C, (b) heat it to 100 °C and then (c) vapourise it at that temperature. Given ∆fusH(ice) = 6.01 kJ mol-1 at 0 °C, ∆vapH(H2O) = 40.7 kJ mol-1 at 100 °C specific heat of water is 4.18 J g-1 K-1.
Answer:
Given : Mass of ice = m = 180 g
T1 = 273 + 0 °C = 273 K
T2 = 273 + 100 °C = 373 K
fusH(ice) = ∆fusH(H2O)(s) = 6.01 kJ mol-1
vapHH2O(l) = 40.7 kJ mol-1
Specific heat of water = C = 4.18 J g-1 K-1
For converting 180 g ice into vapour, ∆ HTotal = ?
Number of moles of H2O = \(\frac {180}{18}\) = 10 mol
The total process can be represented as,
Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics 19
(i) ∆H1 = ∆fusH = 10 mol × 6.01 kJ mol-1
= 60.1 kJ
(ii) When the temperature of water is raised from 0 °C to 100 °C (i.e., 273 K to 373 K), then
∆ H2 = m × C × ∆T
= m × C × (T2 – T1)
= 180 g × 4.18 Jg-1K-1 × (373 – 273) × 10-3 kJ = 75.24 kJ
∆ H3 = ∆vapH = 10 mol × 40.7 kJ mol-1 = 407 kJ
Hence total enthalpy change,
∆ HTotal = ∆H1 + ∆H2 + ∆H3
= 60.1 + 75.24 + 407
= 542.34 kJ
Ans. Total heat required = 542.34 kJ

Question xix.
The enthalpy change for the reaction,
C2H4(g) + H2(g) → C2H6(g)
is -620 J when 100 ml of ethylene and 100 mL of H2 react at 1 bar pressure. Calculate the pressure volume type of work and ∆U for the reaction.
Answer:
Given :
\(\begin{aligned}
&\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})} \\
&100 \mathrm{~mL} \quad 100 \mathrm{ml} \quad 100 \mathrm{ml}
\end{aligned}\)
∆H = – 620 J; VC2H4 = 100 mL; VH2 = 100 mL
Pex= 1 bar; W=?; ∆U = ?
∆V = 100 – (100 + 100) = -100 mL = -0.1 dm3
W = -Pex(V2 – V1)
= -Pex × ∆V
= -1 × (-0.1)
= 0.1 dm3 bar
= 0.1 × 100 J
= +10 J
∆H = ∆U + P∆V
∴ ∆U = ∆H – P∆V = -620 – (+10) = -610 J
Ans. W = +10 J; ∆U = -610 J

Question xx.
Calculate the work done and comment on whether work is done on or by the system for the decomposition of 2 moles of NH4NO3 at 100 °C
NH4NO3(s) → N2O(g) + 2H2O(g)
Answer:
Given : NH4NO3(s) → N2O(g) + 2H2O(g)
nNH4NO3 = 2 mol; T = 273 + 100 = 373 K
W = ? Comment on work = ?
∆nreaction = (1 + 2) – 0 = 3 mol
∵ For 1 mol of NH4NO3 ∆nreaction = 3 mol
∴ For 2 mol of NH4NO3 ∆nreaction = 6 mol
Due to 6 moles of gaseous products from 2 mol NH4NO3, there is work of expansion, hence work is done by the system.
W = -∆nRT
= – 6 × 8.314 × 373 = -18606 J
= -18.606 kJ
Ans. Work is done by the system.
W= -18.606 kJ

Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics

12th Chemistry Digest Chapter 4 Chemical Thermodynamics Intext Questions and Answers

(Textbook page No. 73)

Question 1.
Under what conditions ∆H = ∆U ?
Answer:
(a) ∆H = ∆U + P∆V
when ∆V = 0, ∆H = ∆U
(b) ∆H = ∆U + ∆nRT
when ∆n = 0, ∆H = ∆U

Try this… (Textbook page No. 71)

Question 1.
25 kJ of work is done on the system and it releases 10 kJ of heat. What is ∆U?
Answer:
W = 25 kJ; Q= -10 kJ
∆U = Q + W = -10 + 25
∆U = + 15 kJ

Try this… (Textbook page No. 75)

Question 1.
For KCl, ∆LH = 699 kJ/mol-1 and ∆hydH = -681.8 kJ/mol-1. What will be its enthalpy of solution?
Answer:
Enthalpy of solution :
solnH = ∆LH + ∆hydH
= 699 + (-681.8)
solnH = +17.2 kJ mol-1

Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics

Try this… (Textbook page No. 76)

Question 1.
Given the thermochemical equation,
C2H2(g) + \(\frac {5}{2}\) O2(g) → 2CO2(g)+ H2O(l), ∆rH0 = -1300 kJ
Write thermochemical equations when
i. Coefficients of substances are multiplied by 2.
ii. equation is reversed.
Answer:
(i) 2C2H2(g) + 5O2(g) → 4CO2(g) + 2H2O(l)
rH0 = -2 × 1300 kJ
= – 2600 kJ
(ii) 2CO2(g) + H2O(l) → C2H2(g) + \(\frac {5}{2}\)O2(g)
rH0 = +1300 KJ

Try this… (Textbook page No. 78)

Question 1.
(i) Write thermochemical equation for complete oxidation of one mole of H2(g). Standard enthalpy change of the reaction is -286 kJ.
(ii) Is the value -286 kJ, enthalpy of formation or enthalpy of combustion or both? Explain.
Answer:
(i) H2(g) + \(\frac {1}{2}\)O2(g) → H2O(l) ∆cH0 = -286 KJ mol-1
(ii) The value -286 kJ is the standard enthalpy of formation of H2O(l) or standard enthalpy of combustion of H2(g).

