Practice Set 26 Class 6 Answers Maths Chapter 10 Equations Maharashtra Board

Balbharti Maharashtra State Board Class 6 Maths Solutions covers the Std 6 Maths Chapter 10 Equations Class 6 Practice Set 26 Answers Solutions.

Equations Class 6 Maths Chapter 10 Practice Set 26 Solutions Maharashtra Board

Std 6 Maths Practice Set 26 Solutions Answers

Question 1.
Different mathematical operations are given in the two rows below. Find out the number you get in each operation and make equations.

    1. 16 ÷ 2,
    2. 5 × 2,
    3. 9 + 4,
    4. 72 ÷ 3,
    5. 4 + 5,
  1. 8 × 3,
  2. 19 – 10,
  3. 10 – 2,
  4. 37 – 27,
  5. 6 + 7

Solution:

  1. 16 ÷ 2 = 8
  2. 5 × 2 = 10
  3. 9 + 4 = 13
  4. 72 ÷ 3 = 24
  5. 4 + 5 = 9
  6. 8 × 3 = 24
  7. 19 – 10 = 9
  8. 10 – 2 = 8
  9. 37 – 27 = 10
  10. 6 + 7 = 13

∴ The equations are

  1. 16 ÷ 2 = 10 – 2
  2. 5 × 2 = 37 – 27
  3. 9 + 4 = 6 + 7
  4. 72 ÷ 3 = 8 x 3
  5. 4 + 5 = 19 – 10

Std 6 Maths Digest

Practice Set 1 Class 6 Answers Maths Chapter 1 Basic Concepts in Geometry Maharashtra Board

Balbharti Maharashtra State Board Class 6 Maths Solutions covers the Std 6 Maths Chapter 1 Basic Concepts in Geometry Class 6 Practice Set 1 Answers Solutions.

Basic Concepts in Geometry Class 6 Maths Chapter 1 Practice Set 1 Solutions Maharashtra Board

Std 6 Maths Practice Set 1 Solutions Answers

Question 1.
Look at the figure alongside and name the following:
i. Collinear points
ii. Rays
iii. Line segments
iv. Lines
Maharashtra Board Class 6 Maths Solutions Chapter 1 Basic Concepts in Geometry Practice Set 1 1
Solution:

i. Collinear Points Points M, 0 and T
Points R, O and N
ii. Rays ray OP, ray OM, ray OR, ray OS, ray OT and ray ON
iii. Line Segments seg MT, seg RN, seg OP, seg OM, seg OR, seg OS, seg OT and seg ON
iv. Lines line MT and line RN

Question 2.
Write the different names of the line.
Maharashtra Board Class 6 Maths Solutions Chapter 1 Basic Concepts in Geometry Practice Set 1 2
Solution:
The different names of the given line are line l, line AB, line AC, line AD, line BC, line BD and line CD.

Question 3.
Maharashtra Board Class 6 Maths Solutions Chapter 1 Basic Concepts in Geometry Practice Set 1 3
Solution:
(i – Line),
(ii – Line Segment),
(iii – Plane),
(iv – Ray)

Question 4.
Observe the given figure. Name the parallel lines, the concurrent lines and the points of concurrence in the figure.
Maharashtra Board Class 6 Maths Solutions Chapter 1 Basic Concepts in Geometry Practice Set 1 4
Solution:

Parallel Lines line b, line m and line q are parallel to each other.
line a and line p are parallel to each other.
Concurrent Lines and Point of Concurrence line AD, line a, line b and line c are concurrent. Point A is their point of concurrence.
line AD, line p and line q are concurrent. Point D is their point of concurrence.

Maharashtra Board Class 6 Maths Chapter 1 Basic Concepts in Geometry Intext Questions and Activities

Question 1.
Complete the rangoli. Then, have a class discussion with the help of the following questions:

  1. What kind of surface do you need for making a rangoli?
  2. How do you start making a rangoli?
  3. What did you do in order to complete the rangoli?
  4. Name the different shapes you see in the rangoli.
  5. Would it be possible to make a rangoli on a scooter or on an elephant’s back?
  6. When making a rangoli on paper, what do you use to make the dots?

Maharashtra Board Class 6 Maths Solutions Chapter 1 Basic Concepts in Geometry Practice Set 1 5
Solution:

  1. For making a rangoli, I need a flat surface.
  2. I can start making a rangoli by drawing equally spaced dots on the flat surface using a chalk.
  3. In order to complete the rangoli, I joined the dots by straight lines to make a design.
  4. In the rangoli, I find various shapes such as square, rectangle and triangles of two different size.
  5. No. It won’t be possible to make a rangoli on a scooter or on an elephant’s back as they do not have a flat surface.
  6. When making a rangoli on paper, I made use of scale and pencil to make equally spaced dots.

Maharashtra Board Class 6 Maths Solutions Chapter 1 Basic Concepts in Geometry Practice Set 1 6

Question 2.
Write the proper term, ‘intersecting lines’ or ‘parallel lines’ in each of the empty boxes. (Textbook pg. no. 4)
Maharashtra Board Class 6 Maths Solutions Chapter 1 Basic Concepts in Geometry Practice Set 1 7
Solution:
i. Intersecting Lines
ii. Parallel Lines
iii. Intersecting Lines

Question 3.
Draw a point on the blackboard. Every student now draws a line that passes through that point. How many such lines can be drawn? (Textbook pg. no. 2)
Solution:
An infinite number of lines can be drawn through one point.
Maharashtra Board Class 6 Maths Solutions Chapter 1 Basic Concepts in Geometry Practice Set 1 8

Question 4.
Draw a point on a paper and use your ruler to draw lines that pass through it. How many such lines can you draw? (Textbook pg. no. 2)
Solution:
An infinite number of lines can be drawn through one point.

