Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 9 Differentiation Miscellaneous Exercise 9 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9

(I) Select the appropriate option from the given alternatives.

Question 1.
If y = \(\frac{x-4}{\sqrt{x+2}}\), then \(\frac{d y}{d x}\) is
(A) \(\frac{1}{x+4}\)
(B) \(\frac{\sqrt{x}}{\left(\sqrt{x+2)^{2}}\right.}\)
(C) \(\frac{1}{2 \sqrt{x}}\)
(D) \(\frac{x}{(\sqrt{x}+2)^{2}}\)
Answer:
(C) \(\frac{1}{2 \sqrt{x}}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 I Q1

Question 2.
If y = \(\frac{a x+b}{c x+d}\),then \(\frac{d y}{d x}\) =
(A) \(\frac{a b-c d}{(c x+d)^{2}}\)
(B) \(\frac{a x-c}{(c x+d)^{2}}\)
(C) \(\frac{a c-b d}{(c x+d)^{2}}\)
(D) \(\frac{a d-b c}{(c x+d)^{2}}\)
Answer:
(D) \(\frac{a d-b c}{(c x+d)^{2}}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 I Q2

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9

Question 3.
If y = \(\frac{3 x+5}{4 x+5}\), then \(\frac{d y}{d x}\) =
(A) \(-\frac{15}{(3 x+5)^{2}}\)
(B) \(-\frac{15}{(4 x+5)^{2}}\)
(C) \(-\frac{5}{(4 x+5)^{2}}\)
(D) \(-\frac{13}{(4 x+5)^{2}}\)
Answer:
(C) \(-\frac{5}{(4 x+5)^{2}}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 I Q3

Question 4.
If y = \(\frac{5 \sin x-2}{4 \sin x+3}\), then \(\frac{d y}{d x}\) =
(A) \(\frac{7 \cos x}{(4 \sin x+3)^{2}}\)
(B) \(\frac{23 \cos x}{(4 \sin x+3)^{2}}\)
(C) \(-\frac{7 \cos x}{(4 \sin x+3)^{2}}\)
(D) \(-\frac{15 \cos x}{(4 \sin x+3)^{2}}\)
Answer:
(B) \(\frac{23 \cos x}{(4 \sin x+3)^{2}}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 I Q4

Question 5.
Suppose f(x) is the derivative of g(x) and g(x) is the derivative of h(x).
If h(x) = a sin x + b cos x + c, then f(x) + h(x) =
(A) 0
(B) c
(C) -c
(D) -2(a sin x + b cos x)
Answer:
(B) c
Hint:
h(x) = a sin x + b cos x + c
Differentiating w.r.t. x, we get
h'(x) = a cos x – b sin x = g(x) …..[given]
Differentiating w.r.t. x, we get
g'(x) = -a sin x – b cos x = f(x) …..[given]
∴ f(x) + h(x) = -a sin x – b cos x + a sin x + b cos x + c
∴ f(x) + h(x) = c

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9

Question 6.
If f(x) = 2x + 6, for 0 ≤ x ≤ 2
= ax2 + bx, for 2 < x ≤ 4
is differentiable at x = 2, then the values of a and b are
(A) a = \(-\frac{3}{2}\), b = 3
(B) a = \(\frac{3}{2}\), b = 8
(C) a = \(\frac{1}{2}\), b = 8
(D) a = \(-\frac{3}{2}\), b = 8
Answer:
(D) a = \(-\frac{3}{2}\), b = 8
Hint:
f(x) = 2x + 6, 0 ≤ x ≤ 2
= ax2 + bx, 2 < x ≤ 4
Lf'(2) = 2, Rf'(2) = 4a + b
Since f is differentiable at x = 2,
Lf'(2) = Rf'(2)
∴ 2 = 4a + b …..(i)
f is continuous at x = 2.
∴ \(\lim _{x \rightarrow 2^{+}} f(x)=f(2)=\lim _{x \rightarrow 2^{-}} f(x)\)
∴ 4a + 2b = 2(2) + 6
∴ 4a + 2b = 10
∴ 2a + b = 5 …..(ii)
Solving (i) and (ii), we get
a = \(-\frac{3}{2}\), b = 8

Question 7.
If f(x) = x2 + sin x + 1, for x ≤ 0
= x2 – 2x + 1, for x ≤ 0, then
(A) f is continuous at x = 0, but not differentiable at x = 0
(B) f is neither continuous nor differentiable at x = 0
(C) f is not continuous at x = 0, but differentiable at x = 0
(D) f is both continuous and differentiable at x = 0
Answer:
(A) f is continuous at x = 0, but not differentiable at x = 0
Hint:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 I Q7

Question 8.
If f(x) = \(\frac{x^{50}}{50}+\frac{x^{49}}{49}+\frac{x^{48}}{48}+\ldots .+\frac{x^{2}}{2}+x+1\), then f'(1) =
(A) 48
(B) 49
(C) 50
(D) 51
Answer:
(C) 50
Hint:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 I Q8

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9

(II).

Question 1.
Determine whether the following function is differentiable at x = 3 where,
f(x) = x2 + 2, for x ≥ 3
= 6x – 7, for x < 3.
Solution:
f(x) = x2 + 2, x ≥ 3
= 6x – 7, x < 3
Differentiability at x = 3
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q1
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q1.1
Here, Lf'(3) = Rf'(3)
∴ f is differentiable at x = 3.

Question 2.
Find the values of p and q that make function f(x) differentiable everywhere on R.
f(x) = 3 – x, for x < 1
= px2 + qx, for x ≥ 1.
Solution:
f(x) is differentiable everywhere on R.
∴ f(x) is differentiable at x = 1.
∴ f(x) is continuous at x = 1.
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q2
f(x) is differentiable at x = 1.
∴ Lf'(1) = Rf'(1)
∴ -1 = 2p + q …..(ii)
Subtracting (i) from (ii), we get
p = -3
Substituting p = -3 in (i), we get
p + q = 2
∴ -3 + q = 2
∴ q = 5

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9

Question 3.
Determine the values of p and q that make the function f(x) differentiable on R where
f(x) = px3, for x < 2
= x2 + q, for x ≥ 2
Solution:
f(x) is differentiable on R.
∴ f(x) is differentiable at x = 2.
∴ f(x) is continuous at x = 2.
Continuity at x = 2:
f(x) is continuous at x = 2.
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q3
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q3.1
f(x) is differentiable at x = 2.
∴ Lf'(2) = Rf'(2)
∴ 12p = 4
∴ p = \(\frac{1}{3}\)
Substituting p = \(\frac{1}{3}\) in (i), we get
8(\(\frac{1}{3}\) – q = 4
∴ q = \(\frac{8}{3}\) – 4 = \(\frac{-4}{3}\)

Question 4.
Determine all real values of p and q that ensure the function
f(x) = px + q, for x ≤ 1
= tan(\(\frac{\pi x}{4}\)), for 1 < x < 2
is differentiable at x = 1.
Solution:
f(x) is differentiable at x = 1.
∴ f(x) is continuous at x = 1.
Continuity at x= 1:
f(x) is continuous at x = 1.
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q4
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q4.1

Question 5.
Discuss whether the function f(x) = |x + 1| + |x – 1| is differentiable ∀ x ∈ R.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q5
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q5.1
Here, Lf'(1) ≠ Rf'(1)
∴ f is not differentiable at x = 1.
∴ f is not differentiable at x = -1 and x = 1.
∴ f is not differentiable ∀ x ∈ R.

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9

Question 6.
Test whether the function
f(x) = 2x – 3, for x ≥ 2
= x – 1, for x < 2
is differentiable at x = 2.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q6

Question 7.
Test whether the function
f(x) = x2 + 1, for x ≥ 2
= 2x + 1, for x < 2
is differentiable at x = 2.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q7
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q7.1

Question 8.
Test whether the function
f(x) = 5x – 3x2, for x ≥ 1
= 3 – x, for x < 1
is differentiable at x = 1.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q8
Here, Lf'(1) = Rf'(1)
∴ f(x) is differentiable at x = 1.

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9

Question 9.
If f(2) = 4, f'(2) = 1, then find \(\lim _{x \rightarrow 2}\left[\frac{x f(2)-2 f(x)}{x-2}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q9

Question 10.
If y = \(\frac{\mathbf{e}^{x}}{\sqrt{x}}\), find \(\frac{d y}{d x}\) when x = 1.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q10

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 9 Differentiation Ex 9.2 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2

(I) Differentiate the following w.r.t. x

Question 1.
y = \(x^{\frac{4}{3}}+e^{x}-\sin x\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q1

Question 2.
y = √x + tan x – x3
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q2

Question 3.
y = log x – cosec x + \(5^{x}-\frac{3}{x^{\frac{3}{2}}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q3

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2

Question 4.
y = \(x^{\frac{7}{3}}+5 x^{\frac{4}{5}}-\frac{5}{x^{\frac{2}{5}}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q4
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q4.1

Question 5.
y = 7x + x7 – \(\frac{2}{3}\) x√x – log x + 77
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q5

Question 6.
y = 3 cot x – 5ex + 3 log x – \(\frac{4}{x^{\frac{3}{4}}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 I Q6

(II) Diffrentiate the following w.r.t. x

Question 1.
y = x5 tan x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q1

Question 2.
y = x3 log x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q2

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2

Question 3.
y = (x2 + 2)2 sin x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q3

Question 4.
y = ex log x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q4

Question 5.
y = \(x^{\frac{3}{2}} e^{x} \log x\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q5

Question 6.
y = \(\log e^{x^{3}} \log x^{3}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 II Q6

(III) Diffrentiate the following w.r.t. x

Question 1.
y = x2√x + x4 log x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 III Q1
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 III Q1.1

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2

Question 2.
y = ex sec x – \(x^{\frac{5}{3}}\) log x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 III Q2

Question 3.
y = x4 + x√x cos x – x2 ex
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 III Q3

Question 4.
y = (x3 – 2) tan x – x cos x + 7x . x7
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 III Q4

Question 5.
y = sin x log x + ex cos x – ex √x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 III Q5

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2

Question 6.
y = ex tan x + cos x log x – √x 5x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 III Q6
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 III Q6.1

(IV) Diffrentiate the following w.r.t.x.

Question 1.
y = \(\frac{x^{2}+3}{x^{2}-5}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 IV Q1

Question 2.
y = \(\frac{\sqrt{x}+5}{\sqrt{x}-5}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 IV Q2
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 IV Q2.1

Question 3.
y = \(\frac{x e^{x}}{x+e^{x}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 IV Q3

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2

Question 4.
y = \(\frac{x \log x}{x+\log x}\)
Solution:
y = \(\frac{x \log x}{x+\log x}\)
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 IV Q4

Question 5.
y = \(\frac{x^{2} \sin x}{x+\cos x}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 IV Q5

Question 6.
y = \(\frac{5 e^{x}-4}{3 e^{x}-2}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 IV Q6

(V).

Question 1.
If f(x) is a quadratic polynomial such that f(0) = 3, f'(2) = 2 and f'(3) = 12, then find f(x).
Solution:
Let f(x) = ax2 + bx + c …..(i)
∴ f(0) = a(0)2 + b(0) + c
∴ f(0) = c
But, f(0) = 3 …..(given)
∴ c = 3 …..(ii)
Differentiating (i) w.r.t. x, we get
f'(x) = 2ax + b
∴ f'(2) = 2a(2) + b
∴ f'(2) = 4a + b
But, f'(2) = 2 …..(given)
∴ 4a + b = 2 …..(iii)
Also, f'(3) = 2a(3) + b
∴ f'(3) = 6a + b
But, f'(3) = 12 …..(given)
∴ 6a + b = 12 …..(iv)
equation (iv) – equation (iii), we get
2a = 10
∴ a = 5
Substituting a = 5 in (iii), we get
4(5) + b = 2
∴ b = -18
∴ a = 5, b = -18, c = 3
∴ f(x) = 5x2 – 18x + 3

Check:
If f(0) = 3, f'(2) = 2 and f'(3) = 12, then our answer is correct.
f(x) = 5x2 – 18x + 3 and f'(x) = 10x – 18
f(0) = 5(0)2 – 18(0) + 3 = 3
f'(2) = 10(2) – 18 = 2
f'(3) = 10(3) – 18 = 12
Thus, our answer is correct.