Question 2.
Write equation for bond enthalpy of Cl-Cl bond in Cl2 molecule ∆rH0 for dissociation of Cl2 molecule is 242.7 kJ.
Answer:
Equation for bond enthalpy :
Cl2(g) → 2Cl(g)rH0 = 242.7 kJ mol-1
∴ Bond enthalpy of Cl2 = 242.7 kJ mol-1

Maharashtra Board Class 12 Chemistry Solutions Chapter 4 Chemical Thermodynamics

Try this… (Textbook page No. 82)

Question 1.
State whether ∆S is positive, negative or zero for the following reactions.
i. 2H2(g) + O2(g) → 2H2O(l)
ii. CaCO3(s) → CaO(s) + CO2(g)
Answer:
(i) 2H2(g) + O2(g) → 2H2O(l)
Since the system is converted from gaseous state to a liquid state, the disorder is decreased, hence ∆S < O (negative).

(ii) CaCO3(s) → CaO(s) + CO2(g)
Since molecules of solid CaCO3 break giving gaseous CO2, disorder is increased hence ∆S > O (positive).

12th Std Chemistry Questions And Answers:

Renaissance in Europe and Development of Science Question Answer Class 12 History Chapter 1 Maharashtra Board

Balbharti Maharashtra State Board Class 12 History Solutions Chapter 12 India Transformed Part 2 Textbook Exercise Questions and Answers.

Std 12 History Chapter 1 Question Answer Renaissance in Europe and Development of Science Maharashtra Board

Class 12 History Chapter 1 Renaissance in Europe and Development of Science Question Answer Maharashtra Board

History Class 12 Chapter 1 Question Answer Maharashtra Board

1A. Choose the correct alternative and rewrite the statement.

Question 1.
In 1995, the health department of the Indian government launched the campaign, dubbed as __________
(a) Measles-Rubella
(b) Pulse Polio
(c) B.C.G.
(d) Triple vaccine
Answer:
(b) Pulse Polio

Maharashtra Board Class 12 History Solutions Chapter 12 India Transformed Part 2

Question 2.
The first district in __________ to become completely literate was Ernakulum.
(a) Gujrat
(b) Kerala
(c) Karnataka
(d) Tamil Nadu
Answer:
(b) Kerala

1B. Find the incorrect pair from group ‘B’ and write the corrected one.

Question 1.

Group ‘A’ Group ‘B’
(a) National Human Rights Commission Protection of Human Rights
(b) Centre for Science and Environment Study of Pollution in Delhi
(c) SEESCAP Institute for conservation of turtles
(d) INTACH Organisation creating awareness for conservation of heritage

Answer:
SEESCAP – Institute for conservation of long-billed vultures

2. Write the names of historical places/persons/events.

Question 1.
Commission established vide Human Right Protection Act –
Answer:
National Human Rights Commission

Question 2.
The player who was awarded the highest title, ‘Bharat Ratna’ –
Answer:
Mr. Sachin Tendulkar

3. Complete the following concept map.

Question 1.
Maharashtra Board Class 12 History Solutions Chapter 12 India Transformed Part 2 Q3
Answer:
Maharashtra Board Class 12 History Solutions Chapter 12 India Transformed Part 2 Q3.1

4. Write short notes.

Question 1.
Speed Post
Answer:

  • The Indian postal department started the service of speed post in 1986 which changed the nature of post service.
  • This service was used by the majority of Indians, more than three crore letters and parcels were delivered from this service.
  • The customer will get the message of successful delivery of their items.
  • The postal department now offers courier services like passport delivery, business parcels, cash-on-delivery, logistics posts, and air freights.
  • The post office even offers a packaging service. Over one lakh and fifty thousand post offices are offering the services like paying bills, sending festive cards and other objects.
  • Since 2016, the postal department has started service of delivering Ganges water from Rishikesh and Gangotri at personal addresses.
  • Buying personalised postage stamps with personal photographs and special schemes for philatelists are also available at ‘Post Shops’ opened at 80 post offices.

Maharashtra Board Class 12 History Solutions Chapter 12 India Transformed Part 2

Question 2.
Air Pollution
Answer:

  • The entire world, nowadays, is facing the problem of air pollution which is mainly done by vehicles.
  • All most every state in India is facing the problem of air pollution.
  • The ‘Centre for Science and Environment’, studied and proved that the increasing number of automobiles and vehicles of poor maintenance are the causes of air pollution in Delhi.
  • The institution recommended the following suggestions to curb air pollution:
    • Use of CNG (Compressed Natural Gas) as fuel.
    • It was decided that vehicles without a ‘PUC’ certificate will not qualify for insurance and renewal of insurance.
  • In this way, we can curb air pollution and make our environment clean and pure.

Question 3.
Eradication of Polio.
Answer:

  • The government of India launched a campaign for the eradication of polio from India.
  • The health department of the Indian government launched the campaign known as ‘Pulse Polio’ which was started with the joint sponsorship of‘World Health Organisation – WHO, Rotary International, UNICEF, and Indian Government.’
  • The objective of the campaign was not to leave a single child under the age of five years without administering the polio vaccine.
  • Awareness camps, home visits, and extensive advertising made this campaign successful.

5. Answer the following questions in detail.

Question 1.
Explain the sports policy of the Government of India.
Answer:
India is home to a diverse population playing and showing their talent in a variety of different sports. Every nation needs a well-knit sports policy.

  • In 2001, the Government of India announced its sports policy. The main objective of this policy is:
    • To take sports to all parts of India.
    • To help the players to develop special skills.
    • To build supportive and fundamental sports facilities.
    • To help the National Sports Federation of India and associated institutions to search for sports talent.
    • To initiate co-operation from industries, corporate and private institutions for the cause of sports.
    • To create awareness of the importance of sports and interest in sports among people.
  • In 2011, the Indian government announced a novel scheme for sports named ‘Come and Play’.
  • Sports Authority of India gave permission to use five sports complexes in Delhi to local youths.
  • They were also provided an opportunity to train under Sports Authority of India (SAI) coaches.
  • The National Sports University was founded in Manipur in 2018.
  • This university offers different courses from Bachelor and Masters to M.Phil. and Ph.D. Apart from this, sports universities also offer courses in sports, education, sports management, sports psychology, coaching, etc. Research in sports is also encouraged in the sports university.
  • Khelo India.