Question 5.
There are 9 points in the figure. Name them. (Textbook pg. no. 3)
i. If you choose any two points, how many lines can pass through the pair?
ii. Which three or more of these nine points lie on a straight line?
iii. Of these nine points, name any three or more points which do not lie on the same line.
Maharashtra Board Class 6 Maths Solutions Chapter 1 Basic Concepts in Geometry Practice Set 1 9
Solution:
i. One and only one line can be drawn through two distinct , points.
ii. Points A, B, C and D lie on the same line. Points F, G and C lie on the same line.
iii. Points E, F, G, H and I do not lie on the same line, points A, B, E, H and I do not lie on the same line.
Maharashtra Board Class 6 Maths Solutions Chapter 1 Basic Concepts in Geometry Practice Set 1 10

Question 6.
Observe the picture of the game being played. Identify the collinear players, non-collinear players, parallel lines and the plane. (Textbook pg. no. 4)
Maharashtra Board Class 6 Maths Solutions Chapter 1 Basic Concepts in Geometry Practice Set 1 11
Solution:

i. Collinear Players Players A, B, C, D, E, F, G
ii. Non-collinear Players Players I, H, C Players I, A, B etc.
iii. Parallel Lines line l, line m, line n, line p, line q, line r and line s
iv. Plane The ground on which the boys are playing is the plane

Maharashtra Board Class 6 Maths Solutions Chapter 1 Basic Concepts in Geometry Practice Set 1 12

Question 7.
In January, we can see the constellation of Orion in the eastern sky after seven in the evening. Then it moves up slowly in the sky. Can you see the three collinear stars in this constellation? Do you also see a bright star on the same line some distance away? (Textbook pg. no. 4)
Maharashtra Board Class 6 Maths Solutions Chapter 1 Basic Concepts in Geometry Practice Set 1 13
Solution:

  1. The three stars shown by points C, D and E are collinear.
  2. The star shown by point H lies on the same line as the stars C, D and E.

Maharashtra Board Class 6 Maths Solutions Chapter 1 Basic Concepts in Geometry Practice Set 1 14

Question 8.
Maths is fun! (Textbook pg. no. 5)
Take a flat piece of thermocol or cardboard, a needle and thread. Tie a big knot or button or bead at one end of the thread. Thread the needle with the other end. Pass the needle up through any convenient point P. Pull the thread up, leaving the knot or the button below. Remove the needle and put it aside. Now hold the free end of the thread and gently pull it straight. Which figure do you see? Now, holding the thread straight, turn it in different directions. See how a countless number of lines can pass through a single point P.
Maharashtra Board Class 6 Maths Solutions Chapter 1 Basic Concepts in Geometry Practice Set 1 15
Solution:

  1. The pulled thread forms a straight line.
  2. An infinite number of lines can be drawn through one point.

Question 9.
Choose the correct option for each of the following questions:
i. ______ is used to name a point.
(A) Capital letter
(B) Small letter
(C) Number
(D) Roman numeral
Solution :
(A) Capital letter

ii. A line segment has two points showing its limits. They are called_____
(A) origin
(B) end points
(C) arrow heads
(D) infinite points
Solution :
(B) end points

iii. An arrow head is drawn at one end of the ray to show that it is _____ on that side.
(A) finite
(B) ending
(C) infinite
(D) broken
Solution :
(C) infinite

iv. Lines which lie in the same plane but do not intersect are said to be ____ to each other.
(A) intersecting
(B) collinear
(C) parallel
(D) non-collinear
Solution :
(C) parallel

Question 10.
Determine the collinear and non-collinear points in the figure alongside:
Maharashtra Board Class 6 Maths Solutions Chapter 1 Basic Concepts in Geometry Practice Set 1 16
Solution:
Collinear points:

  1. Points A, E, H and C.
  2. Points B, E, I and D.

Non-collinear points:
Points B, G, F and I

Question 11.
Look at the figure alongside and answer the questions given below:
i. Name the parallel lines.
ii. Name the concurrent lines and the point of concurrence.
iii. Write the different names of line PV.
Maharashtra Board Class 6 Maths Solutions Chapter 1 Basic Concepts in Geometry Practice Set 1 17
Solution:
i. Parallel lines:
a. line l and line n
b. line p, line q, line r and line s

ii. Concurrent Lines: line q, line m, line n
Point of Concurrence: point S

iii. line l, line PT, line PR, line PV, line RT, line RV and line TV.

Question 12.
Name the different line segments and rays in the given figure:
Maharashtra Board Class 6 Maths Solutions Chapter 1 Basic Concepts in Geometry Practice Set 1 18
Solution:
Line Segments:
seg UV, seg OY, seg OX, seg OV and seg OU

Rays:
ray OV, ray OX, ray OY and ray UV.

Std 6 Maths Digest

Practice Set 13 Class 6 Answers Maths Chapter 4 Operations on Fractions Maharashtra Board

Balbharti Maharashtra State Board Class 6 Maths Solutions covers the Std 6 Maths Chapter 4 Operations on Fractions Class 6 Practice Set 13 Answers Solutions.

Operations on Fractions Class 6 Maths Chapter 4 Practice Set 13 Solutions Maharashtra Board

Std 6 Maths Practice Set 13 Solutions Answers

Question 1.
Write the reciprocals of the following numbers:

  1. 7
  2. \(\frac { 11 }{ 3 }\)
  3. \(\frac { 5 }{ 13 }\)
  4. 2
  5. \(\frac { 6 }{ 7 }\)

Solution:

  1. \(\frac { 1 }{ 7 }\)
  2. \(\frac { 3 }{ 11 }\)
  3. \(\frac { 13 }{ 5 }\)
  4. \(\frac { 1 }{ 2 }\)
  5. \(\frac { 7 }{ 6 }\)