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2

Question 2.
If f(x) = a sin x – b cos x, f'(\(\frac{\pi}{4}\)) = √2 and f'(\(\frac{\pi}{6}\)) = 2, then find f(x).
Solution:
f(x) = a sin x – b cos x
Differentiating w.r.t. x, we get
f'(x) = a cos x – b (- sin x)
∴ f'(x) = a cos x + b sin x
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 V Q2
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 V Q2.1
Now, f(x) = a sin x – b cos x
∴ f(x) = (√3 + 1) sin x + (√3 – 1) cos x

VI. Fill in the blanks. (Activity Problems)

Question 1.
y = ex . tan x
Diff. w.r.t. x
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 VI Q1
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 VI Q1.1

Question 2.
y = \(\frac{\sin x}{x^{2}+2}\)
diff. w.r.t. x
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 VI Q2
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 VI Q2.1

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2

Question 3.
y = (3x2 + 5) cos x
Diff. w.r.t. x
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 VI Q3
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 VI Q3.1

Question 4.
Differentiate tan x and sec x w.r.t. x using the formulae for differentiation of \(\frac{u}{v}\) and \(\frac{1}{v}\) respectively.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 VI Q4
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.2 VI Q4.1

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 9 Differentiation Ex 9.1 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1

Question 1.
Find the derivatives of the following w.r.t. x by using the method of the first principle.
(a) x2 + 3x – 1
Solution:
Let f(x) = x2 + 3x – 1
∴ f(x + h) = (x + h)2 + 3(x + h) – 1
= x2 + 2xh + h2 + 3x + 3h – 1
By first principle, we get
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (i)

(b) sin(3x)
Solution:
Let f(x) = sin 3x
f(x + h) = sin3(x + h) = sin(3x + 3h)
By first principle, we get
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (ii)
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (ii).1

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1

(c) e2x+1
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (iii)

(d) 3x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (iv)

(e) log(2x + 5)
Solution:
Let f(x) = log(2x + 5)
∴ f(x + h) = log[2(x + h) + 5] = log (2x + 2h + 5)
By first principle, we get
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (v)
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (v).1

(f) tan(2x + 3)
Solution:
Let f(x) = tan(2x + 3)
∴ f(x + h) = tan[2(x + h) + 3] = tan(2x + 2h + 3)
By first principle, we get
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (vi)
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (vi).1

(g) sec(5x – 2)
Solution:
Let f(x) = sec(5x – 2)
f(x + h) = sec[5(x + h) – 2] = sec(5x + 5h – 2)
By first principle, we get
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (vii)
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (vii).1

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1

(h) x√x
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q1 (viii)

Question 2.
Find the derivatives of the following w.r.t. x. at the points indicated against them by using the method of the first principle.
(i) \(\sqrt{2 x+5}\) at x = 2
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q2 (i)

(ii) tan x at x = \(\frac{\pi}{4}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q2 (ii)
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q2 (ii).1

(iii) 23x+1 at x = 2
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q2 (iii)

(iv) log(2x + 1) at x = 2
Solution:
Let f(x) = log(2x + 1)
∴ f(2) = log [2(2) + 1] = log 5 and
f(2 + h) = log [2(2 + h) + 1] = log(2h + 5)
By first principle, we get
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q2 (iv)

(v) e3x-4 at x = 2
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q2 (v)

(vi) cos x at x = \(\frac{5 \pi}{4}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q2 (vi)
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q2 (vi).1
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q2 (vi).2

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1

Question 3.
Show that the function f is not differentiable at x = -3,
where f(x) = x2 + 2 for x < -3
= 2 – 3x for x ≥ -3
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q3
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q3.1
∴ L f'(-3) ≠ R f'(-3)
∴ f is not differentiable at x = -3.

Question 4.
Show that f(x) = x2 is continuous and differentiable at x = 0.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q4

Question 5.
Discuss the continuity and differentiability of
(i) f(x) = x |x| at x = 0
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q5 (i)

(ii) f(x) = (2x + 3) |2x + 3| at x = \(-\frac{3}{2}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q5 (ii)
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q5 (ii).1
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q5 (ii).2

Question 6.
Discuss the continuity and differentiability of f(x) at x = 2.
f(x) = [x] if x ∈ [0, 4). [where [ ] is a greatest integer (floor) function]
Solution:
Explanation:
x ∈ [0, 4)
∴ 0 ≤ x < 4
We will plot graph for 0 ≤ x < 4
not for x < 0 and upto x = 4 making on X-axis.
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q6
f(x) = [x]
∴ Greatest integer function is discontinuous at all integer values of x and hence not differentiable at all integers.
∴ f is not continuous at x = 2.
∵ f(x) = 1, x < 2
= 2, x ≥ 2
x ∈ neighbourhood of x = 2.
∴ L.H.L. = 1, R.H.L. = 2
∴ f is not continuous at x = 2.
∴ f is not differentiable at x = 2.

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1

Question 7.
Test the continuity and differentiability of
f(x) = 3x + 2 if x > 2
= 12 – x2 if x ≤ 2 at x = 2.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q7
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q7.1

Question 8.
If f(x) = sin x – cos x if x ≤ \(\frac{\pi}{2}\)
= 2x – π + 1 if x > \(\frac{\pi}{2}\)
Test the continuity and differentiability of f at x = \(\frac{\pi}{2}\).
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q8
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q8.1
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q8.2

Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1

Question 9.
Examine the function
f(x) = x2 cos(\(\frac{1}{x}\)), for x ≠ 0
= 0, for x = 0
for continuity and differentiability at x = 0.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 9 Differentiation Ex 9.1 Q9

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 8 Continuity Miscellaneous Exercise 8 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

(I) Select the correct answer from the given alternatives.

Question 1.
f(x) = \(\frac{2^{\cot x}-1}{\pi-2 x}\), for x ≠ \(\frac{\pi}{2}\)
= log √2, for x = \(\frac{\pi}{2}\)
(A) f is continuous at x = \(\frac{\pi}{2}\)
(B) f has a jump discontinuity at x = \(\frac{\pi}{2}\)
(C) f has a removable discontinuity
(D) \(\lim _{x \rightarrow \frac{\pi}{2}} f(x)=2 \log 3\)
Answer:
(A) f is continuous at x = \(\frac{\pi}{2}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q1

Question 2.
If f(x) = \(\frac{1-\sqrt{2} \sin x}{\pi-4 x}\), for x ≠ \(\frac{\pi}{4}\) is continuous at x = \(\frac{\pi}{4}\), then f(\(\frac{\pi}{4}\)) =
(A) \(\frac{1}{\sqrt{2}}\)
(B) \(-\frac{1}{\sqrt{2}}\)
(C) \(-\frac{1}{4}\)
(D) \(\frac{1}{4}\)
Answer:
(D) \(\frac{1}{4}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q2
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q2.1

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Question 3.
If f(x) = \(\frac{(\sin 2 x) \tan 5 x}{\left(e^{2 x}-1\right)^{2}}\), for x ≠ 0 is continuous at x = 0, then f(0) is
(A) \(\frac{10}{e^{2}}\)
(B) \(\frac{10}{e^{4}}\)
(C) \(\frac{5}{4}\)
(D) \(\frac{5}{2}\)
Answer:
(D) \(\frac{5}{2}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q3

Question 4.
f(x) = \(\frac{x^{2}-7 x+10}{x^{2}+2 x-8}\), for x ∈ [-6, -3]
(A) f is discontinuous at x = 2
(B) f is discontinuous at x = -4
(C) f is discontinuous at x = 0
(D) f is discontinuous at x = 2 and x = -4
Answer:
(B) f is discontinuous at x = -4
Hint:
f(x) = \(\frac{x^{2}-7 x+10}{x^{2}+2 x-8}\), for x ∈ [-6, -3]
= \(\frac{x^{2}-7 x+10}{(x+4)(x-2)}\)
Here f(x) is a rational function and is continuous everywhere except at the points Where denominator becomes zero.
Here, denominator becomes zero when x = -4 or x = 2
But x = 2 does not lie in the given interval.
∴ x = -4 is the point of discontinuity.

Question 5.
If f(x) = ax2 + bx + 1, for |x – 1| ≥ 3 and
= 4x + 5, for -2 < x < 4
is continuous everywhere then,
(A) a = \(\frac{1}{2}\), b = 3
(B) a = \(-\frac{1}{2}\), b = -3
(C) a = \(-\frac{1}{2}\), b = 3
(D) a = \(\frac{1}{2}\), b = -3
Answer:
(A) a = \(\frac{1}{2}\), b = 3
Hint:
f(x) = ax2 + bx + 1, |x – 1| ≥ 3
= 4x + 5; -2 < x < 4
The first interval is
|x – 1| ≥ 3
∴ x – 1 ≥ 3 or x – 1 ≤ -3
∴ x ≥ 4 or x ≤ -2
∴ f(x) is same for x ≤ -2 as well as x ≥ 4.
∴ f(x) is defined as:
f(x) = ax2 + bx + 1; x ≤ -2
= 4x + 5; -2 < x < 4
= ax2 + bx + 1; x ≥ 4
f(x) is continuous everywhere.
∴ f(x) is continuous at x = -2 and x = 4.
As f(x) is continuous at x = -2,
\(\lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow-2^{+}} f(x)\)
∴ \(\lim _{x \rightarrow-2}\left(a x^{2}+b x+1\right)=\lim _{x \rightarrow-2}(4 x+5)\)
∴ a(-2)2 + b(-2) + 1 = 4(-2) + 5
∴ 4a – 2b + 1 = -3
∴ 4a – 2b = -4
∴ 2a – b = -2 …..(i)
∵ f(x) is continuous at x = 4,
\(\lim _{x \rightarrow 4^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 4^{+}} \mathrm{f}(x)\)
∴ \(\lim _{x \rightarrow 4}(4 x+5)=\lim _{x \rightarrow 4}\left(a x^{2}+b x+1\right)\)
4(4) + 5 = a(4)2 + b(4) + 1
16a + 4b + 1 = 21
16a + 4b = 20
4a + b = 5 …..(ii)
Adding (i) and (ii), we get
6a = 3
∴ a = \(\frac{1}{2}\)
Substituting a = \(\frac{1}{2}\) in (ii), we get
4(\(\frac{1}{2}\)) + b = 5
∴ 2 + b = 5
∴ b = 3
∴ a = \(\frac{1}{2}\), b = 3

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Question 6.
f(x) = \(\frac{\left(16^{x}-1\right)\left(9^{x}-1\right)}{\left(27^{x}-1\right)\left(32^{x}-1\right)}\), for x ≠ 0
= k, for x = 0
is continuous at x = 0, then ‘k’ =
(A) \(\frac{8}{3}\)
(B) \(\frac{8}{15}\)
(C) \(-\frac{8}{15}\)
(D) \(\frac{20}{3}\)
Answer:
(B) \(\frac{8}{15}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q6

Question 7.
f(x) = \(\frac{32^{x}-8^{x}-4^{x}+1}{4^{x}-2^{x+1}+1}\), for x ≠ 0
= k, for x = 0,
is continuous at x = 0, then value of ‘k’ is
(A) 6
(B) 4
(C) (log 2) (log 4)
(D) 3 log 4
Answer:
(A) 6
Hint:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q7
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q7.1

Question 8.
If f(x) = \(\frac{12^{x}-4^{x}-3^{x}+1}{1-\cos 2 x}\), for x ≠ 0 is continuous at x = 0 then the value of f(0) is
(A) \(\frac{\log 12}{2}\)
(B) log 2 . log 3
(C) \(\frac{\log 2 \cdot \log 3}{2}\)
(D) None of these
Answer:
(B) log 2 . log 3
Hint:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q8

Question 9.
If f(x) = \(\left(\frac{4+5 x}{4-7 x}\right)^{\frac{4}{x}}\), for x ≠ 0 and f(0) = k, is continuous at x = 0, then k is
(A) e7
(B) e3
(C) e12
(D) \(e^{\frac{3}{4}}\)
Answer:
(C) e12
Hint:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q9
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 I Q9.1

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Question 10.
If f(x) = \(\lfloor x\rfloor\) for x ∈ (-1, 2), then f is discontinuous at
(A) x = -1, 0, 1, 2
(B) x = -1, 0, 1
(C) x = 0, 1
(D) x = 2
Answer:
(C) x = 0, 1
Hint:
f(x) = \(\lfloor x\rfloor\), x ∈ (-1, 2)
This function is discontinuous at all integer values of x between -1 and 2.
∴ f(x) is discontinuous at x = 0 and x = 1.