Maharashtra Board Class 12 History Solutions Chapter 12 India Transformed Part 2

Question 2.
Which programmes and facilities are created by the Ministry of Tourism of the Indian government to attract tourists?
Answer:
India has a rich cultural heritage. Several tourists visit India each year to see its cultural heritage, monuments, etc. The tourism industry is a continuously growing industry which also gives foreign exchange to the country. The Indian Government has adopted different policies to attract tourists. They are as follows:

  • The government provides different facilities to the tourists who visit India. The three ministries of home affairs, tourism, and foreign affairs together created the facility of e-visa which included e-business visas, e-medical visas, and e-visa.
  • A facility of giving information to tourists on mobile in Hindi and 10 other foreign languages, for 24 hours throughout the week was started.
  • To avail of this facility, tourists have to dial 1363. The information regarding cruise tours, health, and sports tourism, eco-friendly tourism, adventurous sports tourism, film festivals are given through this service.
  • Hotels with amenities and premium quality accommodation including luxurious services are available to the tourists.
  • The Institutes which offer training courses in ‘Hospitality and Hotel Management’ have been established in major cities of India.
  • An advertisement campaign called ‘Atulya Bharat’ was designed to attract tourists.
  • A travel show entitled ‘GONORTHEAST’ was released on the Discovery channel to boost the tourism of beautiful places in the northeastern states of India.
  • The government took the help of electronic and digital media channels like Discovery, BBC, History is showcasing various programs introducing India’s historical and cultural heritage.
  • Swadesh’ and ‘Prasad’ schemes were launched by the Ministry of Tourism of Government of India to encourage visits to 95 pilgrimage and spiritual centers in India.
  • The Ministry of Tourism, Government of India, and Federation of Associations in Indian Tourism and Hospitality (FAITH) organized Indian Tourism Mart – 2018. This was the first event based on the model of International Tourism Marts in other countries.

6. State your opinion.

Question 1.
Joint military practice sessions are beneficial for both participant countries.
Answer:

  • Such sessions are extremely helpful for both countries because of the technological exchange that happens on these occasions.
  • It also helps the armies of both the countries to know, learn and practice new methods of resolving problems.
  • The process of modernization of arms gives impetus to further research.
  • Due to the development of science and technology, there is increasing scope for the exchange of the latest technology to fight terrorism, to augment our own competencies, and optimum use of modern technology for the end of terrorism.
  • The Indian army carried out exercises with different countries e.g., exercise with Oman army at Bakloh, there were combined exercises of Mangolian army and Jammu and Kashmir Rifles.

Question 2.
All of us have the responsibility of taking care of our heritage places.
Answer:

  • India has an extraordinary and vast cultural heritage. It is in the form of ancient monuments, buildings, and other archaeological sites and remains.
  • These monuments are the living witnesses of our golden historic era.
  • It is our duty to preserve the monuments for the next generations. A little initiate from our side can save our heritage.
  • The tourism industry generated foreign exchange on a large scale. Tourists come to India every year to see its cultural heritage. Therefore, it is our duty to preserve and protect our heritage.
  • As a citizen of India, we should spread awareness among the people about the importance of the preservation of monuments. A little effort on our side can create desirable changes which will make past, present, and future generations of the country and the entire world proud of us.

Class 12 History Chapter 12 India Transformed Part 2 Intext Questions and Answers

Try to do this: (Textbook Page No. 100)

NRHM – Make a list of the benefits of the National Rural Health Mission to people.
Answer:

  • The Indian government launched National Rural Health Mission (NRHM) in April 2005 with an aim to strengthen the health systems in rural and urban areas. The list of the benefits of the NRHM are as follows:
  • It aims to provide equitable, affordable, and quality healthcare services.
  • It has strengthened the healthcare infrastructure.
  • It has brought down the maternal mortality rate among poor pregnant women.
  • The prevalence of tobacco use and the number of tobacco users have been reduced.
  • The Janani Shishu Suraksha Karyakram entitles pregnant women to give birth in public health institutions at no expense.
  • The government launched different schemes for community participation under NRHM. Rogi Kalyan Samiti is responsible for maintaining the facilities and ensuring the provision of better facilities for the patients in the hospital.
  • Established the Global Knowledge Hub for smokeless tobacco. It also issued an advisory to ban Electronic Nicotine Delivery Systems.
  • After the implementation of various initiates under NHRM many states have shown improved progress in healthcare facilities.

Maharashtra Board Class 12 History Solutions Chapter 12 India Transformed Part 2

Try to do this: (Textbook Page No. 100)

Make a list of solutions to reduce the levels of air pollution.
Answer:
Air pollution is the biggest threat to the environment and to all living species. Following are some of the solutions to reduce the level of air pollution:

  • Public Transport: Encourage greater use of public transport i.e. the use of railways, bus services or metros, etc. Instead of using private vehicles, people should encourage to use public transport.
  • Use of CNG Vehicles: Citizens should also be encouraged to use CNG vehicles as it is a much cleaner fuel than petrol or diesel. New registration should be discouraged by increasing registration charges of vehicles.
  • Use bicycles: Using bicycles is the best way to reduce air pollution. The government should mark out bicycle lanes in residential colonies as well as on roads.
  • Plant and care for trees: Trees filter pollutants and absorb carbon dioxide. Trees release oxygen into the atmosphere. The practice of planting trees provides more benefits to the environment.
  • Use less energy: Use energy-efficient appliances. Turn off electrical appliances when not in use. Get an energy audit done and follow the advice.
  • Avoid the use of crackers: Avoid the use of crackers during festivals and weddings as it creates a lot of air pollution and is harmful to birds and animals including human beings.
  • Reuse, Reduce and Recycle: The three ‘Rs’ are the best way to reduce air pollution.
  • Avoid using chemical products: Avoid using chemical products like paint, perfumes, sprays, etc as they contain harmful products. Try to use products with less chemical content.
  • Prevention of forest fires and burning of garbage: Don’t burn garbage or leaves because it releases harmful smoke in the air which decreases the quality of air.