Question 2.
Carry out the following Divisions:
i. \(\frac{2}{3} \div \frac{1}{4}\)
ii. \(\frac{5}{9} \div \frac{3}{2}\)
iii. \(\frac{3}{7} \div \frac{5}{11}\)
iv. \(\frac{11}{12} \div \frac{4}{7}\)
Solution:
i. \(\frac{2}{3} \div \frac{1}{4}\)
Maharashtra Board Class 6 Maths Solutions Chapter 4 Operations on Fractions Practice Set 13 2

ii. \(\frac{5}{9} \div \frac{3}{2}\)
Maharashtra Board Class 6 Maths Solutions Chapter 4 Operations on Fractions Practice Set 13 2.1

iii. \(\frac{3}{7} \div \frac{5}{11}\)
Maharashtra Board Class 6 Maths Solutions Chapter 4 Operations on Fractions Practice Set 13 2.2

iv. \(\frac{11}{12} \div \frac{4}{7}\)
Maharashtra Board Class 6 Maths Solutions Chapter 4 Operations on Fractions Practice Set 13 2.3

Question 3.
There were 420 students participating in the Swachh Bharat Campaign. They cleaned \(\frac { 42 }{ 75 }\) part of the town, Sevagram. What part of Sevagram did each student clean if the work was equally shared by all?
Solution:
Total number of students = 420
Part of town cleaned by all the students = \(\frac { 42 }{ 75 }\)
∴ Part of town cleaned by one student
Maharashtra Board Class 6 Maths Solutions Chapter 4 Operations on Fractions Practice Set 13 3
∴ Part of town cleaned bv one student is \(\frac { 1 }{ 750 }\)

Maharashtra Board Class 6 Maths Chapter 4 Operations on Fractions Practice Set 13 Intext Questions and Activities

Question 1.
Ramanujan’s Magic square. (Textbook pg. no. 28)
Maharashtra Board Class 6 Maths Solutions Chapter 4 Operations on Fractions Practice Set 13 4

  • Add the four numbers in the rows, the columns and along the diagonals of this square.
  • What is the sum?
  • Is it the same every time?
  • What is the peculiarity?
  • Look at the numbers in the first row, 22 – 12 – 1887. Find out why this date is special.

Obtain and read a biography of the great Indian mathematician Srinivasa Ramanujan.
Solution:
Sum of the numbers in each row:
i. 22 + 12 + 18 + 87 = 139
ii. 88 + 17 + 9 + 25 = 139
iii. 10 + 24 + 89 + 16 = 139
iv. 19 + 86 + 23 + 11 = 139

Sum of the numbers along the diagonals:
i. 22 + 17 + 89 + 11 = 139
ii. 87 + 9 + 24 + 19 = 139

Sum of the numbers in each column:
i. 22 + 88 + 10 + 19 = 139
ii. 12 + 17 + 24 + 86 = 139
iii. 18 + 9 + 89 + 23 = 139
iv. 87 + 25 + 16 + 11 = 139

∴ We observe that the sum of the numbers in each of the rows, the columns and along each diagonal remains the same every time. The numbers in the first row 22 – 12 – 1887 is the birth date of Srinivasa Ramanujan.

Std 6 Maths Digest

Practice Set 35 Class 6 Answers Maths Chapter 14 Banks and Simple Interest Maharashtra Board

Balbharti Maharashtra State Board Class 6 Maths Solutions covers the Std 6 Maths Chapter 14 Banks and Simple Interest Class 6 Practice Set 35 Answers Solutions.

Banks and Simple Interest Class 6 Maths Chapter 14 Practice Set 35 Solutions Maharashtra Board

Std 6 Maths Practice Set 35 Solutions Answers

Question 1.
At a rate of 10 p.c.p.a., what would be the interest for one year on Rs 6000?
Solution:
Principal Amount = Rs 6000
Rate of Interest = 10 p.c.p.a.
Let interest on principal Rs 6000 be Rs x.
By taking ratio of the interest to the principal for both, we obtain an equation x 10
Maharashtra Board Class 6 Maths Solutions Chapter 14 Banks and Simple Interest Practice Set 35 1
∴ The interest for one year is Rs 600.

Question 2.
Mahesh deposited Rs 8650 in a bank at a rate of 6 p.c.p.a. How much money will he get at the end of the year in all?
Solution:
Principal Amount = Rs 8650
Rate of interest = 6 p.c.p.a.
Let interest on principal Rs 8650 be Rs x
By taking ratio of the interest to the principal for both, we obtain an equation
Maharashtra Board Class 6 Maths Solutions Chapter 14 Banks and Simple Interest Practice Set 35 2
∴ Amount received at the end of the year = Principal amount + Interest
= Rs 8650 + Rs 519
= Rs 9169
∴ Mahesh will get Rs 9169 at the end of the year.

Question 3.
Ahmad Chacha borrowed Rs 25,000 at 12 p.c.p.a. for a year. What amount will he have to return to the bank at the end of the year?
Solution:
Principal Amount = Rs 25,000
Rate of interest = 12 p.c.p.a.
Let interest on principal Rs 25,000 be Rs x
By taking ratio of the interest to the principal for both, we obtain an equation
Maharashtra Board Class 6 Maths Solutions Chapter 14 Banks and Simple Interest Practice Set 35 3
Amount to be returned to the bank at the end of the year = Principal Amount + Interest
= Rs 25,000 + Rs 3,000
= Rs 28,000
Ahmad Chacha has to return Rs 28,000 to the bank at the end of the year.

Question 4.
Kisanrao wanted to make a pond in his field. He borrowed Rs 35,250 from a bank at an interest rate of 6 p.c.p.a. How much interest will he have to pay to the bank at the end of the year?
Solution:
Principal Amount = Rs 35,250
Rate of interest = 6 p.c.p.a.
Let interest on principal Rs 35,250 be Rs x
By taking ratio of the interest to the principal for both, we obtain an equation
Maharashtra Board Class 6 Maths Solutions Chapter 14 Banks and Simple Interest Practice Set 35 4
∴ Kisanrao will have to pay an interest of Rs 2115 to the bank at the end of the year.

Maharashtra Board Class 6 Maths Chapter 14 Banks and Simple Interest Practice Set 35 Intext Questions and Activities

Question 1.
Study the figure given below and answer the following questions (Textbook pg. no. 74)

  1. In the above picture, who are the people shown to be using bank services?
  2. What does the symbol on the bag in the centre stand for?
  3. What do the arrows in the given picture tell you?