II. Discuss the continuity of the following functions at the point(s) or on the interval indicated against them.

Question 1.
f(x) = \(\frac{x^{2}-3 x-10}{x-5}\), for 3 ≤ x ≤ 6, x ≠ 5
= 10, for x = 5
= \(\frac{x^{2}-3 x-10}{x-5}\), for 6 < x ≤ 9
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q1

Question 2.
f(x) = 2x2 – 2x + 5, for 0 ≤ x ≤ 2
= \(\frac{1-3 x-x^{2}}{1-x}\), for 2 < x < 4
= \(\frac{x^{2}-25}{x-5}\), for 4 ≤ x ≤ 7 and x ≠ 5
= 7, for x = 5
Solution:
The domain of f(x) is [0, 7].
(i) For 0 ≤ x ≤ 2
f(x) = 2x2 – 2x + 5
It is a polynomial function and is Continuous at all point in [0, 2).

(ii) For 2 < x < 4
f(x) = \(\frac{1-3 x-x^{2}}{1-x}\)
It is a rational function and is continuous everwhere except at points where its denominator becomes zero.
Denominator becomes zero at x = 1
But x = 1 does not lie in the interval.
f(x) is continuous at all points in (2, 4).

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

(iii) For 4 ≤ x ≤ 7, x ≤ 5
f(x) = \(\frac{x^{2}-25}{x-5}\)
It is a rational function and is continuous everywhere except at points where its denominator becomes zero.
Denominator becomes zero at x = 5
But x = 5 does not lie in the interval.
∴ f(x) is continuous at all points in (4, 7] – {5}.

(iv) For continuity at x = 2:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q2 (iv)
∴ f(x) is continuous at x = 2.

(v) For continuity at x = 4:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q2 (v)
∴ f(x) is continuous at x = 4.

(vi) For continuity at x = 5.
f(5) = 7
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q2 (vi)
∴ f(x) is discontinuous at x = 5.
Thus, f(x) is continuous at all points on its domain except at x = 5.

Question 3.
f(x) = \(\frac{\cos 4 x-\cos 9 x}{1-\cos x}\), for x ≠ 0
f(0) = \(\frac{68}{15}\), at x = 0 on \(-\frac{\pi}{2}\) ≤ x ≤ \(\frac{\pi}{2}\)
Solution:
The domain of f(x) is [\(-\frac{\pi}{2}\), \(\frac{\pi}{2}\)]
(i) For [\(-\frac{\pi}{2}\), \(\frac{\pi}{2}\)] – {0}:
f(x) = \(\frac{\cos 4 x-\cos 9 x}{1-\cos x}\)
It is a rational function and is continuous everywhere except at points where its denominator becomes zero.
Denominator becomes zero when cos x = 1,
i.e., x = 0
But x = 0 does not lie in the interval.
∴ f(x) is continuous at all points in [\(-\frac{\pi}{2}\), \(\frac{\pi}{2}\)] – {0}

(ii) For continuity at x = 0:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q3 (ii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q3 (ii).1
∴ \(\lim _{x \rightarrow 0} f(x) \neq f(0)\)
∴ f(x) is discontinuous at x = 0.

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Question 4.
f(x) = \(\frac{\sin ^{2} \pi x}{3(1-x)^{2}}\), for x ≠ 1
= \(\frac{\pi^{2} \sin ^{2}\left(\frac{\pi x}{2}\right)}{3+4 \cos ^{2}\left(\frac{\pi x}{2}\right)}\), for x = 1, at x = 1
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q4

Question 5.
f(x) = \(\frac{|x+1|}{2 x^{2}+x-1}\), for x ≠ -1
= 0, for x = -1, at x = -1
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q5
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q5.1

Question 6.
f(x) = [x + 1] for x ∈ [-2, 2)
Where [*] is greatest integer function.
Solution:
f(x) = [x + 1], x ∈ [-2, 2)
∴ f(x) = -1, x ∈ [-2, -1)
= 0, x ∈ [-1, 0)
= 1, x ∈ [0, 1)
= 2, x ∈ [1, 2)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q6
∴ \(\lim _{x \rightarrow-1^{-}} \mathrm{f}(x)=\lim _{x \rightarrow-1^{+}} \mathrm{f}(x)\)
∴ f(x) is discontinuous at x = -1.
Similarly, f(x) is discontinuous at the points x = 0 and x = 1.

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Question 7.
f(x) = 2x2 + x + 1, for |x – 3| ≥ 2
= x2 + 3, for 1 < x < 5
Solution:
|x – 3| ≥ 2
∴ x – 3 ≥ 2 or x – 3 ≤ -2
∴ x ≥ 5 or x ≤ 1
∴ f(x) = 2x2 + x + 1, x ≤ 1
= x2 + 3, 1 < x < 5
= 2x2 + x + 1, x ≥ 5
Consider the intervals
x < 1 , i.e., (-∞, 1)
1 < x < 5, i.e., (1, 5) x > 5, i.e., (5, ∞)
In all these intervals, f(x) is a polynomial function and hence is continuous at all points.
For continuity at x = 1:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 II Q7
∴ f(x) is discontinuous at x = 5.
∴ f(x) is continuous for all x ∈ R, except at x = 5.

III. Identify discontinuities if any for the following functions as either a jump or a removable discontinuity on their respective domains.

Question 1.
f(x) = x2 + x – 3, for x ∈ [-5, -2)
= x2 – 5, for x ∈ (-2, 5]
Solution:
f(-2) has not been defined.
\(\lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow-2^{-}}\left(x^{2}+x-3\right)\)
= (-2)2 + (-2) – 3
= 4 – 2 – 3
= -1
\(\lim _{x \rightarrow-2^{+}} f(x)=\lim _{x \rightarrow-2^{+}}\left(x^{2}-5\right)\)
= (-2)2 – 5
= 4 – 5
= -1
∴ \(\lim _{x \rightarrow-2^{-}} f(x)=\lim _{x \rightarrow-2^{+}} f(x)\)
∴ \(\lim _{x \rightarrow-2} f(x) \text { exists. }\)
But f(-2) has not been defined.
∴ f(x) has a removable discontinuity at x = -2.

Question 2.
f(x) = x2 + 5x + 1, for 0 ≤ x ≤ 3
= x3 + x + 5, for 3 < x ≤ 6
Solution:
\(\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}\left(x^{2}+5 x+1\right)\)
= (3)2 + 5(3) + 1
= 9 + 15 + 1
= 25
\(\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}\left(x^{3}+x+5\right)\)
= (3)3 + 3 + 5
= 27 + 3 + 5
= 35
∴ \(\lim _{x \rightarrow 3^{-}} f(x) \neq \lim _{x \rightarrow 3^{+}} f(x)\)
∴ \(\lim _{x \rightarrow 3} f(x)\) does not exist.
∴ f(x) is discontinuous at x = 3.
∴ f(x) has a jump discontinuity at x = 3.

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Question 3.
f(x) = \(\frac{x^{2}+x+1}{x+1}\), for x ∈ [0, 3)
= \(\frac{3 x+4}{x^{2}-5}\), for x ∈ [3, 6]
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 III Q3
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 III Q3.1
∴ f(x) is continuous at x = 3.

IV. Discuss the continuity of the following functions at the point or on the interval indicated against them. If the function is discontinuous, identify the type of discontinuity and state whether the discontinuity is removable. If it has a removable discontinuity, redefine the function so that it becomes continuous.

Question 1.
f(x) = \(\frac{(x+3)\left(x^{2}-6 x+8\right)}{x^{2}-x-12}\)
Solution:
f(x) = \(\frac{(x+3)\left(x^{2}-6 x+8\right)}{x^{2}-x-12}\)
= \(\frac{(x+3)(x-2)(x-4)}{(x-4)(x+3)}\)
∴ f(x) is not defined at x = 4 and x = -3.
∴ The domain of function f = R – {-3, 4}.
For x ≠ -3 and 4,
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 IV Q1
f(x) is discontinuous at x = 4 and x = -3.
This discontinuity is removable.
∴ f(x) can be redefined as
f(x) = \(\frac{(x+3)\left(x^{2}-6 x+8\right)}{x^{2}-x-12}\), for x ≠ 4, x ≠ -3
= -5, for x ∈ R – {-3, 4}, x = -3
= 2, for x ∈ R – {-3, 4}, x = 4

Question 2.
f(x) = x2 + 2x + 5, for x ≤ 3
= x3 – 2x2 – 5, for x > 3
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 IV Q2
∴ f(x) is discontinuous at x = 3.
This discontinuity is irremovable.

V. Find k if the following functions are continuous at the points indicated against them.

Question 1.
f(x) = \(\left(\frac{5 x-8}{8-3 x}\right)^{\frac{3}{2 x-4}}\), for x ≠ 2
= k, for x = 2 at x = 2.
Solution:
f(x) is continuous at x = 2. …..(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 V Q1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 V Q1.1

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Question 2.
f(x) = \(\frac{45^{x}-9^{x}-5^{x}+1}{\left(k^{x}-1\right)\left(3^{x}-1\right)}\), for x ≠ 0
= \(\frac{2}{3}\), for x = 0, at x = 0
Solution:
f(x) is continuous at x = 0 …..(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 V Q2
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 V Q2.1

VI. Find a and b if the following functions are continuous at the points or on the interval indicated against them.

Question 1.
f(x) = \(\frac{4 \tan x+5 \sin x}{a^{x}-1}\), for x < 0
= \(\frac{9}{\log 2}\), for x = 0
= \(\frac{11 x+7 x \cdot \cos x}{b^{x}-1}\), for x < 0
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 VI Q1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 VI Q1.1

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Question 2.
f(x) = ax2 + bx + 1, for |2x – 3| ≥ 2
= 3x + 2, for \(\frac{1}{2}\) < x < \(\frac{5}{2}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 VI Q2
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 VI Q2.1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 VI Q2.2

VII. Find f(a), if f is continuous at x = a where,

Question 1.
f(x) = \(\frac{1+\cos (\pi x)}{\pi(1-x)^{2}}\), for x ≠ 1 and at a = 1.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 VII Q1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 VII Q1.1

Question 2.
f(x) = \(\frac{1-\cos [7(x-\pi)]}{5(x-\pi)^{2}}\), for x ≠ π and at a = π.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8 VII Q2

VIII. Solve using intermediate value theorem.

Question 1.
Show that 5x – 6x = 0 has a root in [1, 2].
Solution:
Let f(x) = 5x – 6x
5x and 6x are continuous functions for all x ∈ R.
∴ 5x – 6x is also continuous for all x ∈ R.
i.e., f(x) is continuous for all x ∈ R.
A root of f(x) exists, if f(x) = 0 for at least one value of x.
f(1) = 51 – 6(1) = -1 < 0
f(2) = (5)2 – 6(2) = 13 > 0
∴ f(1) < 0 and f(2) > 0
∴ By intermediate value theorem, there has to be a point ‘c’ between 1 and 2 such that f(c) = 0.
∴ There is a root of the given equation in [1, 2].

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Miscellaneous Exercise 8

Question 2.
Show that x3 – 5x2 + 3x + 6 = 0 has at least two real roots between x = 1 and x = 5.
Solution:
Let f(x) = x3 – 5x2 + 3x + 6
f(x) is a polynomial function and hence it is continuous for all x ∈ R.
A root of f(x) exists, if f(x) = 0 for at least one value of x.
Here, we have been asked to show that f(x) has at least two roots between x = 1 and x = 5.
f(1) = (1)3 – 5(1)2 + 3(1) + 6
= 5 > 0
f(2) = (2)3 – 5(2)2 + 3(2) + 6
= 8 – 20 + 6 + 6
= 0
∴ x = 2 is a root of f(x).
Also, f(3) = (3)3 – 5(3)2 + 3(3) + 6
= 27 – 45 + 9 + 6
= -3 < 0
f(4) = (4)3 – 5(4)2 + 3(4) + 6
= 64 – 80 + 12 + 6
= 2 > 0
∴ f(3) < 0 and f(4) > 0
∴ By intermediate value theorem, there has to be a point ‘c’ between 3 and 4 such that f(c) = 0.
∴ There are two roots, x = 2 and a root between x = 3 and x = 4.
Thus, there are at least two roots of the given equation between x = 1 and x = 5.

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 8 Continuity Ex 8.1 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

Question 1.
Examine the continuity of
(i) f(x) = x3 + 2x2 – x – 2 at x = -2
Solution:
Given, f(x) = x3 + 2x2 – x – 2
f(x) is a polynomial function and hence it is continuous for all x ∈ R.
∴ f(x) is continuous at x = -2.

(ii) f(x) = sin x, for x ≤ \(\frac{\pi}{4}\)
= cos x, for x > \(\frac{\pi}{4}\), at x = \(\frac{\pi}{4}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q1 (ii)

(iii) f(x) = \(\frac{x^{2}-9}{x-3}\), for x ≠ 3
= 8 for x = 3, at x = 3.
Solution:
f(3) = 8 ….(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q1 (iii)
∴ f(x) is discontinuous at x = 3.

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

Question 2.
Examine whether the function is continuous at the points indicated against them.
(i) f(x) = x3 – 2x + 1, if x ≤ 2
= 3x – 2, if x > 2, at x = 2.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q2 (i)

(ii) f(x) = \(\frac{x^{2}+18 x-19}{x-1}\), for x ≠ 1
= 20, for x = 1, at x = 1.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q2 (ii)

(iii) f(x) = \(\frac{x}{\tan 3 x}+2\), for x < 0
= \(\frac{7}{3}\), for x ≥ 0, at x = 0.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q2 (iii)

Question 3.
Find all the points of discontinuities of f(x) = [x] on the interval (-3, 2).
Solution:
f(x) = [x], x ∈ (-3, 2)
i.e., f(x) = -3, x ∈ (-3, -2)
= -2, x ∈ [-2, -1)
= -1, x ∈ [- 1, 0)
= 0, x ∈ [0, 1)
= 1, x ∈ [1, 2)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q3
Similarly, f(x) is discontinuous at the points x = -1, x = 0, x = 1.
Thus all the integer values of x in the interval (-3, 2),
i.e., the points x = -2, x = -1, x = 0 and x = 1 are the required points of discontinuities.

Question 4.
Discuss the continuity of the function f(x) = |2x + 3|, at x = \(\frac{-3}{2}\).
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q4
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q4.1

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

Question 5.
Test the continuity of the following functions at the points or intervals indicated against them.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5.1
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (i)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (ii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (ii).1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (iii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (iv)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (iv).1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (iv).2
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q5 (v)

Question 6.
Identify discontinuities for the following functions as either a jump or a removable discontinuity.
(i) f(x) = \(\frac{x^{2}-10 x+21}{x-7}\)
Solution:
Given, f(x) = \(\frac{x^{2}-10 x+21}{x-7}\)
It is a rational function and is discontinuous if
x – 7 = 0, i.e., x = 7
∴ f(x) is continuous for all x ∈ R, except at x = 7.
∴ f(7) is not defined.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q6 (i)
Thus, \(\lim _{x \rightarrow 7} \mathrm{f}(x)\) exist but f(7) is not defined.
∴ f(x) has a removable discontinuity.

(ii) f(x) = x2 + 3x – 2, for x ≤ 4
= 5x + 3, for x > 4.
Solution:
f(x) = x2 + 3x – 2, x ≤ 4
= 5x + 3, x > 4
f(x) is a polynomial function for both the intervals.
∴ f(x) is continuous for both the given intervals.
Let us test the continuity at x = 4.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q6 (ii)
∴ f(x) is discontinuous at x = 4.
∴ f(x) has a jump discontinuity at x = 4.

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

(iii) f(x) = x2 – 3x – 2, for x < -3 = 3 + 8x, for x > -3.
Solution:
f(x) = x2 – 3x – 2, x < -3 = 3 + 8x, x > -3
f(x) is a polynomial function for both the intervals.
∴ f(x) is continuous for both the given intervals.
Let us test the continuity at x = -3.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q6 (iii)
∴ f(x) is discontinuous at x = -3.
∴ f(x) has a jump discontinuity at x = -3

(iv) f(x) = 4 + sin x, for x < π = 3 – cos x for x > π.
Solution:
f(x) = 4 + sin x, x < π = 3 – cos x, x > π
sin x and cos x are continuous for all x ∈ R.
4 and 3 are constant functions.
∴ 4 + sin x and 3 – cos x are continuous for all x ∈ R.
∴ f(x) is continuous for both the given intervals.
Let us test the continuity at x = π.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q6 (iv)
But f(π) is not defined.
∴ f(x) has a removable discontinuity at x = π.

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

Question 7.
Show that the following functions have a continuous extension to the point where f(x) is not defined. Also, find the extension.
(i) f(x) = \(\frac{1-\cos 2 x}{\sin x}\), for x ≠ 0.
Solution:
f(x) = \(\frac{1-\cos 2 x}{\sin x}\), for x ≠ 0
Here, f(0) is not defined.
Consider,
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q7 (i)
But f(0) is not defined.
∴ f(x) has a removable discontinuity at x = 0.
∴ The extension of the original function is
f(x) = \(\frac{1-\cos 2 x}{\sin x}\) for x ≠ 0
= 0 for x = 0
∴ f(x) is continuous at x = 0.

(ii) f(x) = \(\frac{3 \sin ^{2} x+2 \cos x(1-\cos 2 x)}{2\left(1-\cos ^{2} x\right)}\), for x ≠ 0.
Solution:
f(x) = \(\frac{3 \sin ^{2} x+2 \cos x(1-\cos 2 x)}{2\left(1-\cos ^{2} x\right)}\), for x ≠ 0
Here, f(0) is not defined.
Consider,
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q7 (ii)
But f(0) is not defined.
∴ f(x) has a removable discontinuity at x = 0.
∴ The extension of the original function is
f(x) = \(\frac{3 \sin ^{2} x+2 \cos x(1-\cos 2 x)}{2\left(1-\cos ^{2} x\right)}\), x ≠ 0
= \(\frac{7}{2}\), x = 0
∴ f(x) is continuous at x = 0.

(iii) f(x) = \(\frac{x^{2}-1}{x^{3}+1}\), for x ≠ -1
Solution:
f(x) = \(\frac{x^{2}-1}{x^{3}+1}\), for x ≠ -1
Here, f(-1) is not defined.
Consider,
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q7 (iii)
But f(-1) is not defined.
∴ f(x) has a removable discontinuity at x = -1.
∴ The extension of the original function is
f(x) = \(\frac{x^{2}-1}{x^{3}+1}\), x ≠ -1
= \(-\frac{2}{3}\), x = -1
∴ f(x) is continuous at x = \(-\frac{2}{3}\)

Question 8.
Discuss the continuity of the following functions at the points indicated against them.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8 (i)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8 (i).1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8 (i).2
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8 (ii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8 (ii).1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8 (iii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q8 (iii).1

Question 9.
Which of the following functions has a removable discontinuity? If it has a removable discontinuity, redefine the function so that it becomes continuous.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9.1
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (i)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (i).1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (i).2
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (ii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (ii).1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (ii).2
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (iii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (iii).1
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (iv)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (v)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q9 (v).1

Question 10.
(i) If f(x) = \(\frac{\sqrt{2+\sin x}-\sqrt{3}}{\cos ^{2} x}\), for x ≠ \(\frac{\pi}{2}\), is continuous at x = \(\frac{\pi}{2}\) then find f(\(\frac{\pi}{2}\)).
Solution:
f(x) is continuous at x = \(\frac{\pi}{2}\), …..(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q10 (i)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q10 (i).1

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

(ii) If f(x) = \(\frac{\cos ^{2} x-\sin ^{2} x-1}{\sqrt{3 x^{2}+1}-1}\) for x ≠ 0, is continuous at x = 0 then find f(0).
Solution:
f(x) is continuous at x = 0, …..(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q10 (ii)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q10 (ii).1

(iii) If f(x) = \(\frac{4^{x-\pi}+4^{\pi-x}-2}{(x-\pi)^{2}}\) for x ≠ π, is continuous at x = π, then find f(π).
Solution:
f(x) is continuous at x = π, …..(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q10 (iii)

Question 11.
(i) If f(x) = \(\frac{24^{x}-8^{x}-3^{x}+1}{12^{x}-4^{x}-3^{x}+1}\), for x ≠ 0
= k, for x = 0
is continuous at x = 0, then find k.
Solution:
f(x) is continuous at x = 0 …..(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q11 (i)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q11 (i).1

(ii) If f(x) = \(\frac{5^{x}+5^{-x}-2}{x^{2}}\), for x ≠ 0
= k, for x = 0
is continuous at x = 0, then find k.
Solution:
f(x) is continuous at x = 0 …..(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q11 (ii)

(iii) If f(x) = \(\frac{\sin 2 x}{5 x}\) – a, for x > 0
= 4 for x = 0
= x2 + b – 3, for x < 0
is continuous at x = 0, find a and b.
Solution:
f(x) is continuous at x = 0 ……(given)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q11 (iii)

(iv) For what values of a and b is the function
f(x) = ax + 2b + 18, for x ≤ 0
= x2 + 3a – b, for 0 < x ≤ 2 = 8x – 2, for x > 2,
continuous for every x?
Solution:
f(x) is continuous for every x …..(given)
∴ f(x) is continuous at x = 0 and x = 2.
As f(x) is continuous at x = 0,
\(\lim _{x \rightarrow 0^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 0^{+}} \mathrm{f}(x)\)
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q11 (iv)
∴ (2)2 + 3a – b = 8(2) – 2
∴ 4 + 3a – b = 14
∴ 3a – b = 10 …….(ii)
Subtracting (i) from (ii), we get
2a = 4
∴ a = 2
Substituting a = 2 in (i), we get
2 – b = 6
∴ b = -4
∴ a = 2 and b = -4

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

(v) For what values of a and b is the function
f(x) = \(\frac{x^{2}-4}{x-2}\), for x < 2
= ax2 – bx + 3, for 2 ≤ x < 3
= 2x – a + b, for x ≥ 3
continuous for every x on R?
Solution:
f(x) is continuous for every x on R …..(given)
∴ f(x) is continuous at x = 2 and x = 3.
As f(x) is continuous at x = 2,
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q11 (v)
∴ a(3)2 – b(3) + 3 = 2(3) – a + b
∴ 9a – 3b + 3 = 6 – a + b
∴ 10a – 4b = 3 …..(ii)
Multiplying (i) by 2, we get
8a – 4b = 2 ….(iii)
Subtracting (ii) from (iii), we get
-2a = -1
∴ a = \(\frac{1}{2}\)
Substituting a = \(\frac{1}{2}\) in (i), we get
4(\(\frac{1}{2}\)) – 2b = 1
∴ 2 – 2b = 1
∴ 1 = 2b
∴ b = \(\frac{1}{2}\)
∴ a = \(\frac{1}{2}\) and b = \(\frac{1}{2}\)

Question 12.
Discuss the continuity of f on its domain, where
f(x) = |x + 1|, for -3 ≤ x ≤ 2
= |x – 5|, for 2 < x ≤ 7
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q12

Question 13.
Discuss the continuity of f(x) at x = \(\frac{\pi}{4}\) where,
f(x) = \(\frac{(\sin x+\cos x)^{3}-2 \sqrt{2}}{\sin 2 x-1}\), for x ≠ \(\frac{\pi}{4}\)
= \(\frac{3}{\sqrt{2}}\), for x = \(\frac{\pi}{4}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q13
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q13.1

Question 14.
Determine the values of p and q such that the following function is continuous on the entire real number line.
f(x) = x + 1, for 1 < x < 3
= x2 + px + q, for |x – 2| ≥ 1.
Solution:
|x – 2| ≥ 1
∴ x – 2 ≥ 1 or x – 2 ≤ -1
∴ x ≥ 3 or x ≤ 1
∴ f(x) = x2 + px + q for x ≥ 3 as well as x ≤ 1
Thus, f(x) = x2 + px + q; x ≤ 1
= x + 1; 1 < x < 3 = x2 + px + q; x > 3
f(x) is continuous for all x ∈ R.
∴ f(x) is continuous at x = 1 and x = 3.
As f(x) is continuous at x = 1,
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q14
Subtracting (i) from (ii), we get
2p = -6
∴ p = -3
Substituting p = -3 in (i), we get
-3 + q = 1
∴ q = 4
∴ p = -3 and q = 4

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

Question 15.
Show that there is a root for the equation 2x3 – x – 16 = 0 between 2 and 3.
Solution:
Let f(x) = 2x3 – x – 16
f(x) is a polynomial function and hence it is continuous for all x ∈ R.
A root of f(x) exists, if f(x) = 0 for at least one value of x.
f(2) = 2(2)3 – 2 – 16 = -2 < 0
f(3) = 2(3)3 – 3 – 16 = 35 > 0
∴ f(2) < 0 and f(3) > 0
∴ By intermediate value theorem,
there has to be point ‘c’ between 2 and 3 such that f(c) = 0.
∴ There is a root of the given equation between 2 and 3.

Question 16.
Show that there is a root for the equation x3 – 3x = 0 between 1 and 2.
Solution:
Let f(x) = x3 – 3x
f(x) is a polynomial function and hence it is continuous for all x ∈ R.
A root of f(x) exists, if f(x) = 0 for at least one value of x.
f(1) = (1)3 – 3(1) = -2 < 0
f(2) = (2)3 – 3(2) = 2 > 0
∴ f(1) < 0 and f(2) > 0
∴ By intermediate value theorem,
there has to be point ‘c’ between 1 and 2 such that f(c) = 0.
There is a root of the given equation between 1 and 2.

Question 17.
Let f(x) = ax + b (where a and b are unknown)
= x2 + 5 for x ∈ R
Find the values of a and b, so that f(x) is continuous at x = 1.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q17
Solution:
f(x) = x2 + 5, x ∈ R
∴ f(1) = 1 + 5 = 6
If f(x) = ax + b is continuous at x = 1, then
f(1) = \(\lim _{x \rightarrow 1}(a x+b)\) = a + b
∴ 6 = a + b where, a, b ∈ R
∴ There are infinitely many values of a and b.

Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1

Question 18.
Activity: Suppose f(x) = px + 3 for a ≤ x ≤ b
= 5x2 – q for b < x ≤ c
Find the condition on p, q, so that f(x) is continuous on [a, c], by filling in the boxes.
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q18
Solution:
Maharashtra Board 11th Maths Solutions Chapter 8 Continuity Ex 8.1 Q18.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 7 Limits Miscellaneous Exercise 7 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

I. Select the correct answer from the given alternatives.

Question 1.
\(\lim _{x \rightarrow 2}\left(\frac{x^{4}-16}{x^{2}-5 x+6}\right)=\)
(A) 23
(B) 32
(C) -32
(D) -16
Answer:
(C) -32
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q1

Question 2.
\(\lim _{x \rightarrow-2}\left(\frac{x^{7}+128}{x^{3}+8}\right)=\)
(A) \(\frac{56}{3}\)
(B) \(\frac{112}{3}\)
(C) \(\frac{121}{3}\)
(D) \(\frac{28}{3}\)
Answer:
(B) \(\frac{112}{3}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q2

Question 3.
\(\lim _{x \rightarrow 3}\left(\frac{1}{x^{2}-11 x+24}+\frac{1}{x^{2}-x-6}\right)=\)
(A) \(-\frac{2}{25}\)
(B) \(\frac{2}{25}\)
(C) \(\frac{7}{25}\)
(D) \(-\frac{7}{25}\)
Answer:
(A) \(-\frac{2}{25}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q3

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 4.
\(\lim _{x \rightarrow 5}\left(\frac{\sqrt{x+4}-3}{\sqrt{3 x-11-2}}\right)=\)
(A) \(\frac{-2}{9}\)
(B) \(\frac{2}{7}\)
(C) \(\frac{5}{9}\)
(D) \(\frac{2}{9}\)
Answer:
(D) \(\frac{2}{9}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q4

Question 5.
\(\lim _{x \rightarrow \frac{\pi}{3}}\left(\frac{\tan ^{2} x-3}{\sec ^{3} x-8}\right)=\)
(A) 1
(B) \(\frac{1}{2}\)
(C) \(\frac{1}{3}\)
(D) \(\frac{1}{4}\)
Answer:
(C) \(\frac{1}{3}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q5

Question 6.
\(\lim _{x \rightarrow 0}\left(\frac{5 \sin x-x \cos x}{2 \tan x-3 x^{2}}\right)=\)
(A) 0
(B) 1
(C) 2
(D) 3
Answer:
(C) 2
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q6

Question 7.
\(\lim _{x \rightarrow \frac{\pi}{2}}\left[\frac{3 \cos x+\cos 3 x}{(2 x-\pi)^{3}}\right]=\)
(A) \(\frac{3}{2}\)
(B) \(\frac{1}{2}\)
(C) \(-\frac{1}{2}\)
(D) \(\frac{1}{4}\)
Answer:
(C) \(-\frac{1}{2}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q7

Question 8.
\(\lim _{x \rightarrow 0}\left(\frac{15^{x}-3^{x}-5^{x}+1}{\sin ^{2} x}\right)=\)
(A) log 15
(B) log 3 + log 5
(C) log 3 . log 5
(D) 3 log 5
Answer:
(C) log 3 . log 5
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q8

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 9.
\(\lim _{x \rightarrow 0}\left(\frac{3+5 x}{3-4 x}\right)^{\frac{1}{x}}=\)
(A) e3
(B) e6
(C) e9
(D) e-3
Answer:
(A) e3
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q9

Question 10.
\(\lim _{x \rightarrow 0}\left[\frac{\log (5+x)-\log (5-x)}{\sin x}\right]=\)
(A) \(\frac{3}{2}\)
(B) \(-\frac{5}{2}\)
(C) \(-\frac{1}{2}\)
(D) \(\frac{2}{5}\)
Answer:
(D) \(\frac{2}{5}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q10

Question 11.
\(\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{3^{\cos x}-1}{\frac{\pi}{2}-x}\right)=\)
(A) 1
(B) log 3
(C) \(3^{\frac{\pi}{2}}\)
(D) 3 log 3
Answer:
(B) log 3
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q11
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q11.1

Question 12.
\(\lim _{x \rightarrow 0}\left[\frac{x \cdot \log (1+3 x)}{\left(e^{3 x}-1\right)^{2}}\right]=\)
(A) \(\frac{1}{\mathrm{e}^{9}}\)
(B) \(\frac{1}{\mathrm{e}^{3}}\)
(C) \(\frac{1}{9}\)
(D) \(\frac{1}{3}\)
Answer:
(D) \(\frac{1}{3}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q12

Question 13.
\(\lim _{x \rightarrow 0}\left[\frac{\left(3^{\sin x}-1\right)^{3}}{\left(3^{x}-1\right) \cdot \tan x \cdot \log (1+x)}\right]=\)
(A) 3 log 3
(B) 2 log 3
(C) (log 3)2
(D) (log 3)3
Answer:
(C) (log 3)2
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q13

Question 14.
\(\lim _{x \rightarrow 3}\left[\frac{5^{x-3}-4^{x-3}}{\sin (x-3)}\right]=\)
(A) log 5 – 4
(B) log \(\frac{5}{4}\)
(C) \(\frac{\log 5}{\log 4}\)
(D) \(\frac{\log 5}{4}\)
Answer:
(B) log \(\frac{5}{4}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q14

Question 15.
\(\lim _{x \rightarrow \infty}\left[\frac{(2 x+3)^{7}(x-5)^{3}}{(2 x-5)^{10}}\right]=\)
(A) \(\frac{3}{8}\)
(B) \(\frac{1}{8}\)
(C) \(\frac{1}{6}\)
(D) \(\frac{1}{4}\)
Answer:
(B) \(\frac{1}{8}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q15

(II) Evaluate the following.

Question 1.
\(\lim _{x \rightarrow 0}\left[\frac{(1-x)^{5}-1}{(1-x)^{3}-1}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q1

Question 2.
\(\lim _{x \rightarrow 0}[x]\) ([*] is a greatest integer function.)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q2
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q2.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 3.
If f(r) = πr2 then find \(\lim _{h \rightarrow 0}\left[\frac{f(r+h)-f(r)}{h}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q3

Question 4.
\(\lim _{x \rightarrow 0}\left[\frac{x}{|x|+x^{2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q4
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q4.1

Question 5.
Find the limit of the function, if it exists, at x = 1
\(f(x)=\left\{\begin{array}{lll}
7-4 x & \text { for } & x<1 \\
x^{2}+2 & \text { for } & x \geq 1
\end{array}\right.\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q5

Question 6.
Given that 7x ≤ f(x) ≤ 3x2 – 6 for all x. Determine the value of \(\lim _{x \rightarrow 3} f(x)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q6

Question 7.
\(\lim _{x \rightarrow 0}\left[\frac{\sec x^{2}-1}{x^{4}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q7
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q7.1

Question 8.
\(\lim _{x \rightarrow 0}\left[\frac{e^{x}+e^{-x}-2}{x \cdot \tan x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q8

Question 9.
\(\lim _{x \rightarrow 0}\left[\frac{x\left(6^{x}-3^{x}\right)}{\cos (6 x)-\cos (4 x)}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q9
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q9.1

Question 10.
\(\lim _{x \rightarrow 0}\left[\frac{a^{3 x}-a^{2 x}-a^{x}+1}{x \cdot \tan x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q10

Question 11.
\(\lim _{x \rightarrow a}\left[\frac{\sin x-\sin a}{x-a}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q11

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 12.
\(\lim _{x \rightarrow 2}\left[\frac{\log x-\log 2}{x-2}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q12

Question 13.
\(\lim _{x \rightarrow 1}\left[\frac{a b^{x}-a^{x} b}{x^{2}-1}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q13

Question 14.
\(\lim _{x \rightarrow 0}\left[\frac{\left(5^{x}-1\right)^{2}}{\left(2^{x}-1\right) \log (1+x)}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q14
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q14.1

Question 15.
\(\lim _{x \rightarrow \infty}\left[\frac{(2 x+1)^{2}(7 x-3)^{3}}{(5 x+2)^{5}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q15

Question 16.
\(\lim _{x \rightarrow a}\left[\frac{x \cos a-a \cos x}{x-a}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q16
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q16.1

Question 17.
\(\lim _{x \rightarrow \frac{\pi}{4}}\left[\frac{(\sin x-\cos x)^{2}}{\sqrt{2}-\sin x-\cos x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q17
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q17.1

Question 18.
\(\lim _{x \rightarrow 1}\left[\frac{2^{2 x-2}-2^{x}+1}{\sin ^{2}(x-1)}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q18

Question 19.
\(\lim _{x \rightarrow 1}\left[\frac{4^{x-1}-2^{x}+1}{(x-1)^{2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q19
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q19.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 20.
\(\lim _{x \rightarrow 1}\left[\frac{\sqrt{x}-1}{\log x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q20

Question 21.
\(\lim _{x \rightarrow 0}\left(\frac{\sqrt{1-\cos x}}{x}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q21
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q21.1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q21.2

Question 22.
\(\lim _{x \rightarrow 1}\left(\frac{x+3 x^{2}+5 x^{3}+\cdots \cdots \cdots \cdots \cdots+(2 n-1) x^{n}-n^{2}}{x-1}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q22
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q22.1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q22.2

Question 23.
\(\lim _{x \rightarrow 0} \frac{1}{x^{12}}\left[1-\cos \left(\frac{x^{2}}{2}\right)-\cos \left(\frac{x^{4}}{4}\right)+\cos \left(\frac{x^{2}}{2}\right) \cdot \cos \left(\frac{x^{4}}{4}\right)\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q23
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q23.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 24.
\(\lim _{x \rightarrow \infty}\left(\frac{8 x^{2}+5 x+3}{2 x^{2}-7 x-5}\right)^{\frac{4 x+3}{8 x-1}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q24
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q24.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 7 Limits Ex 7.7 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 7 Limits Ex 7.7

I. Evaluate the following:

Question 1.
\(\lim _{x \rightarrow \infty}\left[\frac{a x^{3}+b x^{2}+c x+d}{e x^{3}+f x^{2}+g x+h}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 I Q1

Question 2.
\(\lim _{x \rightarrow \infty}\left[\frac{x^{3}+3 x+2}{(x+4)(x-6)(x-3)}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 I Q2

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7

Question 3.
\(\lim _{x \rightarrow \infty}\left[\frac{7 x^{2}+5 x-3}{8 x^{2}-2 x+7}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 I Q3

II. Evaluate the following:

Question 1.
\(\lim _{x \rightarrow \infty}\left[\frac{7 x^{2}+2 x-3}{\sqrt{x^{4}+x+2}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 II Q1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 II Q1.1

Question 2.
\(\lim _{x \rightarrow \infty}\left[\sqrt{x^{2}+4 x+16}-\sqrt{x^{2}+16}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 II Q2
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 II Q2.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7

Question 3.
\(\lim _{x \rightarrow \infty}\left[\sqrt{x^{4}+4 x^{2}}-x^{2}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 II Q3
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 II Q3.1

III. Evaluate the following:

Question 1.
\(\lim _{x \rightarrow \infty}\left[\frac{\left(3 x^{2}+4\right)\left(4 x^{2}-6\right)\left(5 x^{2}+2\right)}{4 x^{6}+2 x^{4}-1}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q1.1

Question 2.
\(\lim _{x \rightarrow \infty}\left[\frac{(3 x-4)^{3}(4 x+3)^{4}}{(3 x+2)^{7}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q2

Question 3.
\(\lim _{x \rightarrow \infty}[\sqrt{x}(\sqrt{x+1}-\sqrt{x})]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q3
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q3.1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7

Question 4.
\(\lim _{x \rightarrow \infty}\left[\frac{(2 x-1)^{20}(3 x-1)^{30}}{(2 x+1)^{50}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q4

Question 5.
\(\lim _{x \rightarrow \infty}\left[\frac{\sqrt{x^{2}+5}-\sqrt{x^{2}-3}}{\sqrt{x^{2}+3}-\sqrt{x^{2}+1}}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q5
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q5.1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.7 III Q5.2

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 7 Limits Ex 7.6 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 7 Limits Ex 7.6

I. Evaluate the following limits:

Question 1.
\(\lim _{x \rightarrow 0}\left[\frac{9^{x}-5^{x}}{4^{x}-1}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 I Q1

Question 2.
\(\lim _{x \rightarrow 0}\left[\frac{5^{x}+3^{x}-2^{x}-1}{x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 I Q1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6

Question 3.
\(\lim _{x \rightarrow 0}\left(\frac{a^{x}+b^{x}+c^{x}-3}{\sin x}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 I Q3

Question 4.
\(\lim _{x \rightarrow 0}\left(\frac{6^{x}+5^{x}+4^{x}-3^{x+1}}{\sin x}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 I Q4
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 I Q4.1

Question 5.
\(\lim _{x \rightarrow 0}\left(\frac{8^{\sin x}-2^{\tan x}}{e^{2 x}-1}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 I Q5
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 I Q5.1
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 I Q5.2

II. Evaluate the following limits:

Question 1.
\(\lim _{x \rightarrow 0}\left[\frac{3^{x}+3^{-x}-2}{x \cdot \tan x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 II Q1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6

Question 2.
\(\lim _{x \rightarrow 0}\left[\frac{3+x}{3-x}\right]^{\frac{1}{x}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 II Q2
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 II Q2.1

Question 3.
\(\lim _{x \rightarrow 0}\left[\frac{5 x+3}{3-2 x}\right]^{\frac{2}{x}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 II Q3

Question 4.
\(\lim _{x \rightarrow 0}\left[\frac{\log (3-x)-\log (3+x)}{x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 II Q4

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6

Question 5.
\(\lim _{x \rightarrow 0}\left[\frac{4 x+1}{1-4 x}\right]^{\frac{1}{x}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 II Q5

Question 6.
\(\lim _{x \rightarrow 0}\left[\frac{5+7 x}{5-3 x}\right]^{\frac{1}{3 x}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 II Q6
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 II Q6.1

III. Evaluate the following limits:

Question 1.
\(\lim _{x \rightarrow 0}\left[\frac{a^{x}-b^{x}}{\sin (4 x)-\sin (2 x)}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 III Q1

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6

Question 2.
\(\lim _{x \rightarrow 0}\left[\frac{\left(2^{x}-1\right)^{3}}{\left(3^{x}-1\right) \cdot \sin x \cdot \log (1+x)}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 III Q2

Question 3.
\(\lim _{x \rightarrow 0}\left[\frac{15^{x}-5^{x}-3^{x}+1}{x \cdot \sin x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 III Q3

Question 4.
\(\lim _{x \rightarrow 0}\left[\frac{(25)^{x}-2(5)^{x}+1}{x \cdot \sin x}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 III Q4

Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6

Question 5.
\(\lim _{x \rightarrow 0}\left[\frac{(49)^{x}-2(35)^{x}+(25)^{x}}{\sin x \cdot \log (1+2 x)}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 III Q5
Maharashtra Board 11th Maths Solutions Chapter 7 Limits Ex 7.6 III Q5.1

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 5 Sets and Relations Ex 5.1 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1

Question 1.
Describe the following sets in Roster form:
(i) A = {x/x is a letter of the word ‘MOVEMENT’}
(ii) B = {x/x is an integer, –\(\frac{3}{2}\) < x < \(\frac{9}{2}\)>
(iii) C = {x/x = 2n + 1, n ∈ N}
Solution:
(i) A = {M, O, V, E, N, T}
(ii) B = {-1, 0, 1, 2, 3, 4}
(iii) C = {3, 5, 7, 9, … }

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1

Question 2.
Describe the following sets in Set-Builder form:
(i) {0}
(ii) {0, ±1, ±2, ±3}
(iii) \(\left\{\frac{1}{2}, \frac{2}{5}, \frac{3}{10}, \frac{4}{17}, \frac{5}{26}, \frac{6}{37}, \frac{7}{50}\right\}\)
(iv) {0, -1, 2, -3, 4, -5, 6,…}
Solution:
(i) Let A = {0}
0 is a whole number but it is not a natural number.
∴ A = {x / x ∈ W, x ∉ N}

(ii) Let B = {0, ±1, ±2, ±3}
B is the set of elements which belongs to Z from -3 to 3.
∴ B = {x /x ∈ Z, -3 ≤ x ≤ 3}

(iii) Let C = \(\left\{\frac{1}{2}, \frac{2}{5}, \frac{3}{10}, \frac{4}{17}, \frac{5}{26}, \frac{6}{37}, \frac{7}{50}\right\}\)
∴ C = {x / x = \(\frac{n}{n^{2}+1}\), n ∈ N, n ≤ 7}

(iv) Let D = {0, -1, 2, -3, 4, -5, 6, …}
∴ D = {x/x = (-1)n-1 × (n – 1), n ∈ N}

Question 3.
If A = {x / 6x2 + x – 15 = 0}, B = {x / 2x2 – 5x – 3 = 0}, C = {x / 2x2 – x – 3 = 0}, then find
(i) (A ∪ B ∪ C)
(ii) (A ∩ B ∩ C)
Solution:
A = [x/6x2 + x – 15 = 0)
6x2 + x – 15 = 0
6x2 + 10x – 9x – 15 = 0
2x(3x + 5) – 3(3x + 5) = 0
(3x + 5) (2x – 3) = 0
3x + 5 = 0 or 2x – 3 = 0
x = \(\frac{-5}{3}\) or x = \(\frac{3}{2}\)
A = {\(\frac{-5}{3}\), \(\frac{3}{2}\)}

B = {x/2x2 – 5x – 3 = 0}
2x2 – 5x – 3 = 0
2x2 – 6x + x – 3 = 0
2x(x – 3) + 1(x – 3) = 0
(x – 3)(2x + 1) = 0
x – 3 = 0 or 2x + 1 = 0
x = 3 or x = \(\frac{-1}{2}\)
B = (\(\frac{-1}{2}\), 3)

C = {x/2x2 – x – 3 = 0}
2x2 – x – 3 = 0
2x2 – 3x + 2x – 3 = 0
x(2x – 3) + 1(2x – 3) = 0
(2x – 3) (x + 1) = 0
2x – 3 = 0 or x + 1 = 0
x = \(\frac{3}{2}\) or x = -1
C = {-1, \(\frac{3}{2}\)}

(i) A ∪ B ∪ C = \(\left\{-\frac{5}{3}, \frac{3}{2}\right\} \cup\left\{\frac{-1}{2}, 3\right\} \cup\left\{-1, \frac{3}{2}\right\}\) = \(\left\{\frac{-5}{3},-1, \frac{-1}{2}, \frac{3}{2}, 3\right\}\)

(ii) A ∩ B ∩ C = { }

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1

Question 4.
If A, B, C are the sets for the letters in the words ‘college’, ‘marriage’ and ‘luggage’ respectively, then verify that [A – (B ∪ C)] = [(A – B) ∩ (A – C)].
Solution:
A = {c, o, l, g, e}
B = {m, a, r, i, g, e}
C = {l, u, g, a, e}
B ∪ C = {m, a, r, i, g, e, l, u}
A – (B ∪ C) = {c, o}
A – B = {c, o, l}
A – C = {c, o}
∴ [(A – B) ∩ (A – C)] = {c, o} = A – (B ∪ C)
∴ [A -( B ∪ C)] = [(A – B) ∩ (A – C)]

Question 5.
If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {4, 5, 6, 7, 8} and universal set X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, then verify the following:
(i) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
(ii) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
(iii) (A ∪ B)’ = A’ ∩ B’
(iv) (A ∩ B)’ = A’ ∪ B’
(v) A = (A ∩ B) ∪ (A ∩ B’)
(vi) B = (A ∩ B) ∪ (A’ ∩ B)
(vii) (A ∪ B) = (A – B) ∪ (A ∩ B) ∪ (B – A)
(viii) A ∩ (B ∆ C) = (A ∩ B) ∆ (A ∩ C)
(ix) n(A ∪ B) = n(A) + n(B) – n(A ∩ B)
(x) n(B) = n (A’ ∩ B) + n (A ∩ B)
Solution:
A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {4, 5, 6, 7, 8},
X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
(i) B ∩ C = {4, 5, 6}
∴ A ∪ (B ∩ C) = {1, 2, 3, 4, 5, 6} …..(i)
A ∪ B = {1, 2, 3, 4, 5, 6}
A ∪ C = {1, 2, 3, 4, 5, 6, 7, 8}
∴ (A ∪ B) ∩ (A ∪ C) = {1, 2, 3, 4, 5, 6} …….(ii)
From (i) and (ii), we get
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

(ii) B ∪ C = {3, 4, 5, 6, 7, 8}
∴ A ∩ (B ∪ C) = {3, 4} ………(i)
A ∩ B = {3, 4}
A ∩ C = {4}
∴ (A ∩ B) ∪ (A∩ C) = {3, 4} ……..(ii)
From (i) and (ii), we get
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

(iii) A ∪ B = {1, 2, 3, 4, 5, 6}
∴ (A ∪ B)’ = {7, 8, 9, 10} ………(i)
A’ = {5, 6, 7, 8, 9, 10},
B’ = {1, 2, 7, 8, 9,10}
∴ A’ ∩ B’ = {7, 8, 9, 10} …….(ii)
From (i) and (ii), we get
(A ∪ B)’ = A’ ∩ B’

(iv) A ∩ B = {3, 4}
(A ∩ B)’= {1, 2, 5, 6, 7, 8, 9, 10} …….(i)
A’ = {5, 6, 7, 8, 9, 10}
B’ = {1, 2, 7, 8, 9, 10}
∴ A’ ∪ B’ = {1, 2, 5, 6, 7, 8, 9, 10} …….(ii)
From (i) and (ii), we get
(A ∩ B)’ = A’ ∪ B’

(v) A = {1, 2, 3, 4} ……(i)
A ∩ B = {3, 4}
B’ = {1, 2, 7, 8, 9, 10}
A ∩ B’ = {1, 2}
∴ (A ∩ B) ∪ (A ∩ B’) = {1, 2, 3, 4} …..(ii)
From (i) and (ii), we get
A = (A ∩ B) ∪ (A ∩ B’)

(vi) B = {3, 4, 5, 6} …..(i)
A ∩ B = {3, 4}
A’ = {5, 6, 7, 8, 9, 10}
A’ ∩ B = {5, 6}
∴ (A ∩ B) ∪ (A’ ∩ B) = {3, 4, 5, 6} …..(ii)
From (i) and (ii), we get
B = (A ∩ B) ∪ (A’ ∩ B)

(vii) A ∪ B = {1, 2, 3, 4, 5, 6} …….(i)
A – B = {1, 2}
A ∩ B = {3, 4}
B – A = {5, 6}
∴ (A – B) ∪ (A ∩ B) ∪ (B – A) = {1, 2, 3, 4, 5, 6} ……(ii)
From (i) and (ii), we get
A ∪ B = (A – B) ∪ (A ∩ B) ∪ (B – A)

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1

(viii) B – C = {3}
C – B = {7, 8}
B Δ C = (B – C) ∪ (C – B) = {3, 7, 8}
∴ A ∩ (B Δ C) = {3} ……(i)
A ∩ B = {3, 4}
A ∩ C = {4}
∴ (A ∩ B) Δ (A ∩ C) = [(A ∩ B) – (A ∩ C)] ∪ [(A ∩ C) – (A ∩ B)] = {3} …..(ii)
From (i) and (ii), we get
A ∩ (B Δ C) = (A ∩ B) Δ (A ∩ C)

(ix) A = {1, 2, 3, 4}, B = {3, 4, 5, 6}
A ∩ B = {3, 4}, A ∪ B = {1, 2, 3, 4, 5, 6}
∴ n(A) = 4, n(B) = 4,
n(A ∩ B) = 2, n(A ∪ B) = 6 ……(i)
∴ n(A) + n(B) – n(A ∩ B) = 4 + 4 – 2
∴ n(A) + n(B) – n(A ∩ B) = 6 …..(ii)
From (i) and (ii), we get
n(A ∪ B) = n(A) + n(B) – n(A ∩ B)

(x) B = {3, 4, 5, 6}
∴ n(B) = 4 …..(i)
A’ = {5, 6, 7, 8, 9, 10}
A’ ∩ B = {5, 6}
∴ n(A’ ∩ B) = 2
A ∩ B = {3, 4}
∴ n(A ∩ B) = 2
∴ n(A’ ∩ B) + n(A ∩ B) = 2 + 2 = 4 …..(ii)
From (i) and (ii), we get
n(B) = n(A’ ∩ B) + n (A ∩ B)

Question 6.
If A and B are subsets of the universal set X and n(X) = 50, n(A) = 35, n(B) = 20, n(A’ ∩ B’) = 5, find
(i) n(A ∪ B)
(ii) n(A ∩ B)
(iii) n(A’ ∩ B)
(iv) n(A ∩ B’)
Solution:
n(X) = 50, n(A) = 35, n(B) = 20, n(A’ ∩ B’) = 5
(i) n(A ∪ B) = n(X) – [n(A ∪ B)’]
= n(X) – n(A’ ∩ B’)
= 50 – 5
= 45

(ii) n(A ∩ B) = n(A) + n(B) – n(A ∪ B)
= 35 + 20 – 45
= 10

(iii) n(A’ ∩ B) = n(B) – n(A ∩ B)
= 20 – 10
= 10

(iv) n(A ∩ B’) = n(A) – n(A ∩ B)
= 35 – 10
= 25

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1

Question 7.
In a class of 200 students who appeared in certain examinations, 35 students faded in CET, 40 in NEET and 40 in JEE, 20 faded in CET and NEET, 17 in NEET and JEE, 15 in CET and JEE and 5 faded in ad three examinations. Find how many students
(i) did not fail in any examination.
(ii) faded in NEET or JEE entrance.
Solution:
Let A = set of students who failed in CET
B = set of students who failed in NEET
C = set of students who failed in JEE
X = set of all students
∴ n(X) = 200, n(A) = 35, n(B) = 40, n(C) = 40, n(A ∩ B) = 20, n(B ∩ C) = 17, n(A ∩ C) = 15, n(A ∩ B ∩ C) = 5
Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1 Q7

(i) n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C)
= 35 + 40 + 40 – 20 – 17 – 15 + 5
= 68
∴ No. of students who did not fail in any exam = n(X) – n(A ∪ B ∪ C)
= 200 – 68
= 132

(ii) No. of students who failed in NEET or JEE entrance = n(B ∪ C)
= n(B) + n(C) – n(B ∩ C)
= 40 + 40 – 17
= 63

Question 8.
From amongst 2000 Uterate individuals of a town, 70% read Marathi newspapers, 50% read English newspapers and 32.5% read both Marathi and English newspapers. Find the number of individuals who read
(i) at least one of the newspapers.
(ii) neither Marathi nor English newspaper.
(iii) only one of the newspapers.
Solution:
Let M = set of individuals who read Marathi newspapers
E = set of individuals who read English newspapers
X = set of all literate individuals
∴ n(X) = 2000,
n(M) = \(\frac{70}{100}\) × 2000 = 1400
n(E) = \(\frac{50}{100}\) × 2000 = 1000
n(M ∩ E) = \(\frac{32.5}{100}\) × 2000 = 650
(i) n(M ∪ E) = n(M) + n(E) – n(M ∩ E)
= 1400 + 1000 – 650
= 1750
Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1 Q8
No. of individuals who read at least one of the newspapers = n(M ∪ E) = 1750.

(ii) No. of individuals who read neither Marathi nor English newspaper = n(M’ ∩ E’)
= n(M ∪ E)’
= n(X) – n(M ∪ E)
= 2000 – 1750
= 250

(iii) No. of individuals who read only one of the newspapers = n(M ∩ E’) + n(M’ ∩ E)
= n(M ∪ E) – n(M ∩ E)
= 1750 – 650
= 1100

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1

Question 9.
In a hostel, 25 students take tea, 20 students take coffee, 15 students take milk, 10 students take both tea and coffee, 8 students take both milk and coffee. None of them take tea and milk both and everyone takes atleast one beverage, find the total number of students in the hostel.
Solution:
Let T = set of students who take tea
C = set of students who take coffee
M = set of students who take milk
∴ n(T) = 25, n(C) = 20, n(M) = 15, n(T ∩ C) = 10, n(M ∩ C) = 8, n(T ∩ M) = 0, n(T ∩ M ∩ C) = 0
Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1 Q9
∴ Total number of students in the hostel = n(T ∪ C ∪ M)
= n(T) + n(C) + n(M) – n(T ∩ C) – n(M ∩ C) – n(T ∩ M) + n(T ∩ M ∩ C)
= 25 + 20 + 15 – 10 – 8 – 0 + 0
= 42

Question 10.
There are 260 persons with skin disorders. If 150 had been exposed to the chemical A, 74 to the chemical B, and 36 to both chemicals A and B, find the number of persons exposed to
(i) Chemical A but not Chemical B
(ii) Chemical B but not Chemical A
(iii) Chemical A or Chemical B
Solution:
Let A = set of persons exposed to chemical A
B = set of persons exposed to chemical B
X = set of all persons
∴ n(X) = 260, n(A) = 150, n(B) = 74, n(A ∩ B) = 36
Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1 Q10

(i) No. of persons exposed to chemical A but not to chemical B = n(A ∩ B’)
= n(A) – n(A ∩ B)
= 150 – 36
= 114

(ii) No. of persons exposed to chemical B but not to chemical A = n(A’ ∩ B)
= n(B) – n(A ∩ B)
= 74 – 36
= 38

(iii) No. of persons exposed to chemical A or chemical B = n(A ∪ B)
= n(A) + n(B) – n(A ∩ B)
= 150 + 74 – 36
= 188

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1

Question 11.
Write down the power set of A = {1, 2, 3}.
Solution:
A = {1, 2, 3}
The power set of A is given by
P(A) = {{Φ}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}

Question 12.
Write the following intervals in Set-Builder form:
(i) (-3, 0)
(ii) [6, 12]
(iii) (6, ∞)
(iv) (-∞, 5]
(v) (2, 5]
(vi) [-3, 4)
Solution:
(i) (-3, 0) = {x / x ∈ R, -3 < x < 0}

(ii) [6, 12] = {x / x ∈ R, 6 ≤ x ≤ 12}

(iii) (6, ∞) = {x / x ∈ R, x > 6}

(iv) (-∞, 5] = {x / x ∈ R, x ≤ 5}

(v) (2, 5] = {x / x ∈ R, 2 < x ≤ 5}

(vi) [-3, 4) = {x / x ∈ R, -3 ≤ x < 4}

Question 13.
A college awarded 38 medals in volleyball, 15 in football, and 20 in basketball. The medals were awarded to a total of 58 players and only 3 players got medals in all three sports. How many received medals in exactly two of the three sports?
Solution:
Let A = Set of students who received medals in volleyball
B = Set of students who received medals in football
C = Set of students who received medals in basketball
n(A) = 38, n(B) = 15, n(C) = 20, n(A ∪ B ∪ C) = 58, n(A ∩ B ∩ C) = 3
n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C)
58 = 38 + 15 + 20 – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + 3
∴ n(A ∩ B) + n(B ∩ C) + n(A ∩ C) = 18 ……(i)
Number of players who got exactly two medals = p + q + r
Here, s = n(A ∩ B ∩ C) = 3
Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1 Q13
n(A ∩ B) + n(B ∩ C) + n(A ∩ C) = 18 …..[From (i)]
∴ p + s + s + r + q + s = 18
∴ p + q + r + 3s = 18
∴ p + q + r + 3(3) = 18
∴ p + q + r = 18 – 9 = 9
∴ Number of players who received exactly two medals = 9.

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1

Question 14.
Solve the following inequalities and write the solution set using interval notation.
(i) -9 < 2x + 7 ≤ 19
(ii) x2 – x > 20
(iii) \(\frac{2 x}{x-4}\) ≤ 5
(iv) 6x2 + 1 ≤ 5x
Solution:
(i) -9 < 2x + 7 ≤ 19
∴ -16 < 2x ≤ 12
∴ -8< x ≤ 6
∴ x ∈ (-8, 6]

(ii) x2 – x > 20
∴ x2 – x – 20 > 0
∴ x2 – 5x + 4x – 20 > 0
∴ (x – 5) (x + 4) > 0
∴ either x – 5 > 0 and x + 4 > 0 or x – 5 < 0 and x + 4 < 0

Case I: x – 5 > 0 and x + 4 > 0
∴ x > 5 and x > -4
∴ x > 5 ….(i)

Case II:
x – 5 < 0 and x + 4 < 0
∴ x < 5 and x < -4
∴ x < -4 …..(ii)
From (i) and (ii), we get
x ∈ (-∞, – 4) ∪ (5, ∞)

(iii) \(\frac{2 x}{x-4}\) ≤ 5
∴ \(\frac{2 x}{x-4}\) – 5 ≤ 0
∴ \(\frac{2 x-5 x+20}{x-4}\) ≤ 0
∴ \(\frac{20-3 x}{x-4}\) ≤ 0
When \(\frac{a}{b}\) ≤ 0,
a ≥ 0 and b < 0 or a ≤ 0 and b > 0
∴ either 20 – 3x ≥ 0 and x – 4 < 0 or 20 – 3x ≤ 0 and x – 4 > 0
Case I:
20 – 3x ≥ 0 and x – 4 < 0
∴ x ≤ \(\frac{20}{3}\) and x < 4
∴ x < 4 ……(I)

Case II: 20 – 3x ≤ 0 and x – 4 > 0
∴ x ≥ \(\frac{20}{3}\) and x > 4
∴ x ≥ \(\frac{20}{3}\) ……(ii)
From (i) and (ii), we get
x ∈ (-∞, 4) ∪ [\(\frac{20}{3}\), ∞)

(iv) 6x2 + 1 ≤ 5x
6x2 – 5x + 1 ≤ 0
6x2 – 3x – 2x + 1 ≤ 0
(3x – 1) (2x – 1) ≤ 0
either 3x – 1 ≤ 0 and 2x – 1 ≥ 0 or 3x – 1 ≥ 0 and 2x – 1 ≤ 0
Case I:
3x – 1 ≤ 0 and 2x – 1 ≥ 0
∴ x ≤ \(\frac{1}{3}\) and x ≥ \(\frac{1}{2}\), which is not possible.

Case II:
3x – 1 ≥ 0 and 2x – 1 ≤ 0
∴ x ≥ \(\frac{1}{3}\) and x ≤ \(\frac{1}{2}\)
∴ x ∈ [\(\frac{1}{3}\), \(\frac{1}{2}\)]

Maharashtra Board 11th Maths Solutions Chapter 5 Sets and Relations Ex 5.1

Question 15.
If A = (-7, 3], B = [2, 6] and C = [4, 9], then find
(i) A ∪ B
(ii) B ∪ C
(iii) A ∪ C
(iv) A ∩ B
(v) B ∩ C
(vi) A ∩ C
(vii) A’ ∩ B
(viii) B’ ∩ C’
(ix) B – C
(x) A – B
Solution:
A = (-7, 3], B = [2, 6], C = [4, 9]
(i) A ∪ B = (-7, 6]

(ii) B ∪ C = [2, 9]

(iii) A ∪ C = (-7, 3] ∪ [4, 9]

(iv) A ∩ B = [2, 3]

(v) B ∩ C = [4, 6]

(vi) A ∩ C = { }

(vii) A’ = (-∞, – 7] ∪ (3, ∞)
∴ A’ ∩ B = (3, 6]

(viii) B’ = (-∞, 2) ∪ (6, ∞)
C’ = (-∞, 4) ∪ (9, ∞)
∴ B’ ∩ C’ = (-∞, 2) ∪ (9, ∞)

(ix) B – C = [2, 4)

(x) A – B = (-7, 2)

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

(I) Select the correct answers from the given alternatives.

Question 1.
The total number of terms in the expression of (x + y)100 + (x – y)100 after simplification is:
(A) 50
(B) 51
(C) 100
(D) 202
Answer:
(B) 51
Hint:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 I Q1

Question 2.
The middle term in the expansion of (1 + x)2n will be:
(A) (n – 1)th
(B) nth
(C) (n + 1)th
(D) (n + 2)th
Answer:
(C) (n + 1)th
Hint:
(1 + x)2n has (2n + 1) terms.
∴ (n + 1 )th term is the middle term.

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Question 3.
In the expansion of (x2 – 2x)10, the coefficient of x16 is
(A) -1680
(B) 1680
(C) 3360
(D) 6720
Answer:
(C) 3360
Hint:
(x2 – 2x)10 = x10 (x – 2)10
To get the coefficient of x16 in (x2 – 2x)10,
we need to check coefficient of x6 in (x – 2)10
∴ Required coefficient = 10C6 (-2)4
= 210 × 16
= 3360

Question 4.
The term not containing x in expansion of \((1-x)^{2}\left(x+\frac{1}{x}\right)^{10}\) is
(A) 11C5
(B) 10C5
(C) 10C4
(D) 10C7
Answer:
(A) 11C5
Hint:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 I Q4

Question 5.
The number of terms in expansion of (4y + x)8 – (4y – x)8 is
(A) 4
(B) 5
(C) 8
(D) 9
Answer:
(A) 4
Hint:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 I Q5

Question 6.
The value of 14C1 + 14C3 + 14C5 + …. + 14C11 is
(A) 214 – 1
(B) 214 – 14
(C) 212
(D) 213 – 14
Answer:
(D) 213 – 14
Hint:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 I Q6

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Question 7.
The value of 11C2 + 11C4 + 11C6 + 11C8 is equal to
(A) 210 – 1
(B) 210 – 11
(C) 210 + 12
(D) 210 – 12
Answer:
(D) 210 – 12
Hint:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 I Q7

Question 8.
In the expansion of (3x + 2)4, the coefficient of the middle term is
(A) 36
(B) 54
(C) 81
(D) 216
Answer:
(D) 216
Hint:
(3x + 2)4 has 5 terms.
∴ (3x + 2)4 has 3rd term as the middle term.
The coefficient of the middle term
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 I Q8
= 6 × 9 × 4
= 216

Question 9.
The coefficient of the 8th term in the expansion of (1 + x)10 is:
(A) 7
(B) 120
(C) 10C8
(D) 210
Answer:
(B) 120
Hint:
r = 7
t8 = 10C7 x7 = 10C3 x7
∴ Coefficient of 8th term = 10C3 = 120

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Question 10.
If the coefficients of x2 and x3 in the expansion of (3 + ax)9 are the same, then the value of a is
(A) \(-\frac{7}{9}\)
(B) \(-\frac{9}{7}\)
(C) \(\frac{7}{9}\)
(D) \(\frac{9}{7}\)
Answer:
(D) \(\frac{9}{7}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 I Q10

(II) Answer the following.

Question 1.
Prove by the method of induction, for all n ∈ N.
(i) 8 + 17 + 26 + ….. + (9n – 1) = \(\frac{n}{2}\) (9n + 7)
Solution:
Let P(n) ≡ 8 + 17 + 26 +…..+(9n – 1) = \(\frac{n}{2}\) (9n + 7), for all n ∈ N.
Step I:
Put n = 1
L.H.S. = 8
R.H.S. = \(\frac{1}{2}\) [9(1) + 7] = 8
∴ L.H.S. = R.H.S.
∴ P(n) is true for n = 1.

Step II:
Let us assume that P(n) is true for n = k.
∴ 8 + 17 + 26 +…..+ (9k – 1) = \(\frac{k}{2}\) (9k + 7) ……(i)

Step III:
We have to prove that P(n) is true for n = k + 1,
i.e., 8 + 17 + 26 + …… + [9(k + 1) – 1]
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q1 (i)
∴ P(n) is true for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ 8 + 17 + 26 +…..+ (9n – 1) = \(\frac{n}{2}\) (9n + 7) for all n ∈ N.

(ii) 12 + 42 + 72 + …… + (3n – 2)2 = \(\frac{n}{2}\) (6n2 – 3n – 1)
Solution:
Let P(n) = 12 + 42 + 72 + ….. + (3n – 2)2 = \(\frac{n}{2}\) (6n2 – 3n – 1), for all n ∈ N.
Step I:
Put n = 1
L.H.S.= 12 = 1
R.H.S.= \(\frac{1}{2}\) [6(1)2 – 3(1) – 1] = 1
∴ L.H.S. = R.H.S.
∴ P(n) is true for n = 1.

Step II:
Let us assume that P(n) is true for n = k.
∴ 12 + 42 + 72 +…..+ (3k – 2)2 = \(\frac{k}{2}\) (6k2 – 3k – 1) ……(i)

Step III:
We have to prove that P(n) is true for n = k + 1,
i.e., to prove that
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q1 (ii)
∴ P(n) is true for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ 12 + 42 + 72 + … + (3n – 2)2 = \(\frac{n}{2}\) (6n2 – 3n – 1) for all n ∈ N.

(iii) 2 + 3.2 + 4.22 + …… + (n + 1) 2n-1 = n . 2n
Solution:
Let P(n) ≡ 2 + 3.2 + 4.22 +…..+ (n + 1) 2n-1 = n.2n, for all n ∈ N.
Step I:
Put n = 1
L.H.S. = 2
R.H.S. = 1(21) = 2
∴ L.H.S. = R.H.S.
∴ P(n) is true for n = 1.

Step II:
Let us assume that P(n) is true for n = k.
∴ 2 + 3.2 + 4.22 + ….. + (k + 1) 2k-1 = k.2k …..(i)

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Step III:
We have to prove that P(n) is true for n = k + 1,
i.e., to prove that
2 + 3.2 + 4.22 +….+ (k + 2) 2k = (k + 1) 2k+1
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q1 (iii)
∴ P(n) is true for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ 2 + 3.2 + 4.22 +……+ (n + 1) 2n-1 = n.2n for all n ∈ N.

(iv) \(\frac{1}{3.4 .5}+\frac{2}{4.5 .6}+\frac{3}{5.6 .7}+\ldots+\frac{n}{(n+2)(n+3)(n+4)}\) = \(\frac{n(n+1)}{6(n+3)(n+4)}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q1 (iv)
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q1 (iv).1
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q1 (iv).2

Question 2.
Given that tn+1 = 5tn – 8, t1 = 3, prove by method of induction that tn = 5n-1 + 2.
Solution:
Let the statement P(n) has L.H.S. a recurrence relation tn+1 = 5tn – 8, t1 = 3
and R.H.S. a general statement tn = 5n-1 + 2.
Step I:
Put n = 1
L.H.S. = 3
R.H.S. = 51-1 + 2 = 1 + 2 = 3
∴ L.H.S. = R.H.S.
∴ P(n) is true for n = 1.
Put n = 2
L.H.S = t2 = 5t1 – 8 = 5(3) – 8 = 7
R.H.S. = t2 = 52-1 + 2 = 5 + 2 = 7
∴ L.H.S. = R.H.S.
∴ P(n) is tme for n = 2.

Step II:
Let us assume that P(n) is true for n = k.
∴ tk+1 = 5tk – 8 and tk = 5k-1 + 2

Step III:
We have to prove that P(n) is true for n = k + 1,
i.e., to prove that
tk+1 = 5k+1-1 + 2 = 5k + 2
tk+1 = 5tk – 8 and tk = 5k-1 + 2 ……[From Step II]
∴ tk+1 = 5(5k-1 + 2) – 8 = 5k + 2
∴ P(n) is true for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ tn = 5n-1 + 2, for all n ∈ N.

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Question 3.
Prove by method of induction
\(\left(\begin{array}{cc}
3 & -4 \\
1 & -1
\end{array}\right)^{n}=\left(\begin{array}{cc}
2 n+1 & -4 n \\
n & -2 n+1
\end{array}\right)\), ∀ n ∈ N.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q3
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q3.1
Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ \(\left(\begin{array}{cc}
3 & -4 \\
1 & -1
\end{array}\right)^{n}=\left(\begin{array}{cc}
2 n+1 & -4 n \\
n & -2 n+1
\end{array}\right)\), ∀ n ∈ N.

Question 4.
Expand (3x2 + 2y)5
Solution:
Here, a = 3x2, b = 2y, n = 5.
Using binomial theorem,
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q4

Question 5.
Expand \(\left(\frac{2 x}{3}-\frac{3}{2 x}\right)^{4}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q5

Question 6.
Find third term in the expansion of \(\left(9 x^{2}-\frac{y^{3}}{6}\right)^{4}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q6

Question 7.
Find tenth term in the expansion of \(\left(2 x^{2}+\frac{1}{x}\right)^{12}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q7

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Question 8.
Find the middle term(s) in the expansion of
(i) \(\left(\frac{2 a}{3}-\frac{3}{2 a}\right)^{6}\)
Solution:
Here, a = \(\frac{2 a}{3}\), b = \(\frac{-3}{2 a}\), n = 6.
Now, n is even.
∴ \(\frac{\mathrm{n}+2}{2}=\frac{6+2}{2}=4\)
∴ Middle term is t4, for which r = 3.
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q8 (i)
∴ The Middle term is -20.

(ii) \(\left(x-\frac{1}{2 y}\right)^{10}\)
Solution:
Here, a = x, b = \(-\frac{1}{2 y}\), n = 10.
Now, n is even.
∴ \(\frac{\mathrm{n}+2}{2}=\frac{10+2}{2}=6\)
∴ Middle term is t6, for which r = 5
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q8 (ii)

(iii) (x2 + 2y2)7
Solution:
Here, a = x2, b = 2y2, n = 7.
Now, n is odd.
∴ \(\frac{\mathrm{n}+1}{2}=\frac{7+1}{2}=4, \frac{\mathrm{n}+3}{2}=\frac{7+3}{2}=5\)
∴ Middle terms are t4 and t5, for which r = 3 and r = 4 respectively.
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q8 (iii)
∴ Middle terms are 280x8y6 and 560x6y8.

(iv) \(\left(\frac{3 x^{2}}{2}-\frac{1}{3 x}\right)^{9}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q8 (iv)
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q8 (iv).1

Question 9.
Find the coefficients of
(i) x6 in the expantion of \(\left(3 x^{2}-\frac{1}{3 x}\right)^{9}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q9 (i)
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q9 (i).1

(ii) x60 in the expansion of \(\left(\frac{1}{x^{2}}+x^{4}\right)^{18}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q9 (ii)

Question 10.
Find the constant term in the expansion of
(i) \(\left(\frac{4 x^{2}}{3}+\frac{3}{2 x}\right)^{9}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q10 (i)

(ii) \(\left(2 x^{2}-\frac{1}{x}\right)^{12}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q10 (ii)

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Question 11.
Prove by method of induction
(i) loga xn = n loga x, x > 0, n ∈ N
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q11 (i)

(ii) 152n-1 + 1 is divisible by 16, for all n ∈ N.
Solution:
152n-1 + 1 is divisible by 16, if and only if (152n-1 + 1) is is a multiple of 16.
Let P(n) ≡ 152n-1 + 1 = 16m, where m ∈ N.
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q11 (ii)
Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ 152n-1 + 1 is divisible by 16, for all n ∈ N.

(iii) 52n – 22n is divisible by 3, for all n ∈ N.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q11 (iii)
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q11 (iii).1

Question 12.
If the coefficient of x16 in the expansion of (x2 + ax)10 is 3360, find a.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q12

Question 13.
If the middle term in the expansion of \(\left(x+\frac{b}{x}\right)^{6}\) is 160, find b.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q13
∴ 160 = \(\frac{6 \times 5 \times 4 \times 3 !}{3 \times 2 \times 1 \times 3 !} \times b^{3}\)
∴ 160 = 20b3
∴ 8 = b3
∴ b = 2

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Question 14.
If the coefficients of x2 and x3 in theexpansion of (3 + kx)9 are equal, find k.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q14

Question 15.
If the constant term in the expansion of \(\left(x^{3}+\frac{\mathrm{k}}{x^{8}}\right)^{11}\) is 1320, find k.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q15

Question 16.
Show that there is no term containing x6 in the expansion of \(\left(x^{2}-\frac{3}{x}\right)^{11}\).
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q16

Question 17.
Show that there is no constant term in the expansion of \(\left(2 x-\frac{x^{2}}{4}\right)^{9}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q17

Question 18.
State, first four terms in the expansion of \(\left(1-\frac{2 x}{3}\right)^{-1 / 2}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q18

Question 19.
State, first four terms in the expansion of \((1-x)^{-1 / 4}\).
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q19

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Question 20.
State, first three terms in the expansion of \((5+4 x)^{-1 / 2}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q20

Question 21.
Using the binomial theorem, find the value of \(\sqrt[3]{995}\) upto four places of decimals.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q21

Question 22.
Find approximate value of \(\frac{1}{4.08}\) upto four places of decimals.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q22

Question 23.
Find the term independent of x in the expansion of (1 – x2) \(\left(x+\frac{2}{x}\right)^{6}\).
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q23
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q23.1

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Question 24.
(a + bx) (1 – x)6 = 3 – 20x + cx2 + …, then find a, b, c.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q24

Question 25.
The 3rd term of (1 + x)n is 36x2. Find 5th term.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q25
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q25.1

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4

Question 26.
Suppose (1 + kx)n = 1 – 12x + 60x2 – …… find k and n.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Miscellaneous Exercise 4 II Q26