Try to do this: (Textbook Page No. 102)

1990 was the ‘International Year of Literacy’. Make a list of similarly declared international years for special causes and campaigns launched on the occasion.
Answer:
The following are the international years currently observed by the United Nations.
2024:

  • International Year of Camelids

2022:

  • International Year of Artisanal Fisheries and Aquaculture

2021:

  • International Year of Peace and Trust
  • International Year of Creative Economy for Sustainable Development
  • International Year of Fruits and Vegetables
  • International Year of Eliminations of Child Labour

Maharashtra Board Class 12 History Solutions Chapter 12 India Transformed Part 2

2020:

  • International Year of Planet Health
  • International Year of the Nurse and Midwife

2019:

  • International Year of Indigenous Languages
  • International Year of Moderation
  • International Year of Periodic Table of Chemical Elements

2017:

  • International Year of Sustainable Tourism for Development.

2016:

  • International Year of Pulses

2015:

  • International Year of Light and Light-based Technologies
  • International Year of Soils

2014:

  • International Year of Solidarity with the Palestinian People
  • International Year of Small Island Developing States
  • International Year of Crystallography
  • International Year of Family Farming

2013:

  • International Year of Water cooperation
  • International Year of Quinoa

2012:

  • International Year of Cooperatives
  • International Year of Sustainable Energy for All

2011:

  • International Year of Forest
  • International Year of Chemistry
  • The International Year of African Descent

2010:

  • The International Year of Biodiversity
  • The International Year for the Rapprochement of cultures
  • The International Year of Youth

Maharashtra Board Class 12 History Solutions Chapter 12 India Transformed Part 2

2009:

  • The International Year of Astronomy
  • The International Year of Human Rights Learning
  • The International Year of Natural Fibres
  • The International Year of Reconciliation

2008:

  • The International Year of Languages
  • The International Year of Planet Earth
  • The International Year of the Potato
  • The International Year of Sanitation

2007-08:

  • International Polar Year

2006:

  • International Year of Deserts and Desertification

2005:

  • International Year of Physics
  • International Year of Sport and Physical Education
  • International Year of Microcredit

2004:

  • International Year of Rice
  • International Year to Commemorate the Struggle against Slavery and its Abolition

2003:

  • International Year of Freshwater
  • Year of Kyrgyz Statehood

2002:

  • International Year of Mountains
  • International Year of Eco-tourism
  • United Nations Year for Cultural Heritage

2001:

  • International Year of Volunteers
  • International Year of Mobilisation against Racism, Racial Discrimination, Xenophobia, and Related Intolerance
  • United Nations Year of Dialogue among Civilisation

Maharashtra Board Class 12 History Solutions Chapter 12 India Transformed Part 2

2000:

  • International Year of Thanksgiving
  • International Year for the Culture of Peace

Find out and tell us (Textbook Page No. 106)

Make a list of employment opportunities generated by the tourism industry.
Answer:
The travel and tourism industry in India is growing rapidly so many opportunities are available in the coming years in this field. Some of the opportunities that are available in the tourism industry are as follows:
(i) Hotels: Many job perspectives are available in the hotel industry. Some fields of hotel industries are

  • Manager
  • Operations
  • Housekeeping
  • Food and Beverage
  • Front office
  • Gardener
  • Security officer/personnel etc.

(ii) Airlines: One can take up the following job in airlines

  • Pilot
  • Ground staff (Traffic Assistant, Counter staff, Booking, and Reservation)
  • Flight Attendant

(iii) Tourism Department:

  • Tour guides
  • Tour planner
  • Information assistants
  • Reservation and counter staffs
  • Sales and Marketing
  • Interpreters
  • Translators

(iv) Transportation Industry:
This is an ever-growing industry where one can have many job opportunities. Job opportunities are available in all types of transportation i.e.

  • Railway service
  • Bus service
  • Cruise service or ferry service
  • Private transportation – Cars, Rickshaws, Horse riding, etc.

Maharashtra Board Class 12 History Solutions Chapter 12 India Transformed Part 2

(v) The employment opportunities are also available in the management of adventure sports, theme parks, amusement parks, water sports, mountaineering, children’s fantasy land, etc.

(vi) The other job opportunities in this field include Destination Manager, Itinerary Planner, Travel Agent, Foreign Exchange, Counselor, etc.

Find out and tell us (Textbook Page No. 106)

Suggest ways and means to enhance the heritage and historical tourism in India.
Answer:
Heritage and historical tourism tend to attract many tourists. Different ways and means to enhance, this type of tourism are as follows:

  • Build better roads and access points to the heritage sites, packaged train travel, proper bus connections should be provided to the tourists.
  • Aggressive tourism and marketing strategies are also necessary whether it is broadcasting the ‘Incredible India’ campaign abroad, holding different seminars, or offering Indian locations with facilities to promote foreign film productions in the country are some of the strategies.
  • The Government of India has already started making a lot of improvements in this area. We need to capitalize on India as a destination. The government should make a documentary based on the heritage of India. One can even design a promotional campaign to enhance historical tourism.
  • The historical places always have a story to tell. They offer amazing aesthetics and attract people from all over the world. If tourism is accompanied by mind-blowing hotels, resorts, good public transportation facilities, and delectable cuisine then it becomes an added advantage to the tourist.

Project (Textbook Page No. 108)

Make a list of various business opportunities available at tourist destinations.
Answer:
Introduction: Tourism is a continuously growing industry. By the early 21st century, international tourism had become one of the world’s most important activities. Various business opportunities are available at the tourist destinations and they are as follows:
(i) Travel Agency: Everyone needs a platform where customers can come to and take advice about tour packages of different places which travel agency provides. The travel agency helps tourists in planning their travel for which they charge their commission.

(ii) Hotel: Hotel business is the best opportunity from which you can gain a high rate of return as well as expand your chain of hotels in the future.