Maharashtra Board Class 6 Maths Solutions Chapter 14 Banks and Simple Interest Practice Set 35 5
Solution:

  1. Students, farmers, Women’s savings groups, industrialists / professionals and traders / businessmen are shown to be using bank services.
  2. The symbol on the bag in the center stands for rupees.
  3. The arrows tell us about the monetary transactions taking place. In simple words, it explains the give and take relationship.

Question 2.
Visit the Bank (Textbook pg. no. 74)

  • Teachers should organise a visit to a bank. Encourage the children to obtain some preliminary information about banks.
  • Help them to fill some bank forms and slips for withdrawals and deposits.
  • If there is no bank nearby, teachers could obtain specimen forms and get the children to fill them in class.
  • Give a demonstration of banking transactions by setting up a mock bank in the school.
  • Invite participation of parents who work in banks or other bank employees to give the children more detailed information about banking.

Solution:
(Students should attempt this activity with the help of their teacher/parents.)

Std 6 Maths Digest

Practice Set 34 Class 6 Answers Maths Chapter 13 Profit-Loss Maharashtra Board

Balbharti Maharashtra State Board Class 6 Maths Solutions covers the Std 6 Maths Chapter 13 Profit-Loss Class 6 Practice Set 34 Answers Solutions.

Profit-Loss Class 6 Maths Chapter 13 Practice Set 34 Solutions Maharashtra Board

Std 6 Maths Practice Set 34 Solutions Answers

Question 1.
Cost price Rs 1600, selling price Rs 2800.
Solution:
Sanju bought goods worth Rs 1600 and sold them for Rs 2800. What was his profit in percentage?
Cost price = Rs 1600, Selling price = Rs 2800
Profit = Selling price – Cost price
= 2800 – 1600
= Rs 1200
Let Sanju make profit of x%.
Maharashtra Board Class 6 Maths Solutions Chapter 13 Profit-Loss Practice Set 34 1
∴ x = 75%
∴ Sanju made a profit of 75%.

Question 2.
Cost price Rs 2000, selling price Rs 1900.
Solution:
Rakhi bought books worth Rs 2000 and sold them for Rs 1900. What was her loss in percentage?
Cost price = Rs 2000, Selling price = Rs 1900
Loss = Cost price – Selling price .
= 2000 – 1900
= Rs 100
Let Rakhi incur a loss of x%.
Maharashtra Board Class 6 Maths Solutions Chapter 13 Profit-Loss Practice Set 34 2
∴ x = 5%
∴ Rakhi suffered a loss of 5%.

Question 3.
Cost price of 8 articles is Rs 1200 each, selling price Rs 1400 each.
Solution:
Pallavi bought 8 tables for Rs 1200 each and sold them for Rs 1400 each. What was the percentage of her profit or loss?
Cost price of 1 table = Rs 1200
∴ Cost price of 8 tables = 1200 x 8 = Rs 9600
Selling price of 1 table = Rs 1400
∴ Selling price of 8 tables = 1400 x8 = Rs 11200
Selling price is greater than the cost price.
∴ Pallavi made a profit.
∴ Profit = Selling price – Cost price
= 11200 – 9600
= Rs 1600
Let Pallavi make a profit of x%.
Maharashtra Board Class 6 Maths Solutions Chapter 13 Profit-Loss Practice Set 34 3
∴ Pallavi made a profit of \(16\frac { 2 }{ 3 }\) %.

Question 4.
Cost price of 50 kg grain Rs 2000, Selling price Rs 43 per kg.
Solution:
Ramesh bought 50 kg grains for Rs 2000 and sold it at the rate of Rs 43 per kg. Find the percentage of profit or loss.
Cost price of 50 kg grains = Rs 2000
Selling price of 1 kg grains = Rs 43
∴ Selling price of 50 kg grains= 43 x 50
= Rs 2150
Selling price is greater than the cost price.
∴ Ramesh made a profit.
∴ Profit = Selling price – Cost price
= 2150 – 2000
= Rs 150
Let Ramesh make profit of x%.
Maharashtra Board Class 6 Maths Solutions Chapter 13 Profit-Loss Practice Set 34 4
∴ Ramesh made a profit of \(7\frac { 1 }{ 2 }\) %.

Question 5.
Cost price Rs 8600, Transport charges Rs 250, Portage Rs 150, Selling price Rs 10000.
Solution:
Faruk bought a fridge for Rs 8600. He spent Rs 250 on transport and Rs 150 on portage.
If he sold the fridge for Rs 10,000, what was his percent profit or loss?
Total cost price of a fridge = Cost of fridge + Transportation cost + Portage
= 8600 + 250 + 150
= Rs 9000
∴ Selling price = Rs 10,000
Selling price is greater than the total cost price.
∴ Faruk made a profit.
Profit = Selling price – Total cost price
= 10000 – 9000
= Rs 1000
Let Faruk make a profit of x% on cost price.
Maharashtra Board Class 6 Maths Solutions Chapter 13 Profit-Loss Practice Set 34 5
∴ Faruk made a profit of \(11\frac { 1 }{ 9 }\) %.

Question 6.
Seeds worth Rs 20500, Labour Rs 9700, Chemicals and fertilizers Rs 5600, selling price Rs 28640.
Solution:
Ramchandra bought sunflower seeds worth Rs 20500. He spent Rs 9700 on labour and Rs 5600 on chemicals and fertilizers. He sold it for Rs 28640. What is the percentage of profit or loss?
Total cost price = Cost of seeds + Labour cost + Cost of chemicals and Fertilizers
= 20500 + 9700 + 5600
= Rs 35800
Selling price = Rs 28,640
The total cost price is greater than selling price.
∴ Ramchandra suffered a loss.
Loss = Total cost price – Selling price
= 35800- 28640
= Rs 7160
Let Ramchandra incur a loss of x%.
Maharashtra Board Class 6 Maths Solutions Chapter 13 Profit-Loss Practice Set 34 6
∴ x = 20%
∴ Ramchandra incurred a loss of 20%.