(iii) Online Travel Business: In the modern era, the way of doing business is changing. Now everything is available online. With the change in technology, the way of doing business has also changed. One can start an online business portal where customers have easy access to everything online.

Maharashtra Board Class 12 History Solutions Chapter 12 India Transformed Part 2

(iv) Photography: Tourists always want to save the memories of the places they visit and a photographer helps them to restore their memories through their art of photography. There is a huge demand for photographers.

(v) Vehicle Renting: Some tourists like to plan their tours according to their own wishes. They don’t want any unknown person to be a part of their travel for safety reasons. Such tourists search for a vehicle that they can get on rent and go in the direction that they want. To invest in this business is profitable.

(vi) Tour Guide: A Tourist guide is a person who guides visitors in the language of their choice and interprets the cultural and natural history of the particular place. This is a challenging field with an increase in tours and travels.

(vii) Executive Chef: The executive chef is in charge of a restaurant’s kitchen and is responsible for managing the kitchen staff, planning the menu, and making sure that food hygiene is maintained. This is a well suitable job for people who are passionate about cooking.

12th Std History Questions And Answers:

The Cop and the Anthem 12th Question Answer English Chapter 1.3 Maharashtra Board

Class 12 English Chapter 1.3

Balbharti Yuvakbharati English 12th Digest Chapter 1.3 The Cop and the Anthem Notes, Textbook Exercise Important Questions and Answers.

Class 12 English Chapter 1.3 The Cop and the Anthem Question Answer Maharashtra Board

12th Std English Chapter 1.3 Brainstorming Question Answer

Yuvakbharati English Navneet 12th Digest PDF Free Download Maharashtra Board

Question 1.
Suppose you have gone to a place where the winter season is very severe. Discuss with your partner the ways in which you would protect yourself in the cold climate. (The answer is given and underlined.)
Maharashtra Board Class 12 English Yuvakbharati Solutions Chapter 1.3 The Cop and the Anthem 1
Answer:
Maharashtra Board Class 12 English Yuvakbharati Solutions Chapter 1.3 The Cop and the Anthem 2

Maharashtra Board Solutions

Question 2.
When you see a cop approaching, you feel either ‘relieved’ or ‘scared’. Discuss with your partner and write down the situations when you feel ‘relieved’ or ‘scared’.
Answer:
Relieved:
(a) You are walking alone in a dark street.
(b) There is a fight taking place near you.
(c) A group of rough-looking people are coming towards you on a lonely road.
Scared:
(a) You are riding a bike without a valid driving licence.
(b) You have broken a traffic signal.
(c) You have been involved in a fight.

Question 3.
Discuss some of the motivating things that can change a person’s life :
Answer:
(a) Listening to an inspiring speech
(b) Reading motivating books and biographies of great people
(c) Reading epics and religious books
(d) Observing successful/happy people or watching biopics of their lives.

(A1)

Question (i)
Discuss with your partner and find out the different ways in which Soapy tried ; to get arrested. The first one is given.
Answer:
(a) Tried to enter a luxurious cafe.
(b) Threw a stone and broke a shop window.
(c) Ate heartily at a restaurant and then said he had no money.
(d) Shouted and howled and raved and danced on the sidewalk.
(e) Stole an umbrella.

Question (ii)
Describe the atmosphere when Soapy reached near the Church.
Answer:
(a) A soft light glowed through the violet-stained window.
(b) Sweet music drifted out of the quaint, old church.
(c) There was a full, radiant moon, and few vehicles and pedestrians.
(d) Sparrows twittered sleepily in the eaves.

Maharashtra Board Solutions

(A2)

Question (i)
Read the story and match the incidents given in Column A with the consequences given in Column B.
Maharashtra Board Class 12 English Yuvakbharati Solutions Chapter 1.3 The Cop and the Anthem 3
Answer:

  1. Soapy tried to enter a cafe – Strong and ready hands of the head waiter turned him around.
  2. Soapy broke a glass window – The cop ran after another man.
  3. Two waiters pitched Soapy on the callous pavement – He stood up slowly beating the i dust from his clothes.
  4. Soapy heard the anthem being played in the Church – Suddenly a wonderful change came in his heart.
  5. Cop arrests Soapy for hanging around. – Dream of turning around in life was shattered.

Question (ii)
Give reasons and complete the following: (The answers are given directly and underlined.)
Answer:
(a) Soapy had confidence in himself because he was shaven, his coat was trim and he had a neat, black bow. The portion of him that showed above the table looked respectable and would raise no doubt in the waiter’s mind.
(b) The head waiter of the luxurious cafe did not allow Soapy to enter because he saw Soapy’s tattered trousers and old, worn out shoes, and knew that Soapy would not have money to pay for a meal.
(c) The cop did not arrest Soapy for breaking the glass window because Soapy was standing calmly and talking to him. The policeman felt that men who smash glass windows do not remain to chat with the police.
(d) The cop did not arrest Soapy for shouting and dancing because it was the time of celebrations for the local college boys. They were generally noisy but harmless, and he had been told by his superiors to let them be.

(iii) Pick out the lines from the text which show that:

Question (a)
Soapy wants to enter the cafe for two reasons.
Answer:
1. A roasted mallard duck, thought Soapy, would be about the thing with a bottle of wine and then some cheese, a cup of coffee and a cigar.
2. The meat would leave him filled and happy for the journey to his winter island.

Maharashtra Board Solutions

Question (b)
Soapy was afraid that he won’t be able to enter the prison.
Answer:
It seemed that his route to the coveted island was not to be an easy one. Some other way of entering the limbo must be devised.

Question (c)
Soapy was not caught by the cop for throwing stones at the glass.
Answer:
1. The policeman refused to accept Soapy even as a clue.
2. The policeman saw a man half-way down the block running to catch a car. With drawn club he joined in the pursuit.

Question (d)
Soapy actually did not want the umbrella.
Answer:
He hurled the umbrella angrily into the excavation.

Question (e)
Listening to the anthem, Soapy remembered his good old days.
Answer:
He had known it well in the days when his life contained such things as mothers and roses and ambitions and friends and immaculate thoughts and collars.