Maharashtra Board Class 6 Maths Chapter 13 Profit-Loss Practice Set 34 Intext Questions and Activities

Question 1.
Maths is fun! (Textbook pg. no. 72)
Maharashtra Board Class 6 Maths Solutions Chapter 13 Profit-Loss Practice Set 34 7
Arpita used 4 matchsticks to make a square. Then she took 3 more sticks and arranged them to make 2 squares. Another 3 sticks helped her to make 3 squares. How many sticks are needed to make 7 such squares in the same way? How many sticks are needed to make 50 squares?
Solution:
Matchsticks needed to make 7 squares = 4 + (6 × 3)
= 22
Matchsticks needed to make 50 squares= 4 + (49 × 3)
= 151

Question 2.
Project (Textbook pg. no. 72)
i. Relate instances of profit and loss that you have experienced. Express them as problems and solve the problems.
ii. Organize a fair. Gain the experience of selling things/trading. What was the expenditure on preparing or obtaining the good to be sold? How much were the sales worth? Write a composition about it or enact this entire transaction.
Solution:
(Students should attempt the activities on their own.)

Practice Set 12 Class 6 Answers Maths Chapter 4 Operations on Fractions Maharashtra Board

Balbharti Maharashtra State Board Class 6 Maths Solutions covers the Std 6 Maths Chapter 4 Operations on Fractions Class 6 Practice Set 12 Answers Solutions.

Operations on Fractions Class 6 Maths Chapter 4 Practice Set 12 Solutions Maharashtra Board

Std 6 Maths Practice Set 12 Solutions Answers

Question 1.
Multiply:
i. \(\frac{7}{5} \times \frac{1}{4}\)
ii. \(\frac{6}{7} \times \frac{2}{5}\)
iii. \(\frac{5}{9} \times \frac{4}{9}\)
iv. \(\frac{4}{11} \times \frac{2}{7}\)
v. \(\frac{1}{5} \times \frac{7}{2}\)
vi. \(\frac{9}{7} \times \frac{7}{8}\)
vii. \(\frac{5}{6} \times \frac{6}{5}\)
viii. \(\frac{6}{17} \times \frac{3}{2}\)
Solution:
i. \(\frac{7}{5} \times \frac{1}{4}\)
Maharashtra Board Class 6 Maths Solutions Chapter 4 Operations on Fractions Practice Set 12 1

ii. \(\frac{6}{7} \times \frac{2}{5}\)
Maharashtra Board Class 6 Maths Solutions Chapter 4 Operations on Fractions Practice Set 12 2

iii. \(\frac{5}{9} \times \frac{4}{9}\)
Maharashtra Board Class 6 Maths Solutions Chapter 4 Operations on Fractions Practice Set 12 3

iv. \(\frac{4}{11} \times \frac{2}{7}\)
Maharashtra Board Class 6 Maths Solutions Chapter 4 Operations on Fractions Practice Set 12 4

v. \(\frac{1}{5} \times \frac{7}{2}\)
Maharashtra Board Class 6 Maths Solutions Chapter 4 Operations on Fractions Practice Set 12 5

vi. \(\frac{9}{7} \times \frac{7}{8}\)
Maharashtra Board Class 6 Maths Solutions Chapter 4 Operations on Fractions Practice Set 12 6

vii. \(\frac{5}{6} \times \frac{6}{5}\)
Maharashtra Board Class 6 Maths Solutions Chapter 4 Operations on Fractions Practice Set 12 7

viii. \(\frac{6}{17} \times \frac{3}{2}\)
Maharashtra Board Class 6 Maths Solutions Chapter 4 Operations on Fractions Practice Set 12 8

Question 2.
Ashokrao planted bananas on \(\frac { 2 }{ 7 }\) of his field of 21 acres. What is the area of the banana plantation?
Solution:
Area of banana plantation is \(\frac { 2 }{ 7 }\) of 21
∴ Area of banana plantation
Maharashtra Board Class 6 Maths Solutions Chapter 4 Operations on Fractions Practice Set 12 9
∴ Area of banana plantation is 6 acres

Question 3.
Of the total number of soldiers in our army, \(\frac { 4 }{ 9 }\) are posted on the northern border and one-third of them on the north-eastern border. If the number of soldiers in the north is 5,40,000, how many are posted in the north-east?
Solution:
Number of soldiers posted on northern border = 5,40,000
Since, number of soldiers in north-east = one third of the soldiers on northern border
∴ Number of soldiers in the north-east
Maharashtra Board Class 6 Maths Solutions Chapter 4 Operations on Fractions Practice Set 12 10
∴ The number of soldiers in the north-east is 1,80,000.

Std 6 Maths Digest

Practice Set 25 Class 6 Answers Maths Chapter 9 HCF-LCM Maharashtra Board

Balbharti Maharashtra State Board Class 6 Maths Solutions covers the Std 6 Maths Chapter 9 HCF-LCM Class 6 Practice Set 25 Answers Solutions.

HCF-LCM Class 6 Maths Chapter 9 Practice Set 25 Solutions Maharashtra Board

Std 6 Maths Practice Set 25 Solutions Answers

Question 1.
Find out the LCM of the following numbers.
i. 9,15
ii. 2,3,5
iii. 12,28
iv. 15,20
v. 8,11
Solution:
i. Multiples of 9 = 9, 18, 27, 36, 45, 54, 63, 72, 81, 90
Multiples of 15 = 15, 30, 45
∴ LCM of 9 and 15 = 45

ii. Multiples of 2 = 2, 4,6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30
Multiples of 3 = 3, 6, 9, 12, 15, 18, 21, 24, 27, 30
Multiples of 5 = 5, 10, 15, 20, 25, 30
∴ LCM of 2,3 and 5 = 30

iii. Multiples of 12 = 12, 24, 36, 48, 60, 72, 84, 96, 108, 120
Multiples of 28 = 28, 56, 84
∴ LCM of 12 and 28 = 84

iv. Multiples of 15 = 15, 30, 45, 60, 75, 90, 105, 120
Multiples of 20 = 20, 40, 60
∴ LCM of 15 and 20 = 60

v. Multiples of 8 = 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96
Multiples of 11 = 11, 22, 33, 44, 55, 66, 77, 88
∴ LCM of 8 and 11 = 88

Question 2.
Solve the following problems:
i. On the playground, if the children are made to stand for drill either 20 to a row or 25 to a row, all rows are complete and no child is left out. What is the lowest possible number of children in that school?

ii. Veena has some beads. She wants to make necklaces with an equal number of beads in each. If She makes necklaces of 16 or 24 or 40 beads, there is no bead left over. What is the least number of beads with her?

iii. An equal number of laddoos have been placed in 3 different boxes. The laddoos in the first box were distributed among 20 children equally, the laddoos in the second box among 24 children and those in the third box among 12 children. Not a single laddoo was left over. What was the minimum number of laddoos in the three boxes altogether?

iv. We observed the traffic lights at three different squares on the same big road. They turn green every 60 seconds, 120 seconds and 24 seconds. When the signals are switched on at 8 o’clock in the morning, all the lights were green. How long after that will all three signals turn green simultaneously again?

v. Given the fractions \(\frac { 13 }{ 45 }\) and \(\frac { 22 }{ 75 }\). Write their equivalent fractions with same denominators and add the fractions.
Solution:
i. The lowest possible number of children is equal to the lowest common multiple of 20 and 25.
Multiples of 20 = 20, 40, 60, 80, 100, 120, 140, 160, 180, 200
Multiples of 25 = 25, 50, 75, 100
∴ LCM of 20 and 25 = 100
∴ The least number of students in the school is 100.

ii. The least number of beads with Veena is equal to the lowest common multiple of 16,24 and 40.
Multiples of 16 = 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256, 272, 288
Multiples of 24 = 24, 48, 72, 96, 120, 144, 168, 192, 216, 240
Multiples of 40 = 40, 80, 120, 160, 200, 240
∴ LCM of 16, 24 and 40 = 240
∴ The least number of beads with Veena are 240.

iii. The lowest common multiple of 20,24 and 12 gives the minimum number of laddoos in one box.
Multiples of 20 = 20, 40, 60, 80, 100,120, 140, 160, 180, 200
Multiples of 24 = 24, 48, 72, 96, 120
Multiples of 12 = 12, 24, 36, 48, 60, 72, 84, 96, 108, 120
∴ LCM of 20, 24 and 12 = 120
∴ Minimum number of ladoos in 1 boxes =120
∴ Minimum number of ladoos in 3 boxes = 3 x 120 = 360
∴ The minimum number of ladoos in 3 boxes are 360.

iv. All three signals will turn green for lowest common multiple of 60 seconds, 120 seconds and 24 seconds.
Multiples of 60 = 60, 120, 180, 240, 300, 360, 420, 480
Multiples of 120 = 120, 240, 360
Multiples of 24 = 24, 48, 72, 96, 120
LCM of 60, 120 and 24 = 120
Since, 60 seconds = 1 minute
∴ 120 seconds = 2 minutes
∴ The signals will turn green simultaneously again after 120 seconds i.e. 2 minutes.

v. The lowest common multiple of 45 and 75 gives the same denominator.
Multiples of 45 = 45, 90, 135, 180, 225, 270, 315, 360, 405, 450
Multiples of 75 = 75, 150, 336
∴ LCM of 45 and 75 = 225
Maharashtra Board Class 6 Maths Solutions Chapter 9 HCF-LCM Practice Set 25 1

Maharashtra Board Class 6 Maths Chapter 9 HCF-LCM Practice Set 25 Intext Questions and Activities

Question 1.
Pravin, Bageshri and Yash are cousins who live in the same house. Pravin is an Army Officer. Bageshri is studying in a Medical College in another city. Yash lives in a nearby town in a hostel. Pravin can come home every 120 days.
Bageshri comes home every 45 days and Yash, every 30 days. All three of them left home at the same time on the 15th of June 2016. Their parents said, “We shall celebrate like a festival the day you all come home together.” Mother asked Yash, “What day will that be?”
Yash said, “The number of days after which we come back together must be divisible by 30, 120. That means we shall be back together on the 10th of June next year. That will certainly be a for us!”
How did Yash find the answer? (Textbook pg. no. 49)
Maharashtra Board Class 6 Maths Solutions Chapter 9 HCF-LCM Practice Set 25 2
Solution:
The day when Pravin, Bageshri and Yash come back together is lowest common multiple of 30, 45 and 120.
Multiples of 30: 30, 60, 90, 120, 150, 180,210, 240, 270, 300, 330, 360
Multiples of 45: 45, 90, 135, 180, 225, 270, 315, 360
Multiples of 120: 120, 240, 360
∴ They will come together after 360 days
Day when they left home = 15th June
∴ Day when they come back together = 15th June + 360 days
= 10th June next year
∴ Pravin, Bageshri and Yash will come back together on 10th June next year.

Question 2.
A Maths Riddle! (Textbook pg. no. 50)
We have four papers. On each of them there is a number on one side and some information on the other. The numbers on the papers are 7, 2, 15, 5. The information on the papers is given below in random order.
i. A number divisible by 7
ii. A prime number
iii. An odd number
iv. A number greater than 100
If the number on every paper is mismatched with the information on its other side, what is the number on the paper which says ‘A number greater than 100?
Solution:

Analysis Reason Outcome
The paper having information (iii) ‘an odd number’ can be mismatched with the number ‘2’ from the other available options. Only the number ‘2’ is an even number, while the rest are odd numbers. The number ‘2’ and (iii) ‘an odd number’ will appear on the opposite sides of the same paper.
Now, we are left with the numbers 7, 15 and 5. The paper having information (i) ‘a number divisible by 7′ can be mismatched with the number ‘5’. The number ‘5’ is not divisible by 7. The number ‘5’ and (i) ‘a number divisible by 7’ will appear on the opposite sides of the same paper.
Now, we are left with the numbers 7 and 15. The paper having information (ii) ‘a prime number’ can be mismatched with the number ‘15’. The number ‘15’ is not a prime number. Hence, the number ‘15’ and (ii) ‘a prime number’ will appear on the opposite sides of the same paper.