Question (iv)
‘He would make a man of himself again’ – The word ‘man’ in the sentence means ……………….. .
Answer:
‘He would make a man of himself again’ – The word ‘man’ in the sentence means a responsible and worthy human being.

Maharashtra Board Solutions

Question (v)
Soapy’s earlier life was much different from his present life. Complete the table to show this contrast. One is done for you.
Maharashtra Board Class 12 English Yuvakbharati Solutions Chapter 1.3 The Cop and the Anthem 4
Answer:

Earlier life Present life
(a) contained friends and roses (a) unworthy desires
(b) eager ambitions (b) dead hopes, degraded days
(c) clean thoughts and clothes (c) wrecked faculties and base motives

Question (vi)
After listening to the sweet and solemn organ notes, Soapy decides to:
Answer:
1. pull himself out of the mire, conquer the evil that had enslaved him and make a man of himself again
2. resurrect his old eager ambitions and pursue them without faltering
3. go into the roaring downtown district and find work

Question (vii)
Write an incident in which you did something wrong and repented for it later. Give reasons.
Answer:
A lady who stayed in my building used to shout at me for playing noisily under her window. One day, she shouted at me as usual from her window and went inside. I suddenly got angry and threw a stone at her window. The stone hit the glass which broke. I heard a loud shout of pain and ran away. I later came to know that she had been badly injured by the shattered glass. I repented for what I had done. Though I did not tell her that I was the culprit, I was very good to her after that.

Maharashtra Board Solutions

(A3)

Question (i)
O’Henry has used different words to indicate prison where Soapy wants to reach. Make a list of those words from the extract.
Answer:
the island

Question (ii)
Find out the words used for the ‘degraded state of Soapy’.
Answer:

  1. the pit into which he had tumbled
  2. the degraded days
  3. unworthy desires
  4. dead hopes
  5. wrecked faculties
  6. base motives
  7. mire
  8. evil that had enslaved him.

Question (iii)
The specific meaning of word ‘anthem’ in the content of the story is:
Answer:
Anthem – a rousing or uplifting song.

(A4)

Question (i)
Convert the following sentences into the negative without changing their meanings:
(a) The policeman refused to accept Soapy even as a clue.
(b) Soapy drifted along, twice unsuccessful.
(c) Soapy stopped his unavailing racket.
(d) The island seemed very far away.
(e) The island seemed an unattainable Arcadia.
Answer:
(a) The policeman did not accept Soapy even as a clue.
(b) Soapy drifted along, twice not successful.
(c) Soapy stopped his racket which was not successful.
(d) The island seemed not at all near.
(e) The island seemed an Arcadia which was not attainable.

Maharashtra Board Solutions

Question (ii)
Convert the following sentences into the affirmative without changing their meanings :
(a) Men who smash windows do not remain to chat with the police.
(b) On the opposite side of the street was a restaurant of no great pretensions.
(c) Why don’t you call a cop?
(d) Noisy; but no harm.
(e) They seemed to regard him as a King who could do no wrong.
Answer:
(a) Men who smash windows refrain from remaining to chat with the police.
(b) On the opposite side of the street was a very ordinary restaurant.
(c) Please call a cop.
(d) Noisy; but harmless.
(e) They seemed to regard him as a King who was always right.

(A5)

Question (i)
‘Forgiveness is often better than punishment’. Write two paragraphs – one for and another against this notion.
Answer:
1. To err is human, to forgive is divine.

We all make mistakes. Nobody is perfect. That is why we are human. However, mistakes should be forgiven if there is sufficient repentance. Forgiveness will make the guilty person feel ashamed of his conduct and he will not repeat it. It is easy to punish but very difficult to forgive someone. It needs a big heart and a lot of kindness. If we punish the guilty person we will only make him more defiant. If punishing someone could have solved the problem, criminals who have been jailed would never have repeated the crime. But this is not found to be so. Just as God forgives us our mistakes, we should forgive others their mistakes too.

2. Punishment is the only answer

Forgiveness may work in certain cases, but there are hardened criminals who will not respond to forgiveness. They will only be stopped by punishment. If a person has murdered another in cold blood, will he improve by forgiveness? Never. He has to be punished severely so that he does not repeat it and society feels safe.

People only fear punishment. It can be easily seen at traffic signals – if there is no policeman to punish you, most people will break the signal. Then there will be chaos. If there is no punishment and no prisons, people will do whatever they want – rob, kill, etc. – and go off freely. No, in a society where it is not possible to expect everyone to have high values, punishment for misdeeds is the only solution.

Maharashtra Board Solutions

Question (ii)
You are the class representative and you have been asked by the Principal to conduct an interview of a cop. Frame 8-10 questions with the help of the following points, give introduction and conclusion.

  • reasons for joining the department
  • special trainings
  • developing the skill to identify and locate criminals
  • dealing with criminals
  • achievements and awards

Answer:
Good morning, Mr. Pawar. Congratulations on your excellent work in finding the bank robbers. May I ask you a few questions about your life? Thank you.

  1. When did you join the police department?
  2. Which examinations did you have to clear for the post?
  3. What were your reasons for joining the department?
  4. Did you have to go through any special training sessions?
  5. What type of criminals do you come across most in this area-thieves, killers, molesters,
    etc?
  6. How do you identify or locate criminals?
  7. Once you catch the culprit-say a thief-how do you deal with him?
  8. Can you tell me something about your achievements and awards?
  9. How can you motivate others to join the force?
  10. Any message to college students?

Thank you, Sir, for sparing the time for this interview. It will be published in our school magazine. Good day.

(A6)

Question (i)
Make a list of jobs which would give you an opportunity to help the society or serve the country. Also mention the different ways in which they can be beneficial to the people and also the country,

Maharashtra Board Solutions

Question (ii)
Go to your school/college library and read some other stories by O’Henry like, ‘The Gift of the Magi’, ‘The Last Leaf and ‘After Twenty years’. Write the stories in short in your notebook.

Yuvakbharati English 12th Digest Chapter 1.3 The Cop and the Anthem Additional Important Questions and Answers

Read the extract and complete the activities given below:

Global Understanding:

Question 1.
Name the following:
Answer:

  1. This is where Soapy stopped at a luxurious cafe
  2. This had been a gift to Soapy: a neat, black bow
  3. This is what Soapy wanted to eat: a roasted mallard duck, some cheese a bottle of wine, a cup of coffee
  4. This is what Soapy wanted to drink: Soapy’s tattered
  5. This is what the head waiter noticed:trousers and old shoes
  6. This is where Soapy was left by the head: on the sidewalk

Question 1.
Write if the following sentences are True or False. Correct the False sentences:
1. Soapy broke the glass of the shop window.
2. Nobody heard the breaking of the window.
3. The policeman chased Soapy.
4. Soapy did not run away from the place.
5. The restaurant Soapy entered was an ordinary one.
6. The policeman ate beefsteak, flapjacks, doughnuts and pie.
Answer:
True sentences:
1. Soapy broke the glass of the shop window.
4. Soapy did not run away from the place.
5. The restaurant Soapy entered was an ordinary one.

False sentences:
2. Nobody heard the breaking of the window.
3. The policeman chased Soapy.
6. The policeman ate beefsteak, flapjacks, doughnuts and pie.

Corrected sentences:
1. A policeman as well as some people heard the breaking of the window.
2. The policeman chased a man running to catch a car.
3. Soapy ate beefsteak, flapjacks, doughnuts and pie.

Maharashtra Board Solutions

Question 2.
Complete the table:
(The answers is given directly and underlined.)
Answer:

The Words mo said To whom
1. Noisy, but no harm A policeman A citizen
2. I took it. Soapy The umbrella man
3. You know how these mistakes occur. The umbrella man Soapy
4. Of course it’s mine! Soapy The umbrella man
5. We’ve instructions to let them be. A policeman A citizen
6. I hope you’ll excuse me. The umbrella man Soapy

Question 3.
Rearrange the following sentences according to their occurrence in the extract:

  1. Soapy decided to go into the downtown district and find work.
  2. A policeman caught Soapy’s arm.
  3. Soapy saw a quaint old church.
  4. Soapy’s ears caught sweet music.

Answer:

  1. Soapy saw a quaint old church.
  2. Soapy’s ears caught sweet music.
  3. Soapy decided to go into the downtown district and find work.
  4. A policeman caught Soapy’s arm.

Question 4.
Complete the following:
(The answers are given directly and underlined.)
Answer:

  1. A soft light glowed through one violet-stained window.
  2. Soapy came to a standstill on an unusually quiet corner.
  3. Soapy stood without moving near the iron fence listening to the anthem that the organist played.
  4. Soapy planned to resurrect his old eager ambitions.

Maharashtra Board Solutions

Answer the following in a few words each:

Question 1.
Who was lighting a cigar?
Answer:
A well-dressed man

Question 2.
Who twirled his club?
Answer:
A policeman

Question 3.
Who grabbed the umbrella?
Answer:
Soapy

Question 4.
Whom did the policeman help?
Answer:
A tall blonde

Complex Factual:

Question 1.
Give reasons and complete the following:
(The answers are given directly and underlined.)
Answer:
Soapy was disgusted with the policeman because he refused to accept that Soapy had broken the window, and he rushed off to chase another man.

Maharashtra Board Solutions

Question 2.
Complete the web:
(The answers are given directly and underlined.)
Answer:
Maharashtra Board Class 12 English Yuvakbharati Solutions Chapter 1.3 The Cop and the Anthem 5

Question 3.
Describe Soapy’s behaviour on the sidewalk.
Answer:
On the sidewalk Soapy began to yell drunken meaningless things at the top of his harsh voice. He danced, howled, spoke wildly and made a big disturbance.

Question 4.
Describe the wonderful change in Soapy’s soul.
Answer:
After listening to the anthem, Soapy remembers his earlier life, and is horrified to realize that he has indeed become a degraded person. He decides to pull himself out of the pit into which he has fallen and make a man of himself again. He determines to bring back to his life his old eager ambitions and pursue them. He makes up his mind to take up a job.

Question 5.
Describe the end of the story in your own words.
Answer:
Initially Soapy had felt that he would like to pass the winter months in prison, and he makes several efforts to get himself arrested. The notes of anthem transform him from within and he decides to give up his evil ways and become a man again. He resolves to work hard. At that very moment, ironically, a policeman arrests him for loitering and he is sent to prison for three months. Soapy faces the irony of fate as the moment he realizes that real freedom lies in a virtuous life, he is taken into confinement.

Maharashtra Board Solutions

Question 6.
Complete the following:
Soapy was angry because ………..
Answer:
Soapy was angry because when he wanted to fall into the clutches of the policemen. In order to be arrested, they seemed to regard him as a king who could do nothing wrong.

Inference/Interpretation/Analysis:

Question 1.
Complete the following:
(The answers are given directly and underlined.)
Answer:
Soapy took a stone because he wanted to break the glass of the shop window. This would result in a policeman arresting him for this act, and he would be imprisoned for the winter, which was exactly what he wanted.

Discuss the hidden meaning in the expressions/sentences.

Question 1.
It catered to large appetites and modest purses.
Answer:
The restaurant prepared food for ordinary workers who had large appetites but very little money.

Question 2.
He told the waiter the fact that the minutest coin and himself were total strangers.
Answer:
He told the waiter that he did not have any money.

Maharashtra Board Solutions

Question 3.
A voice like butter cakes and an eye like the cherry in the Manhattan cocktail.
Answer:
A very smooth voice and a hard, stony eye (a tough person).

Question 4.
Discuss the meaning in the context:
He caught at the immediate straw of ‘disorderly conduct’.
Answer:
Soapy wanted to be arrested by a policeman and imprisoned. However, his efforts towards this end had been unsuccessful, and he was worried that he would continue to be unsuccessful. When he suddenly came upon a policeman lounging in front of a theatre, an idea struck him. He felt that if he shouted and screamed and made a lot of noise, he would be arrested for behaving in a dangerous and disturbing way in public, and would be imprisoned, which was what he wanted.