Std 6 Maths Digest

Practice Set 11 Class 6 Answers Maths Chapter 4 Operations on Fractions Maharashtra Board

Balbharti Maharashtra State Board Class 6 Maths Solutions covers the Std 6 Maths Chapter 4 Operations on Fractions Class 6 Practice Set 11 Answers Solutions.

Operations on Fractions Class 6 Maths Chapter 4 Practice Set 11 Solutions Maharashtra Board

Std 6 Maths Practice Set 11 Solutions Answers

Question 11.
What fractions do the points A and B show on the number lines below?
Maharashtra Board Class 6 Maths Solutions Chapter 4 Operations on Fractions Practice Set 11 1
Solution:
(1) Each unit is divided in 6 parts
A is 5th division from 0
∴ \(A=\frac { 5 }{ 6 }\)

B is 10th division from 0
∴ \(B=\frac { 10 }{ 6 }\)

(2) Each unit is divided in 5 parts
A is 3rd division from 0
∴ \(A=\frac { 3 }{ 5 }\)

B is 7th division from 0
∴ \(B=\frac { 7 }{ 5 }\)

(3) Each unit is divided in 7 parts
A is 10th division from 0
∴ \(A=\frac { 10 }{ 7 }\)

B is 3rd division from 0
∴ \(B=\frac { 3 }{ 7 }\)

Question 2.
Show the following fractions on the number line:
i. \(\frac{3}{5}, \frac{6}{5}, 2 \frac{3}{5}\)
ii. \(\frac{3}{4}, \frac{5}{4}, 2 \frac{1}{4}\)
Solution:
i. \(\frac{3}{5}, \frac{6}{5}, 2 \frac{3}{5}\)
Maharashtra Board Class 6 Maths Solutions Chapter 4 Operations on Fractions Practice Set 11 2

ii. \(\frac{3}{4}, \frac{5}{4}, 2 \frac{1}{4}\)
Maharashtra Board Class 6 Maths Solutions Chapter 4 Operations on Fractions Practice Set 11 3

Maharashtra Board Class 6 Maths Chapter 4 Operations on Fractions Practice Set 11 Intext Questions and Activities

Question 1.
If we want to show the fractions \(\frac{3}{10}, \frac{9}{20}, \frac{19}{40}\) on the number line, how big should the unit be? (Textbook pg. no. 24)
Solution:
The denominators of the given fractions are not equal.
The numbers in the denominators 10, 20 and 40 have common multiple 40.
∴ Making the denominators equal, we get
Maharashtra Board Class 6 Maths Solutions Chapter 4 Operations on Fractions Practice Set 11 4
∴ To represent these fractions on the numbers line, each main unit should be divided into 40 equal sub-units.
Maharashtra Board Class 6 Maths Solutions Chapter 4 Operations on Fractions Practice Set 11 5
Therefore,
\(\frac{3}{10}=\frac{12}{40}\) is represented on 12th mark from 0.
\(\frac{9}{20}=\frac{18}{40}\) is represented on 18th mark from 0 and
\(\frac { 19 }{ 40 }\) is represented on 19 mark from 0.

Std 6 Maths Digest

Practice Set 33 Class 6 Answers Maths Chapter 13 Profit-Loss Maharashtra Board

Balbharti Maharashtra State Board Class 6 Maths Solutions covers the Std 6 Maths Chapter 13 Profit-Loss Class 6 Practice Set 33 Answers Solutions.

Profit-Loss Class 6 Maths Chapter 13 Practice Set 33 Solutions Maharashtra Board

Std 6 Maths Practice Set 33 Solutions Answers

Question 1.
Maganlal bought trousers for Rs 400 and a shirt for Rs 200 and sold them for Rs 448 and Rs 250 respectively. Which of these transactions was more profitable?
Solution:
Cost price of trousers = Rs 400
Selling price of trousers = Rs 448
Profit = Selling price – Cost price
= 448 – 400 = Rs 48
Let Maganlal make x % profit on selling trousers
Maharashtra Board Class 6 Maths Solutions Chapter 13 Profit-Loss Practice Set 33 1
∴ x = 12%
Cost price of shirt = Rs 200
Selling price of shirt = Rs 250
∴ Profit = Selling price – Cost price
= 250 – 200
= Rs 50
Let Maganlal make y% profit on selling shirt.
Maharashtra Board Class 6 Maths Solutions Chapter 13 Profit-Loss Practice Set 33 2
∴ y = 25%
∴ Transaction involving selling of shirt was more profitable.

Question 2.
Ramrao bought a cupboard for Rs 4500 and sold it for Rs 4950. Shamrao bought a sewing machine for Rs 3500 and sold it for Rs 3920. Whose transaction was more profitable?
Solution:
Cost price of cupboard = Rs 4500
Selling price of cupboard = Rs 4950
∴ Profit = Selling price – Cost price
= 4950 – 4500
= Rs 450
Let Ramrao make x% profit on selling cupboard
Maharashtra Board Class 6 Maths Solutions Chapter 13 Profit-Loss Practice Set 33 3
∴ x = 10%
Cost price of sewing machine = Rs 3500
Selling price of sewing machine = Rs 3920
∴Profit = Selling price – Cost price
= 3920 – 3500
= Rs 420
Shamrao make y% profit on selling sewing machine.
Maharashtra Board Class 6 Maths Solutions Chapter 13 Profit-Loss Practice Set 33 4
∴y = 12%
∴Shamrao’s transaction was more profitable.

Question 3.
Hanif bought one box of 50 apples for Rs 400. He sold all the apples at the rate of Rs 10 each. Was there a profit or loss? What was its percentage?
Solution:
Cost price of 50 apples = Rs 400
Selling price of one apple = Rs 10
∴ Selling price of 50 apples = 10 x 50 = Rs 500
Selling price is greater than the total cost price.
∴ Hanif made a profit.
∴ Profit = Selling price – Cost price
= 500 – 400
= Rs 100
Let Hanif make of x% profit on selling apples.
Maharashtra Board Class 6 Maths Solutions Chapter 13 Profit-Loss Practice Set 33 5
∴ x = 25%
∴ Hanif made a profit of 25%.

Practice Set 24 Class 6 Answers Maths Chapter 9 HCF-LCM Maharashtra Board

Balbharti Maharashtra State Board Class 6 Maths Solutions covers the Std 6 Maths Chapter 9 HCF-LCM Class 6 Practice Set 24 Answers Solutions.

HCF-LCM Class 6 Maths Chapter 9 Practice Set 24 Solutions Maharashtra Board

Std 6 Maths Practice Set 24 Solutions Answers

Question 1.
Find the HCF of the following numbers.
i. 45, 30
ii. 16, 48
iii. 39, 25
iv. 49, 56
v. 120, 144
vi. 81, 99
vii. 24, 36
viii. 25, 75
ix. 48, 54
x. 150, 225
Solution:
i. Factors of 45 = 1, 3, 5, 9,15, 45
Factors of 30 = 1, 2, 3, 5, 6, 10, 15, 30
∴ HCF of 45 and 30 = 15

ii. Factors of 16 = 1, 2, 4, 8, 16
Factors of 48 = 1, 2, 3, 4, 6, 8, 12, 16, 24, 48
∴ HCF of 16 and 48 = 16

iii. Factors of 39 = 1, 3, 13, 39
Factors of 25 = 1, 5, 25
∴ HCF of 39 and 25 = 1

iv. Factors of 49 = 1, 7, 49
Factors of 56 = 1, 2, 4, 7, 8, 14, 28, 56
∴ HCF of 49 and 56 = 7

v. Factors of 120 = 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120
Factors of 144 = 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144
∴ HCF of 120 and 144 = 24

vi. Factors of 81 = 1, 3, 9, 27, 81
Factors of 99 = 1, 3, 9, 11, 33, 99
∴ HCF of 81 and 99 = 9

vii. Factors of 24 = 1, 2, 3, 4, 6, 8, 12, 24
Factors of 36 = 1, 2, 3, 4, 6, 9, 12, 18, 36
∴ HCF of 24 and 36 = 12

viii. Factors of 25 = 1, 5, 25
Factors of 75 = 1, 3, 5, 15, 25, 75
∴ HCF of 25 and 75 = 25

ix. Factors of 48 = 1, 2, 3, 4, 6, 8, 12, 16, 24, 48
Factors of 54 = 1, 2, 3, 6, 9, 18, 27, 54
∴ HCF of 48 and 54 = 6

x. Factors of 150 = 1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 150
Factors of 225 = 1, 3, 5, 9, 15, 25, 45, 75, 225
∴ HCF of 150 and 225 = 75

Question 2.
If large square beds of equal size are to be made for planting vegetables on a plot of land 18 metres long and 15 metres wide, what is the maximum possible length of each bed?
Solution:
Length of the land = 18 m
Width of the land = 15 m
The maximum length of each bed will be the greatest common factor of 18 and 15.
Factors of 18 = 1, 2, 3, 6, 9, 18
Factors of 15 = 1, 3, 5, 15
∴ HCF of 18 and 15 = 3
∴ The maximum possible length of each bed is 3 metres.

Question 3.
Two ropes, one 8 metres long and the other 12 metres long are to be cut into pieces of the same length. What will the maximum possible length of each piece be?
Solution:
Length of first rope = 8 m
Length of second rope = 12 m
The maximum length of each piece will be the greatest common factor of 8 and 12.
Factors of 8 = 1, 2, 4, 8
Factors of 12 = 1, 2, 3, 4, 6, 12
∴ HCF of 8 and 12 = 4
∴ The maximum possible length of each piece is 4 metres.

Question 4.
The number of students of Std 6th and Std 7th who went to visit the Tadoba Tiger Project at Chandrapur was 140 and 196 respectively. The students of each class are to be divided into groups of the same number of students. Each group can have a paid guide. What is the maximum number of students that can be there in each group? Why do you think each group should have the maximum possible number of students?
Solution:
Number of students of Std 6th = 140
Number of students of Std 7th = 196
The maximum number of students in each group will be the greatest common factor of 140 and 196.
Factors of 140 = 1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140
Factors of 196 = 1, 2, 4, 7, 14, 28, 49, 98, 196
∴ HCF of 140 and 196 = 28
∴ Maximum students in each group are 28.
Each group should have maximum number students so that there will be minimum number of groups and hence minimum number of paid guides.

Question 5.
At the Rice Research Centre at Tumsar there are 2610 kg of seeds of the basmati variety and 1980 kg of the indrayani variety. If the maximum possible weight of seeds has to be filled to make bags of equal weight what would be the weight of each bag? How many bags of each variety will there be?
Solution:
Weight of basmati rice = 2610 kg
Weight of indrayani rice = 1980 kg
The weight of each bag will be the greatest common factor of 2610 and 1980.
Factors of 2610 = 1, 2, 3, 5, 6, 9, 10, 15, 18, 29, 30, 45, 58, 87, 90, 145, 174, 261, 290, 435, 522, 870, 1305, 2610
Factors of 1980 = 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 15, 18, 20, 22, 30, 33, 36, 44, 45, 55, 60, 66, 90, 99, 110, 132, 165, 180, 198, 220, 330, 396, 495, 660, 990, 1980
∴ HCF of 2610 and 1980 = 90
Maximum weight of each bag = 90 kg
Number of bags of basmati rice = 2610 ÷ 90 = 29
Number of bags of indrayani rice = 1980 ÷ 90 = 22
Maximum weight of each bag is 90 kg.
The number of bags of basmati rice is 29, and the number of bags of indrayani rice is 22.

Std 6 Maths Digest