Question 5.
Complete the following:
(The answer is given directly and underlined.)
Answer:
Soapy was angry because even after he had stolen a man’s umbrella, the man did not report him to the police, but instead apologized and said that perhaps he (the umbrella man) had made a mistake.

Question 6.
The umbrella man did not call a policeman. Give reasons for this.
Answer:
The umbrella man had himself probably stolen the umbrella from somewhere. When Soapy picked up the umbrella, the man first thought that he could get it back. But when Soapy spoke about calling a policeman, the man thought that the umbrella was actually Soapy’s, and Soapy would hand him over to the police. Hence, he apologized quickly and walked away without calling a policeman.

Maharashtra Board Solutions

Personal Response:

Question 1.
Give your opinion about Soapy’s desire to enter prison.
Answer:
I find it very strange that a person can actually want to enter prison, whatever be the reason. At least, from what I know of prisons, they are terrible places, and one has a very difficult time there. However, Soapy has obviously been to prison before, and probably enjoys the free food and protection from the winter that he gets there.

Question 2.
Have you ever bought/eaten something and then found that you did not have enough money to pay for it? Describe your feeling at that time.
Answer:
Yes, it happened to me once. I went to a mall and bought a jacket for myself. I had been looking at a lot of jackets and I got confused with the prices. Finally, when the cashier was making the bill, I found that the jacket I had chosen was very expensive and I did not have enough money to pay for it. I was very embarrassed to tell the cashier this, but I had to. He gave me an angry look.

Question 3.
Have you ever stolen/wanted to steal anything? Narrate in brief.
Answer:
Yes, when I was about 12 years old, I stole my friend’s remote-controlled toy car, which his uncle had sent him from abroad. It was a beautiful car. However, when I was playing with it at home my mother saw me, and she made me return the car. I later felt very ashamed of myself, but fortunately my friend forgave me.

Language Study.

Question 1.
If only he could reach a table in the restaurant unsuspected, success would be his.
(Rewrite using ‘unless’.)
Answer:
Unless he could reach a table in the restaurant unsuspected, success would not be his.

Maharashtra Board Solutions

Question 2.
One dollar for the cigar would be enough.
(Add a question tag.)
Answer:
One dollar for the cigar would be enough, wouldn’t it?

Question 3.
Some other way of entering the limbo must be devised.
(Use an infinitive in place of a gerund.)
Answer:
Some other way to enter the limbo must be devised.

Question 4.
He had set his silk umbrella by the door on entering. (Rewrite using the verb form of the underlined word.)
Answer:
He had set his silk umbrella by the door when he entered.

Question 5.
At length Soapy reached one of the avenues to the east. (Rewrite using another adverb phrase with the same meaning as the underlined phrase.)
Answer:
After a long time Soapy reached one of the avenues to the east.

Question 6.
On an unusually quiet corner, Soapy came to a standstill. (Rewrite using ‘that’.)
Answer:
Soapy came to a standstill on a corner that was unusually quiet.

Maharashtra Board Solutions

Vocabulary:

Question 1.
Guess the meaning of the following in the context:
1. winter island
2. eye fell upon
Answer:
1. winter island – prison.
2. eye fell upon – saw or noticed.

Question 2.
O’Henry has used different words to indicate prison, where Soapy wants to reach. Make a list of those words from the extract.
Answer:

  1. winter island
  2. coveted island
  3. limbo

Question 3.
Make sentences using the following words/expressions :
1. eye fell upon
2. strolled
Answer:
1. My eye fell upon the clock, and I sat up with shock.
2. Seema strolled along the beach, enjoying the breeze.

Question 4.
Guess the meaning of:

  1. napery
  2. betook
  3. brass buttons

Answer:

  1. napery – table linen.
  2. betook – to cause oneself to go.
  3. brass buttons – the police.

Maharashtra Board Solutions

Question 5.
O’Henry has used different words to indicate prison where Soapy wants to reach. Make a list of those words from the extract:
Answer:
the island

Question 6.
Fill in the blanks with the correct nouns from the extract:

  1. friendly
  2. electric
  3. large
  4. callous

Answer:

  1. friendly voice
  2. electric lights
  3. large appetites
  4. callous pavement

Question 7.
O’Henry has used different words to indicate prison where Soapy wants to reach. Make a list of those words from the extract.
Answer:
the island, Arcadia

Maharashtra Board Solutions

Question 8.
Pick out four verbs in the simple past tense from the extract.
Answer:
danced, howled, raved, disturbed

Question 9.
Match the words in Column A with the meanings in Column B :
Answer:

  1. disconsolate – very unhappy
  2. sauntered – walked in a relaxed manner
  3. raved – spoke wildly
  4. rendered – made

Non-Textual Grammar

Do as directed:

Question 1.
Shivani found a small box and dropped her bangles inside.
(Rewrite the sentence, beginning ‘Finding …)
Answer:
Finding a small box, Shivani dropped her bangles inside.

Maharashtra Board Solutions

Question 2.
Sunlight from the window made her black hair appear brown. (Rewrite using ‘that’.)
Answer:
Sunlight that came from the window made her black hair appear brown.

Question 3.
On the day the school closed for the summer, no student was more delighted than Rithik.
(Change the degree.)
Answer:
1. On the day the school closed for the summer, Rithik was the most delighted student. – Superlative degree
2. On the day the school closed for the summer, Rithik was more delighted than any other student. – Comparative degree

Spot the error in the following sentences and rewrite them correctly:

Question 1.
There is room for much boxes in this cupboard.
Answer:
There is room for many boxes in this cupboard.

Maharashtra Board Solutions

Question 2.
If I requires help for him in public places, I was not embarrassed to seek it from people around.
Answer:
If I required help for him in public places, I was not embarrassed to seek it from people around.

12th Std English Questions And Answers: