Practice Set 9.2 Class 8 Answers Chapter 9 Discount and Commission Maharashtra Board

Balbharti Maharashtra State Board Class 8 Maths Solutions covers the Practice Set 9.2 8th Std Maths Answers Solutions Chapter 9 Discount and Commission.

Discount and Commission Class 8 Maths Chapter 9 Practice Set 9.2 Solutions Maharashtra Board

Std 8 Maths Practice Set 9.2 Chapter 9 Solutions Answers

Question 1.
John sold books worth Rs 4500 for a publisher. For this he received 15% commission. Complete the following activity to find the total commission John obtained.
Solution:
Selling price of the books = Rs 4500
Rate of commission = 15%
Commission obtained = 15% of selling price
\(=\frac{[15]}{[100]} \times[4500]\)
= 15 × 45
∴ Commission obtained = 675 Rupees.
∴ The total commission obtained by John is Rs 675.

Question 2.
Rafique sold flowers worth Rs 15,000 by giving 4% commission to the agent. Find the commission he paid. Find the amount received by Rafique.
Solution:
Here, selling price of flowers = Rs 15,000,
Rate of commission = 4%
i. Commission = 4% of selling price
= \(\frac { 4 }{ 100 }\) × 15,000
= 4 x 150
∴ Commission = Rs 600

ii. Amount received by Rafique = selling price – commission
= 15,000 – 600
= Rs 14,400
∴ Rafique paid Rs 600 as commission and the amount received by him was Rs 14,400.

Question 3.
A farmer sold food grains for Rs 9200 through an agent. The rate of commission was 2%. How much amount did the agent get ?
Solution:
Here, selling price of food grains = Rs 9200,
Rate of commission = 2%
Commission = 2% of selling price
= \(\frac { 2 }{ 100 }\) × 9200
= 2 × 92
= Rs 184
∴ The agent got a commission of Rs 184.

Question 4.
Umatai purchased following items from a Khadi – Bhandar.
i. 3 sarees for Rs 560 each.
ii. 6 bottles of honey for Rs 90 each.
On the purchase, she received a rebate of 12%. How much total amount did Umatai pay?
Solution:
Here, number of sarees = 3,
Price of each saree = Rs 560
∴ Cost of 3 sarees = 560 × 3
= Rs 1680 …(i)
Also, number of honey bottles = 6,
Price of each bottle = Rs 90
∴ Cost of 6 honey bottles = 90 × 6
= Rs 540
Total amount of purchase
= cost of 3 sarees + cost of 6 honey bottles
= 1680 + 540 … [From (i) and (ii)]
= Rs 2220 …(iii)
Rate of rebate = 12%
Rebate = 12% of total amount of purchase
= \(\frac { 12 }{ 100 }\) × 2220
= 12 × 22.20
= Rs 266.40 ..(iv)
Amount paid by Umatai
= Total amount of purchase – Rebate
= 2,220 – 266.40 … [From (iii) and (iv)]
= Rs 1953.60
∴ The total amount paid by Umatai is Rs 1953.60.

Question 5.
Use the given information and fill in the boxes with suitable numbers.
Smt. Deepanjali purchased a house for Rs 7,50,000 from Smt. Leelaben through an agent. Agent has charged 2 % brokerage from both of them.
Solution:
i. Smt. Deepanjali paid 7,50,000 × \(\frac { 2 }{ 100 }\)
= 7,500 × 2 = Rs 15,000 brokerage for purchasing the house.

ii. Smt. Leelaben paid brokerage of Rs 15,000

iii. Total brokerage received by the agent is = 15,000 + 15,000 = Rs 30,000

iv. The cost of house Smt. Deepanjali paid is = 7,50,000 + 15,000 = Rs 7,65,000

v. The selling price of house for Smt.Leelaben is = 7,50,000 – 15,000
= Rs 7,35,000

Std 8 Maths Digest

Practice Set 8.1 Class 8 Answers Chapter 8 Quadrilateral: Constructions and Types Maharashtra Board

Balbharti Maharashtra State Board Class 8 Maths Solutions covers the Practice Set 8.1 8th Std Maths Answers Solutions Chapter 8 Quadrilateral: Constructions and Types.

Quadrilateral: Constructions and Types Class 8 Maths Chapter 8 Practice Set 8.1 Solutions Maharashtra Board

Std 8 Maths Practice Set 8.1 Chapter 8 Solutions Answers

Construct the following quadrilaterals of given measures.

Question 1.
In ∆MORE, l(MO) = 5.8 cm, l(OR) = 4.4 cm, m∠M = 58°, m∠O = 105°, m∠R = 90°.
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.1 1

Question 2.
Construct ∆DEFG such that l(DE) = 4.5 cm, l(EF) = 6.5 cm, l(DG) = 5.5 cm, l(DF) = 7.2 cm, l(EG) = 7.8 cm.
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.1 2

Question 3.
In ∆ABCD, l(AB) = 6.4 cm, l(BC) = 4.8 cm, m∠A = 70°, m∠B = 50°, m∠C = 140°.
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.1 3

Question 4.
Construct ₹LMNO such that
l(LM) = l(LO) = 6 cm,
l(ON) = l(NM) = 4.5 cm, l(OM) = 7.5 cm.
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.1 4

Maharashtra Board Class 8 Maths Chapter 8 Quadrilateral: Constructions and Types Practice Set 8.1 Intext Questions and Activities

Question 1.
Construction of a triangle:
Construct the triangles with given measures. (Textbook pg. no. 41)
i. ∆ABC: l(AB) = 5 cm, l(BC) = 5.5, l(AC) = 6 cm.
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.1 5
Steps of construction:
Step 1 : As shown in the rough figure, draw seg BC of length 5.5 cm as the base.
Step 2 : By taking a distance of 5 cm on the compass and placing the metal tip of the compass on point B, draw an arc on one side of BC.
Step 3 : By taking a distance 6 cm on the compass and placing the metal tip of the t compass on point C and draw an arc ’ such that it intersects the previous arc. Name the point as A.
Step 4 : Draw segments AB and AC to get the triangle. ∆ABC is the required triangle.
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.1 6

ii. ∆DEF: m∠D = 35°, m∠F = 100°, l(DF) = 4.8 cm.
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.1 7
Steps of construction:
Step 1 : As shown in the rough figure, draw seg DF of length 4.8 cm as the base.
Step 2 : Placing the centre of the protractor at point D, mark point P such that m∠PDF = 35°.
Step 3 : Placing the centre of the protractor at point F, mark point Q such that m∠QFD = 100°.
Step 4 : Draw ray DP and ray FQ. Name their point of intersection as E.
∆DEF is required triangle.
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.1 8

iii. ∆MNP: l(MP) = 6.2 cm, l(NP) = 4.5 cm, m∠P = 75°.
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.1 9
Steps of construction:
Step 1 : As shown in the rough figure, draw seg PN of length 4.5 cm as the base.
Step 2 : Placing the centre of the protractor at point P, mark point Q such that m∠QPN = 75°.
Step 3 : By taking a distance of 6.2 cm on the compass and placing the metal tip at point P, draw an arc on ray PQ. Name the point as M.
Step 4 : Draw seg MN to get the triangle. ∆MNP is the required triangle.
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.1 10

iv. ∆XYZ: m∠Y = 90°, l(XY) = 4.2 cm, l(XZ) = 7 cm.
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.1 11
Steps of construction:
Step 1 : As shown in the rough figure, draw seg XY of 4.2 cm as the base.
Step 2 : Placing the centre of the protractor at point Y, mark point Q such that m∠QYX = 90°.
Step 3 : By taking a distance of 7 cm on the compass and placing the metal tip on point X, draw an arc on ray YQ. Name the point as Z.
Step 4 : Draw seg XZ to get the triangle. ∆XYZ is the required triangle.
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.1 12

Std 8 Maths Digest

Practice Set 5.1 Algebra 9th Standard Maths Part 1 Chapter 5 Linear Equations in Two Variables Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 5.1 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 5 Linear Equations in Two Variables.

9th Standard Maths 1 Practice Set 5.1 Chapter 5 Linear Equations in Two Variables Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Practice Set 5.1 Chapter 5 Linear Equations in Two Variables Questions With Answers Maharashtra Board

Question 1.
By using variables x and y form any five linear equations in two variables.
Answer:
The general form of a linear equation in two variables x and y is ax + by + c = 0,
where a, b, c are real numbers and a ≠ 0, b ≠ 0.
Five linear equations in two variables are as follows:
i. 3x + 4y – 12 = 0
ii. 3x – 4y + 12 = 0
iii. 5x + 5y – 6 = 0
iv. 7x + 12y – 11 = 0
v. x – y + 5 = 0

Question 2.
Write five solutions of the equation x + y = 1.
Answer:
i. x = 1, y = 6
ii. x = -1, y = 8
iii. x = 5, y = 2
iv. x = 0, y = 7
v. x = 10, y = -3

Question 3.
Solve the following sets of simultaneous equations.
i. x + y = 4 ; 2x – 5y = 1
ii. 2x + y = 5 ; 3x – y = 5
iii. 3x – 5y = 16; x – 3y= 8
iv. 2y – x = 0; 10x + 15y = 105
v. 2x + 3y + 4 = 0; x – 5y = 11
vi. 2x – 7y = 7; 3x + y = 22
Solution:
i. Substitution Method:
x + y = 4
∴ x = 4 – y …(i)
2x – 5y = 1 ……(ii)
Substituting x = 4 – y in equation (ii),
2(4 – y) – 5y = 1
∴ 8 – 2y – 5y = 1
∴ 8 – 7y = 1
∴ 8 – 1 = 7y
∴ 7 = 7y
∴ y = \(\frac { 7 }{ 7 }\)
∴ y = 1
Substituting y = 1 in equation (i),
x = 4 – 1 = 3
∴ (3,1) is the solution of the given equations.

Alternate method:
Elimination Method:
x + y = 4 …(i)
2x – 5y = 1 ……(ii)
Multiplying equation (i) by 5,
5x + 5y = 20 … (iii)
Adding equations (ii) and (iii),
2x – 5y = 1
+ 5x + 5y = 20
7 = 21
∴ x = \(\frac { 21 }{ 7 }\)
∴ x = 3
Substituting x = 3 in equation (i),
3 + y = 4
∴ y = 4 – 3 = 1
(3,1) is the solution of the given equations.

ii. 2x + y = 5 …(i)
3x – y = 5 …(ii)
Adding equations (i) and (ii),
2x + y = 5
+ 3x – y = 5
5x = 10
∴ x = \(\frac { 10 }{ 5 }\)
∴ x = 2
Substituting x = 2 in equation (i),
2(2) + y = 5
4 + y = 5
∴ y = 5 – 4 = 1
∴ (2, 1) is the solution of the given equations.

iii. 3x – 5y = 16 …(i)
x – 3y = 8
∴x = 8 + 3y …..(ii)
Substituting x = 8 + 3y in equation (i),
3(8 + 3y) – 5y = 16
24 + 9y- 5y = 16
∴4y= 16 – 24
∴ 4y = -8
∴ y = \(\frac { -8 }{ 4 }\)
y = -2
Substituting y = -2 in equation (ii),
x = 8 + 3 (-2)
∴ x = 8 – 6 = 2
∴ (2, -2) is the solution of the given equations.

iv. 2y – x = 0
∴ x = 2y …(i)
10x + 15y = 105 …(ii)
Substituting x = 2y in equation (ii),
10(2y) + 15y = 105
∴ 20y + 15y = 105
∴ 35y = 105
∴ y = \(\frac { 105 }{ 35 }\)
∴ y = 3
Substituting y = 3 in equation (i),
x = 2y
∴ x = 2(3) = 6
∴ (6, 3) is the solution of the given equations.

v. 2x + 3y + 4 = 0 …(i)
x – 5y = 11
∴x = 11 + 5y …(ii)
Substituting x = 11 + 5y in equation (i),
2(11 +5y) + 3y + 4 = 0
∴ 22 + 10y + 3y + 4 = 0
∴ 13y + 26 = 0
∴ 13y = -26
∴y = \(\frac { -26 }{ 13 }\)
∴ y = -2
Substituting y = -2 in equation (ii),
x = 11 + 5y
∴ x = 11 + 5(-2)
∴ x = 11 – 10 = 1
∴ (1, -2) is the solution of the given equations.

vi. 2x – 7y = 7 …(i)
3x + y = 22
∴ y = 22 – 3x ……(ii)
Substituting y = 22 – 3x in equation (i),
2x – 7(22 – 3x) = 7
∴ 2x – 154 + 21x = 7
∴ 23x = 7 + 154
∴ 23x = 161
∴ x = \(\frac { 161 }{ 23 }\)
∴ x = 7
Substituting x = 7 in equation (ii),
y = 22 – 3x
∴ y = 22 – 3(7)
∴ 7 = 22 -21= 1
∴ (7, 1) is the solution of the given equations.

Question 1.
Solve the following equations. (Textbook pg. no. 80)
i. m + 3 = 5
ii. 3y + 8 = 22
iii. \(\frac { x }{ 3 }\) = 2
iv. 2p = p + \(\frac { 4 }{ 9 }\)
Solution:
i. m + 3 = 5
m = 5 – 3
∴m = 2

ii. 3y + 8 = 22
∴ 3y = 22 – 8
∴ 3y = 14
∴ y = \(\frac { 14 }{ 9 }\)

iii. \(\frac { x }{ 3 }\) = 2
∴ x = 2 × 3
∴ x = 6

iv. 2p = p + \(\frac { 4 }{ 9 }\)
∴ 2p – p = \(\frac { 4 }{ 9 }\)
∴ p = \(\frac { 4 }{ 9 }\)

Question 2.
Which number should be added to 5 to obtain 14? (Textbook pg. no. 80)
Solution:
x + 5 = 14
∴ x = 14 – 5
x = 9
∴ 9 + 5 = 14

Question 3.
Which number should be subtracted from 8 to obtain 2? (Textbook pg. no. 80)
Solution:
8 – y = 2
∴ y = 8 – 2
∴ y = 6
∴ 8 – 6 = 2

Question 4.
x + y = 5 and 2x + 2y= 10 are two equations in two variables. Find live different solutions of x + y = 5, verify whether same solutions satisfy the equation 2x + 2y = 10 also. Observe both equations. Find the condition where two equations in two variables have all solutions in common. (Textbook pg. no. 82)
Solution:
Five solutions of x + y = 5 are given below:
(1,4), (2, 3), (3, 2), (4,1), (0, 5)
The above solutions also satisfy the equation 2x + 2y = 10.
∴ x + y = 5 …[Dividing both sides by 2]
∴ If the two equations are the same, then the two equations in two variables have all solutions common.

Question 5.
3x – 4y – 15 = 0 and y + x + 2 = 0. Can these equations be solved by eliminating x ? Is the solution same? (Textbook pg. no. 84)
Solution:
3x – 4y – 15 = 0
∴ 3x – 4y = 15 …(i)
y + x + 2 = 0
∴ x + y = -2 ……(ii)
Multiplying equation (ii) by 3,
3x + 3y = -6 …(iii)
Subtracting equation (iii) from (i),
Maharashtra Board Class 9 Maths Solutions Chapter 5 Linear Equations in Two Variables Practice Set 5.1 1
∴ y = -3
Substituting y = -3 in equation (ii),
∴ x – 3 = -2
∴ x = – 2 + 3
∴ x = 1
∴ (x, y) = ( 1, -3)
Yes, the given equations can be solved by eliminating x. Also, the solution will remain the same.

Class 9 Maths Digest

Practice Set 4.3 Algebra 9th Standard Maths Part 1 Chapter 4 Ratio and Proportion Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 4.3 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 4 Ratio and Proportion.

9th Standard Maths 1 Practice Set 4.3 Chapter 4 Ratio and Proportion Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Practice Set 4.3 Chapter 4 Ratio and Proportion Questions With Answers Maharashtra Board

Ratio and Proportion Practice Set 4.3 Question 1.
If \(\frac { a }{ b }\) = \(\frac { 7 }{ 3 }\), then find the aIues of the following ratios.
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.3 1
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.3 2
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.3 3
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.3 4
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.3 5
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.3 6

Ratio and Proportion Class 9 Practice Set 4.3 Question 2.
If \(\frac{15 a^{2}+4 b^{2}}{15 a^{2}-4 b^{2}}=\frac{47}{7}\), then find the value of the following ratios.
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.3 7
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.3 8
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.3 9
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.3 10
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.3 11

Practice Set 4.3 Algebra 9th Question 3.
If \(\frac{3 a+7 b}{3 a-7 b}=\frac{4}{3}\)then find the value of the ratio \(\frac{3 a^{2}-7 b^{2}}{3 a^{2}+7 b^{2}}\).
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.3 12
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.3 13

Class 9 Maths Chapter 4 Ratio And Proportion Practice Set 4.3 Question 4.
Solve the following equations.
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.3 14
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.3 15
This equation is true for x = 0
∴ x = 0 is one of the solutions.
If x ≠ 0, then x2 ≠ 0
∴ \(\frac { 1 }{ 12x – 20 }\) = \(\frac { 1 }{ 8x + 12 }\) … [Dividing both sides by x2]
∴ 8x + 12 = 12x – 20
∴ 12 + 20 = 12x – 8x
∴ 32 = 4x
∴ x = 8
∴ x = 0 or x = 8 are the solutions of the given equation.

Ratio And Proportion Class 9 Maths Maharashtra Board
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.3 17
∴ 21(x – 5) = 4(2x + 3)
∴ 21x – 105 = 8x + 12
∴ 21x – 8x = 12 + 105
∴ 13x = 117
∴ x = 9
∴ x = 9 ¡s the solution of the given equation.

Practice Set 4.3 Algebra Class 9 Maths Maharashtra Board

9th Algebra Practice Set 4.3 Maharashtra Board
∴ 9(4x + 1) = 25(x + 3)
∴36x + 925x + 75
∴ 36x – 25 = 75 – 9
∴11x = 66
∴ x = 6
∴ x = 6 is the solution of the given equation.
9th Class Algebra Practice Set 4.3 Maharashtra Board
9th Class Maths Part 1 Practice Set 4.3 Maharashtra Board
∴ 4(3x – 4) = 5(x + 1)
∴ 12x – 16 = 5x + 5
∴ 12x – 5x = 5 + 16
∴ 7x = 21
∴ x = 3
∴ x = 3 ¡s the solution of the given equation.

Class 9 Maths Digest

Practice Set 4.5 Algebra 9th Standard Maths Part 1 Chapter 4 Ratio and Proportion Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 4.5 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 4 Ratio and Proportion.

9th Standard Maths 1 Practice Set 4.5 Chapter 4 Ratio and Proportion Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Practice Set 4.5 Chapter 4 Ratio and Proportion Questions With Answers Maharashtra Board

Question 1.
Which number should be subtracted from 12, 16 and 21 so that resultant numbers are in continued proportion?
Solution:
Let the number to be subtracted be x.
∴ (12 – x), (16 – x) and (21 – x) are in continued proportion.
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.5 1
∴ 84 – 4x = 80 – 5x
∴ 5x – 4x = 80 – 84
∴ x = -4
∴ -4 should be subtracted from 12,16 and 21 so that the resultant numbers in continued proportion.

Question 2.
If (28 – x) is the mean proportional of (23 – x) and (19 – x), then find the value ofx.
Solution:
(28 – x) is the mean proportional of (23 – x) and (19-x). …[Given]
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.5 2
∴ -5(19 – x) = 9(28 – x)
∴ -95 + 5x = 252 – 9x
∴ 5x + 9x = 252 + 95
∴ 14x = 347
∴ x = \(\frac { 347 }{ 14 }\)

Question 3.
Three numbers are in continued proportion, whose mean proportional is 12 and the sum of the remaining two numbers is 26, then find these numbers.
Solution:
Let the first number be x.
∴ Third number = 26 – x
12 is the mean proportional of x and (26 – x).
∴ \(\frac { x }{ 12 }\) = \(\frac { 12 }{ 26 – x }\)
∴ x(26 – x) = 12 x 12
∴ 26x – x2 = 144
∴ x2 – 26x + 144 = 0
∴ x2 – 18x – 8x + 144 = 0
∴ x(x – 18) – 8(x – 18) = 0
∴ (x – 18) (x – 8) = 0
∴ x = 18 or x = 8
∴ Third number = 26 – x = 26 – 18 = 8 or 26 – x = 26 – 8 = 18
∴ The numbers are 18, 12, 8 or 8, 12, 18.

Question 4.
If (a + b + c)(a – b + c) = a2 + b2 + c2, show that a, b, c are in continued proportion.
Solution:
(a + b + c)(a – b + c) = a2 + b2 + c2 …[Given]
∴ a(a – b + c) + b(a – b + c) + c(a – b + c) = a2 + b2 + c2
∴ a2 – ab + ac + ab – b2 + be + ac – be + c2 = a2 + b2 + c2
∴ a2 + 2ac – b2 + c2 = a2 + b2 + c2
∴ 2ac – b2 = b2
∴ 2ac = 2b2
∴ ac = b2
∴ b2 = ac
∴ a, b, c are in continued proportion.

Question 5.
If \(\frac { a }{ b }\) = \(\frac { b }{ c }\) and a, b, c > 0, then show that,
i. (a + b + c)(b – c) = ab – c2
ii. (a2 + b2)(b2 + c2) = (ab + be)2
iii. \(\frac{a^{2}+b^{2}}{a b}=\frac{a+c}{b}\)
Solution:
Let \(\frac { a }{ b }\) = \(\frac { b }{ c }\) = k
∴ b = ck
∴ a = bk =(ck)k
∴ a = ck2 …(ii)

i. (a + b + c)(b – c) = ab – c2
L.H.S = (a + b + c) (b – c)
= [ck2 + ck + c] [ck – c] … [From (i) and (ii)]
= c(k2 + k + 1) c (k – 1)
= c2 (k2 + k + 1) (k – 1)
R.H.S = ab – c2
= (ck2) (ck) – c2 … [From (i) and (ii)]
= c2k3 – c2
= c2(k3 – 1)
= c2 (k – 1) (k2 + k + 1) … [a3 – b3 = (a – b) (a2 + ab + b2]
∴ L.H.S = R.H.S
∴ (a + b + c) (b – c) = ab – c2

ii. (a2 + b2)(b2 + c2) = (ab + bc)2
b = ck; a = ck2
L.H.S = (a2 + b2) (b2 + c2)
= [(ck2) + (ck)2] [(ck)2 + c2] … [From (i) and (ii)]
= [c2k4 + c2k2] [c2k2 + c2]
= c2k2 (k2 + 1) c2 (k2 + 1)
= c4k2 (k2 + 1)2
R.H.S = (ab + bc)2
= [(ck2) (ck) + (ck)c]2 …[From (i) and (ii)]
= [c2k3 + c2k]2
= [c2k (k2 + 1)]2 = c4(k2 + 1)2
∴ L.H.S = R.H.S
∴ (a2 + b2) (b2 + c2) = (ab + bc)2

iii. \(\frac{a^{2}+b^{2}}{a b}=\frac{a+c}{b}\)
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.5 3

9th Standard Algebra Practice Set 4.5 Question 6. Find mean proportional of \(\frac{x+y}{x-y}, \frac{x^{2}-y^{2}}{x^{2} y^{2}}\).
Solution:
Let a be the mean proportional of \(\frac{x+y}{x-y}\) and \(\frac{x^{2}-y^{2}}{x^{2} y^{2}}\)
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.5 4

Class 9 Maths Digest

Problem Set 4 Algebra 9th Standard Maths Part 1 Chapter 4 Ratio and Proportion Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Problem Set 4 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 4 Ratio and Proportion.

9th Standard Maths 1 Problem Set 4 Chapter 4 Ratio and Proportion Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Problem Set 4 Chapter 4 Ratio and Proportion Questions With Answers Maharashtra Board

Question 1.
Select the appropriate alternative answer for the following questions.

i . If 6 : 5 = y : 20, then what will be the value of y?
(A) 15
(B) 24
(C) 18
(D) 22.5
Answer:
(B) 24

ii. What is the ratio of 1 mm to 1 cm ?
(A) 1 : 100
(B) 10: 1
(C) 1 : 10
(D) 100: 1
Answer:
(C) 1 : 10

iii. The ages of Jatin, Nitin and Mohasin are 16, 24 and 36 years respectively. What is the ratio of Nitin’s age to Mohasin’s age ?
(A) 3 : 2
(B) 2 : 3
(C) 4 : 3
(D) 3 : 4
Answer:
(B) 2 : 3

iv. 24 bananas were distributed between Shubham and Anil in the ratio 3 : 5, then how many bananas did Shubham get?
(A) 8
(B) 15
(C) 12
(D) 9
Answer:
(D) 9

v. What is the mean proportional of 4 and 25?
(A) 6
(B) 8
(C) 10
(D) 12
Answer:
(C) 10

Hints:
i . \(\frac{6}{5}=\frac{y}{20}\)
∴ \(\quad y=\frac{6 \times 20}{5}=24\)

ii. \(\frac{1 \mathrm{mm}}{1 \mathrm{cm}}=\frac{1 \mathrm{mm}}{10 \mathrm{mm}}=\frac{1}{10}=1 : 10\)

iii. \(\frac{\text { Age of Nitin }}{\text { Age of Mohasin }}=\frac{24}{36}=\frac{12 \times 2}{12 \times 3}\)
\(\frac { 2 }{ 3 }\) = 2 : 3

iv. 3x + 5x = 24
∴ 8x = 24
∴ x = 3
∴ Number of bananas with Shubham = 3x = 9

v. x2 = 4 x 25
∴ x2 = 100
∴ x = 10

Question 2.
For the following numbers write the ratio of first number to second number in the reduced form. [1 Mark each]
i. 21,48
ii. 36,90
iii. 65,117
iv. 138,161
v. 114,133
Solution:
i. 21,48
\(\text { Ratio }=\frac{21}{48}=\frac{3 \times 7}{3 \times 16}=\frac{7}{16}=7 : 16\)
ii. 36,90
\(\text { Ratio }=\frac{36}{90}=\frac{18 \times 2}{18 \times 5}=\frac{2}{5}=2 : 5\)
iii. 65,117
\(\text { Ratio }=\frac{65}{117}=\frac{13 \times 5}{13 \times 9}=\frac{5}{9}=5 : 9\)
iv. 138,161
\(\text { Ratio }=\frac{138}{161}=\frac{23 \times 6}{23 \times 7}=\frac{6}{7}=6 : 7\)
v. 114,133
\(\text { Ratio }=\frac{114}{113}=\frac{19 \times 6}{19 \times 7}=\frac{6}{7}=6 : 7\)

Question 3.
Write the following ratios in the reduced form.
i. Radius to the diameter of a circle.
ii. The ratio of diagonal to the length of a rectangle, having length 4 cm and breadth 3 cm.
iii. The ratio of numbers denoting perimeter to area of a square, having side 4 cm.
Solution:
i. Radius to the diameter of a circle.
Let radius of the circle be r
then, diameter = 2 x radius = 2r
Ratio of radius to diameter of circle
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 1
∴ Ratio of radius to diameter of circle is 1 : 2.

ii. The ratio of diagonal to the length of a rectangle, having length 4 cm and breadth 3 cm.
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 2
Let □ ABCD be a rectangle.
In ∆ABC, ∠B = 90°
AC2 = AB2 + BC2 … [Pythagoras theorem]
= 42 + 32 = 16 + 9
∴ AC2 = 25
AC = 5 … [Taking square root on both side]
The ratio of diagonal to the length of a rectangle = \(\frac { AC }{ AB }\)
= \(\frac { 5 }{ 4 }\)
= 5 : 4
∴ The ratio of diagonal to the length of a rectangle is 5 : 4

iii. The ratio of numbers denoting perimeter to area of a square, having side 4 cm. side of square = 4cm
Perimeter of square = 4 x side = 4 x 4 = 16 cm
Area of square = (side)2 = (4)2 = 16 cm2
Ratio of numbers denoting perimeter to area of square
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 3
∴ The ratio of numbers denoting perimeter to area of a square is 1 : 1.

Question 4.
Check whether the following numbers are in continued proportion.
i. 2, 4, 8
ii. 1, 2, 3
iii. 9, 12, 16
iv. 3, 5, 8
Solution:
If a, b, c are in continued proportion then b2 = ac.
i. 2, 4, 8
Let, a = 2, b = 4 and c = 8
Here, b2 = 42 = 16
ac = 2 x 8 = 16
∴ b2 = ac
∴ 2, 4,8 are in continued proportion.

ii. 1, 2, 3
Let, a = 1, b = 2 and c = 3
Here, b2 = 22 = 4
ac = 1 x 3 = 3
∴ b2 ≠ ac
∴ 1, 2,3 are not in continued proportion.

iii. 9, 12, 16
Let, a = 9, b = 12 and c = 16
Here, b2 = 122 = 144
ac = 9 x 16 = 144
∴ b2 = ac
∴ 9, 12, 16 are in continued proportion.

iv. 3, 5, 8
Let, a = 3, b = 5 and c = 8
Here, b2 = 52 = 25
ac = 3 x 8 = 24
∴ b2 ≠ ac
∴ 3, 5, 8 are not in continued proportion.

Question 5.
a, b, c are in continued proportion. If a = 3 and c = 27, then find b.
Solution:
a, b, c are in continued proportion. …[Given]
∴ b2 = ac
∴ b2 = 3 x 27 …[∵ a = 3 and c = 27]
∴ b2 = 81
∴ b = 9 …[Taking square root of both sides]

Question 6.
Convert the following ratios into percentages.
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 4
Solution:
i. Let 37 : 500 = x%
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 5
∴ 37 : 500 = 7.4%
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 6

Question 7.
Write the ratio of first quantity to second quantity in the reduced form.
i. 1024 MB, 1.2 GB [(1024 MB = 1GB)]
ii. ₹ 17, ₹ 25 and 60 paise
iii. 5 dozen, 120 units
iv. 4 sq.m, 800 sq.cm
v. 1.5 kg, 2500 gm
Solution:
i. 1024 MB, 1.2 GB
1024 MB = 1 GB
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 7

ii. ₹ 17, ₹ 25 and 60 paise
₹ 17 = 17 x 100 paise = 1700 paise
₹ 25 and 60 paise = (25x 100) paise + 60 paise
= (2500 + 60) paise
= 2560 paise
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 8

iii. 5 dozen, 120 units
5 dozen = 5 x 12 units = 60 units
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 9

iv. 4 sq.m, 800 sq.cm
4 sq.m = 4 x 10000 sq.cm = 40000 sq.cm
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 10

v. 1.5 kg, 2500 gm
1.5 kg = 1.5 x 1000 gm = 1500gm
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 11

Question 8.
If \(\frac { a }{ b }\) = \(\frac { 2 }{ 3 }\), then find the values of the following expressions.
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 12
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 13
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 14
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 15

Question 9.
If a, b, c, d are in proportion, then prove that
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 16
Solution:
a, b, c are in continued proportion. …[Given]
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 17
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 18
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 19
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 20

Question 10.
If a, b, c are ¡n continued proportion, then prove that
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 21
Solution:
a, b, c are in continued proportion. … [Given]
∴ \(\frac { a }{ b }\) = \(\frac { b }{ c }\)
Let \(\frac { a }{ b }\) = \(\frac { b }{ c }\) = k
∴ b = ck
∴ a = bk
= (ck)k . .. [From (j)]
a = ck2 …(ii)
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 22
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 23
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 24

Question 11.
Solve:
\( \frac{12 x^{2}+18 x+42}{18 x^{2}+12 x+58}=\frac{2 x+3}{3 x+2}\)
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 25
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 26
∴ 29(2x + 3) = 21 (3x + 2)
∴ 5 + 87= 63x + 42
∴ 87 – 42 = 63x – 58x
∴ 45 = 5x
∴ x = 9
∴ x = 9 is the solution of the given equation.

Question 12.
If \( \frac{2 x-3 y}{3 z+y}=\frac{z-y}{z-x}=\frac{x+3 z}{2 y-3 x}\) ,then prove that every ratio = \(\frac { x }{ y }\).
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 27
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 28

Question 13.
If \(\frac{b y+c z}{b^{2}+c^{2}}=\frac{c z+a x}{c^{2}+a^{2}}=\frac{a x+b y}{a^{2}+b^{2}}\), then prove \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 29

Question 1.
Take 5 pieces of card paper. Write the following statements, one on each paper.
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 30
a, b, c, d are positive numbers and \(\frac{a}{b}=\frac{c}{d}\) is given. Which of the above statements are true or false, write at the back of each card, if false explain why. (Textbook pg. no. 70)
Answer:
i. True
ii. True
iii. False
Here, numerator and denominator are multiplied by two different numbers a and b.
iv. False
Here, different numbers a and b are subtracted from numerator and denominator.
v. True

Question 2.
In the following activity, the values of a and b can be changed. That is by changing a : b we can create many examples. Teachers should give lot of practice to the students and encourage them to construct their own examples. (Textbook pg. no. 70)
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Problem Set 4 31

Question 3.
Observe the political map of India from a Geography text book. Study the scale of this map.
From the given scale find the straight line distances between various cities like
i. New Delhi to Bengaluru
ii. Mumbai to Kolkata
iii. Jaipur to Bhuvaneshvar. (Textbook pg. no. 77)
[Students should attempt the above activity on their own.]

Class 9 Maths Digest

Practice Set 8.3 Class 8 Answers Chapter 8 Quadrilateral: Constructions and Types Maharashtra Board

Balbharti Maharashtra State Board Class 8 Maths Solutions covers the Practice Set 8.3 8th Std Maths Answers Solutions Chapter 8 Quadrilateral: Constructions and Types.

Quadrilateral: Constructions and Types Class 8 Maths Chapter 8 Practice Set 8.3 Solutions Maharashtra Board

Std 8 Maths Practice Set 8.3 Chapter 8 Solutions Answers

Question 1.
Measures of opposite angles of a parallelogram are (3x – 2)° and (50 – x)°. Find the measure of its each angle.
Solution:
Let ₹PQRS be the parallelogram.
m∠Q = (3x – 2)° and m∠S = (50 – x)°
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.3 1
m∠Q = m∠S
…..(i)
[Opposite angles of a parallelogram are congruent]
∴ 3x – 2 = 50 – x
∴ 3x + x = 50 + 2
∴ 4x = 52
∴ x = \(\frac { 52 }{ 4 }\)
∴ x = 13
Now, m∠Q = (3x – 2)°
= (3 x 13 – 2)° = (39 – 2)° = 37°
∴ m∠S = m∠Q = 37° …[From(i)]
m∠P + m∠Q = 180°
….[Adjacent angles of a parallelogram are supplementary]
∴ m∠P + 37° = 180°
∴ m∠P = 180° – 37° = 143°
∴ m∠R = m∠P = 143°
…..[Opposite angles of a parallelogram are congruent]
∴ The measures of the angles of the parallelogram are 37°, 143°, 37° and 143°.

Question 2.
Referring the given figure of a parallelogram, write the answers of questions given below.
i. If l(WZ) = 4.5 cm, then l(XY) = ?
ii. If l(YZ) = 8.2 cm, then l(XW) = ?
iii. If l(OX) = 2.5 cm, then l(OZ) = ?
iv. If l(WO) = 3.3 cm, then l(WY) = ?
v. If m∠WZY = 120°, then m∠WXY = ? and m∠XWZ = ?
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.3 2
Solution:
i. l(WZ) = 4.5 cm … [Given]
l(X Y) = l(WZ) ….[Opposite sides of a parallelogram are congrument ]
∴ l(X Y) = 4.5cm

ii. l(YZ) = 8.2 cm …[Given]
l(XW) = l(YZ)
…[Opposite sides of a parallelogram are congruent]
∴ l(XW) = 8.2cm … [Given]

iii. l(OX) = 2.5 cm …[Given]
l(OZ) = l(OX)
….[Diagonals of a parallelogram bisect each other]
∴ l(OZ) = 2.5cm

iv. l(WO) = 3.3 cm … [Given]
l(WO) = \(\frac { 1 }{ 2 }\) l(WY)
….[Diagonals of a parallelogram bisect each other]
∴ 3.3 = \(\frac { 1 }{ 2 }\) l(WY)
∴ 3.3 x 2 = l(WY)
∴ l(WY) = 6.6cm

v. m∠WZY =120° … [Given]
m∠WXY = m∠WZY
…..[Opposite angles of a parallelogram are congrument]
∴ m∠WXY = 120° …(i)
m∠XWZ + m∠WXY = 180°
….[Adjacent angles of a parallelogram are supplementary]
∴ m∠XWZ + 120° = 180° … [From (i)]
∴ m∠XWZ = 180°- 120°
∴ m∠XWZ = 60°

Question 3.
Construct a parallelogram ABCD such that l(BC) = 7 cm, m∠ABC = 40°, l(AB) = 3 cm
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.3 3
Opposite sides of a parallelogram are congruent.
∴ l(AB) = l(CD) = 3cm
l(BC) = l(AD) = 7 cm
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.3 4

Question 4.
Ratio of consecutive angles of a quadrilateral is 1 : 2 : 3 : 4. Find the measure of its each angle. Write with reason, what type of a quadrilateral it is.
Solution:
Let ₹PQRS be the quadrilateral.
Ratio of consecutive angles of a quadrilateral is 1 : 2 : 3 : 4.
Let the common multiple be x.
∴m∠P = x°, m∠Q = 2x°, m∠R = 3x° and m∠S = 4x°
In ₹PQRS,
m∠P + m∠Q + m∠R + m∠S = 360°
…[Sum of the measures of the angles of a quadrilateral is 360°]
∴x° + 2x° + 3x° + 4x° = 360°
∴10 x° = 360°
∴x° = \(\frac { 360 }{ 10 }\)
∴x° = 36°
∴m∠P = x° = 36°
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.3 5
m∠Q = 2x° = 2 × 36° = 72°
m∠R = 3x° = 3 × 36° = 108° and
m∠S = 4x° = 4 × 36° = 144°
∴The measures of the angles of the quadrilateral are 36°, 72°, 108°, 144°.
Here, m∠P + m∠S = 36° + 144° = 180°
Since, interior angles are supplementary,
∴side PQ || side SR
m∠P + m∠Q = 36° + 72° = 108° ≠ 180°
∴side PS is not parallel to side QR.
Since, one pair of opposite sides of the given quadrilateral is parallel.
∴The given quadrilateral is a trapezium.

Question 5.
Construct ₹BARC such that
l(BA) = l(BC) = 4.2 cm, l(AC) = 6.0 cm, l(AR) = l(CR) = 5.6 cm
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.3 6

Question 6.
Construct ₹PQRS, such that l(PQ) = 3.5 cm, l(QR) = 5.6 cm, l(RS) = 3.5 cm, m∠Q = 110°, m∠R = 70°. If it is given that ₹PQRS is a parallelogram, which of the given information is unnecessary?
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.3 7

  1. Since, the opposite sides of a parallelogram are congruent.
    ∴ Either l(PQ) or l(SR) is required.
  2. To construct a parallelogram lengths of adjacent sides and measure of one angle is required.
    ∴ Either l(PQ) and m∠Q or l(SR) and m∠R is the unnecessary information given in the question.

Maharashtra Board Class 8 Maths Chapter 8 Quadrilateral: Constructions and Types Practice Set 8.3 Intext Questions and Activities

Question 1.
Draw a parallelogram PQRS. Take two rulers of different widths, place one ruler horizontally and draw lines along its edges. Now place the other ruler in slant position over the lines drawn and draw lines along its edges. We get a parallelogram. Draw the diagonals of it and name the point of intersection as T.

  1. Measure the opposite angles of the parallelogram.
  2. Measure the lengths of opposite sides.
  3. Measure the lengths of diagonals.
  4. Measure the lengths of parts of the diagonals made by point T. (Textbook pg. no. 47)

Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.3 8

Solution:
[Students should attempt the above activities on their own.]

Question 2.
In the given figure of ₹ABCD, verify with a divider that seg AB ≅ seg CB and seg AD ≅ seg CD. Similarly measure ∠BAD and ∠BCD and verify that they are congruent. (Textbook pg. no. 48)
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.3 9
Solution:
[Students should attempt the above activities on their own.]

Std 8 Maths Digest

Practice Set 8.2 Class 8 Answers Chapter 8 Quadrilateral: Constructions and Types Maharashtra Board

Balbharti Maharashtra State Board Class 8 Maths Solutions covers the Practice Set 8.2 8th Std Maths Answers Solutions Chapter 8 Quadrilateral: Constructions and Types.

Quadrilateral: Constructions and Types Class 8 Maths Chapter 8 Practice Set 8.2 Solutions Maharashtra Board

Std 8 Maths Practice Set 8.2 Chapter 8 Solutions Answers

Question 1.
Draw a rectangle ABCD such that l(AB) = 6.0 cm and l(BC) = 4.5 cm.
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 1

Question 2.
Draw a square WXYZ with side 5.2 cm.
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 2
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 3

Question 3.
Draw a rhombus KLMN such that its side is 4 cm and m∠K = 75°.
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 4

Question 4.
If diagonal of a rectangle is 26 cm and one side is 24 cm, find the other side.
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 5
Let ₹ABCD be the rectangle.
l(BC) = 24cm, l(AC) = 26cm
In ∆ABC,
m∠ABC = 90° …[Angle of a rectangle]
∴[l(AC)]² = [l(AB)]2 + [l(BC)]²
…[Pythagoras theorem]
∴ (26 )² = [l(AB)]² + (24)²
∴(26)² – (24)² = [l(AB)]²
∴(26 + 24) (26 – 24) = [l(AB)]²
…[∵ a² – b² = (a + b)(a – b)]
∴50 x 2 = [l(AB)]²
∴100 = [l(AB)]²
i.e. [l(AB)]² = 100
∴l(AB) = √100
…[Taking square root of both sides]
∴l(AB) =10 cm
∴The length of the other side is 10 cm.

Question 5.
Lengths of diagonals of a rhombus ABCD are 16 cm and 12 cm. Find the side and perimeter of the rhombus.
Solution:
In rhombus ABCD,
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 6
l(AC) = 16 cm and l(BD) = 12 cm.
Let the diagonals of rhombus ABCD intersect at point O.
l(AO) = \(\frac { 1 }{ 2 }\) l(AC)
…[Diagonals of a rhombus bisect each other]
∴l(AO) = \(\frac { 1 }{ 2 }\) × 16
∴l(AO) = 8 cm
Also, l(DO) = \(\frac { 1 }{ 2 }\) l(BD)
…[Diagonals of a rhombus bisect each other]
∴l(DO) = \(\frac { 1 }{ 2 }\) × 12
∴l(DO) = 6 cm
In ∆DOA,
m∠DOA = 90°
..[Diagonals of a rhombus are perpendicular to each other]
[l(AD)]² = [l(AO)]² + [l(DO)]²
…[Pythagoras theorem]
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 7
= (8)² + (6)²
= 64 + 36
∴[l(AD)]² = 100
∴l(AD) = √100
… [Taking square root of both sides]
∴l(AD) = 10 cm
∴l(AB) = l(BC) = l(CD) = l(AD) = 10 cm
…[Sides of a rhombus are congruent]
Perimeter of rhombus ABCD
= l(AB) + l(BC) + l(CD) + l(AD)
= 10+10+10+10
= 40 cm
∴The side and perimeter of the rhombus are 10 cm and 40 cm respectively.

Question 6.
Find the length of diagonal of a square with side 8 cm.
Solution:
Let ₹XYWZ be the square of side 8cm.
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 8
seg XW is a diagonal.
In ∆ XYW,
m∠XYW = 90°
… [Angle of a square]
∴ [l(XW)]² = [l(XY)]² + [l(YW)]²
…[Pythagoras theorem]
= (8)² + (8)²
= 64 + 64
∴ [l(XW)]² = 128
∴ l(XW) = √128
…[Taking square root of both sides]
= √64 × 2
= 8 √2 cm
∴ The length of the diagonal of the square is 8 √2 cm.

Question 7.
Measure of one angle of a rhombus is 50°, find the measures of remaining three angles.
Solution:
Let ₹ABCD be the rhombus.
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 9
m∠A = 50°
m∠C = m∠A
….[Opposite angles of a rhombus are congruent]
∴ m∠C = 50°
Also, m∠D = m∠B …(i)
….[Opposite angles of a rhombus are congruent]
In ₹ABCD,
m∠A + m∠B + m∠C + m∠D = 360°
….[Sum of the measures of the angles of a quadrilateral is 360°]
∴ 50° + m∠B + 50° + m∠D = 360°
∴ m∠B + m∠D + 100° = 360°
∴ m∠B + m∠D = 360° – 100°
∴ m∠B + m∠B = 260° …[From (i)]
∴ 2m∠B = 260°
∴ m∠B = \(\frac { 260 }{ 2 }\)
∴ m∠B = 130°
∴ m∠D = m∠B = 130° …[From (i)]
∴ The measures of the remaining angles of the rhombus are 130°, 50° and 130°.

Maharashtra Board Class 8 Maths Chapter 8 Quadrilateral: Constructions and Types Practice Set 8.2 Intext Questions and Activities

Question 1.
Construct a rectangle PQRS by taking two convenient adjacent sides. Name the point of intersection of diagonals as T. Using divider and ruler, measure the following lengths.
i. lengths of opposite sides, seg QR and seg PS.
ii. lengths of seg PQ and seg SR.
iii. lengths of diagonals PR and QS.
iv. lengths of seg PT and seg TR, which are parts of the diagonal PR.
v. lengths of seg QT and seg TS, which are parts of the diagonal QS.
Observe the measures. Discuss about the measures obtained by your classmates. (Textbook pg. no. 44)
Solution:
Draw a rectangle PQRS such that, l(PQ) = 3 cm and l(QR) = 4 cm.
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 10
Steps of construction:
i. As shown in the rough figure, draw seg QR of length 4 cm.
ii. Placing the centre of the protractor at point Q, draw ray QW making an angle of 90° with seg QR.
iii. By taking a distance of 3 cm on the compass and placing it at point Q, draw an arc on ray QW. Name the point as P.
iv. Draw ray PV and ray RU making an angle of 90° with seg PQ and seg QR respectively.
v. Name the point of intersection of ray PV and ray RU as S.
₹PQRS is the required rectangle.
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 11
From the figure,
i. l(QR) = l(PS) = 4 cm
ii. l(PQ) = l(SR) = 3 cm
iii. l(PR) = l(QS) = 5 cm
iv. l(PT) = l(TR) = 2.5 cm
v. l(QT) = l(TS) = 2.5 cm

From the above measures, we can say that for any rectangle,
i. Opposite sides are congruent.
ii. Diagonals are congruent.
iii. Diagonals bisect each other.

Question 2.
Draw a square by taking convenient length of side. Name the point of intersection of its diagonals as E. Using the apparatus in a compass box, measure the following lengths.
i. lengths of diagonal AC and diagonal BD.
ii. lengths of two parts of each diagonal made by point E.
iii. all the angles made at the point E.
iv. parts of each angle of the square made by each diagonal, (e.g. ∠ADB and ∠CDB).
Observe the measures. Also observe the measures obtained by your classmates and discuss about them. (Textbook pg. no. 44)
Solution:
Draw a square ABCD such that its side is 5cm
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 12
Steps of construction:
i. As shown in the rough figure, draw seg BC of length 5 cm.
ii. Placing the centre of the protractor at point B, draw ray BP making an angle of 90° with seg BC.
iii. By taking a distance of 5 cm on the compass and placing it at point B, draw an arc on ray BP. Name the point as A.
iv. Placing the centre of the protractor at point C, draw ray CQ making an angle of 90° with seg BC.
v. By taking a distance of 5 cm on the compass and placing it at point C, draw an arc on ray CQ. Name the point as D.
vi. Draw seg AD.
₹ABCD is the required square.
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 13
From the figure,
i. l(AC) = l(BD) ≅ 7cm
ii. l(AE) = l(EC) ≅ 3.5cm,
l(BE) = l(ED) ≅ 3.5cm
iii. m∠AED = m∠BEC = m∠CED = m∠BEA = 90°
iv. Angles made by diagonal AC:
m∠BAC = m∠DAC = 45°
m∠BCA = m∠DCA = 45°
Angles made by diagonal BD:
m∠ABD = m∠CBD = 45°
m∠ADB = m∠CDB = 45°

From the above measures, we can say that for any square,
i. Diagonals are congruent.
ii. Diagonals bisect each other.
iii. Diagonals are perpendicular to each other.
iv. Diagonals bisect the opposite angles.

Question 3.
Draw a rhombus EFGH by taking convenient length of side and convenient measure of an angle.
Draw its diagonals and name their point of Intersection as M.
i. Measure the opposite angles of the quadrilateral and angles at the point M.
ii. Measure the two parts of every angle made by the diagonal.
iii. Measure the lengths of both diagonals. Measure the two parts of diagonals made by point M.
Observe the measures. Also observe the measures obtained by your classmates and discuss about them. (Textbook pg. no. 45)
Solution:
Draw a rhombus EFGH such that its side is 5 cm and m∠F = 60°.
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 14
Steps of construction:
i. As shown in the rough figure, draw seg FG of length 5 cm.
ii. Placing the centre of the protractor at point F, draw ray FX making an angle 60° with seg FG.
iii. By taking a distance of 5 cm on the compass and placing it at point F, draw an arc on ray FX. Name the point as E.
iv. By taking a distance of 5 cm on the compass and placing it at point E and point G, draw arcs. Name the point of intersection of arcs as H. ₹EFGH is the required rhombus.
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 15
From the figure,
i. Opposite angles:
m∠EFG = m∠GHE = 60°,
m∠FEH = m∠HGF = 120°
Angles at the point M:
m∠EMF = m∠FMG = m∠GMH = m∠HME = 90°

ii. Angles made by diagonal FH:
m∠EFH = m∠GFH = 30° m∠EHF = m∠GHF = 30°
Angles made by diagonal EG:
m∠FEG = m∠HEG = 60° m∠FGE = m∠HGE = 60°

iii. l(FH) ≈ 8.6 cm
l(EG) = 5 cm
l(FM) = l(HM) ≈ 4.3 cm
l(EM) = l(GM) ≈ 2.5 cm

From the above measures, we can say that for any rhombus,
i. Opposite angles are congruent.
ii. Diagonals bisect the opposite angles.
iii. Diagonals bisect each other and they are perpendicular to each other.

Std 8 Maths Digest

Practice Set 4.4 Algebra 9th Standard Maths Part 1 Chapter 4 Ratio and Proportion Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 4.4 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 4 Ratio and Proportion.

9th Standard Maths 1 Practice Set 4.4 Chapter 4 Ratio and Proportion Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Practice Set 4.4 Chapter 4 Ratio and Proportion Questions With Answers Maharashtra Board

Question 1.
Fill in the blanks of the following.
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 1
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 2

Question 2.
5m – n = 3m + 4n, then find the values of the following expressions.
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 3
Solution:
5m – n = 3m + 4n … [Given]
∴ 5m – 3m = 4n + n
∴ 2m = 5n
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 4
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 5

Question 3.
Solve:
i. If a(y + z) = b(z + x) = c(x + y) and out of a, b, c no two of them are equal, then show that, \( \frac{y-z}{a(b-c)}=\frac{z-x}{b(c-a)}=\frac{x-y}{c(a-b)}\).
Solution:
Here, no two of a, b and c are equal.
∴ values of (b – c), (c – a) and (a – b) are not zero.
a(y + z) = b(z + x) = c(x + y) … [Given]
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 6
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 7

ii. If \(\frac{x}{3 x-y-z}=\frac{y}{3 y-z-x}=\frac{z}{3 z-x-y}\) and x + y + z ≠ 0, then show that the value of each ratio is equal to 1.
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 8

iii. \(\frac{x}{3 x-y-z}=\frac{y}{3 y-z-x}=\frac{z}{3 z-x-y}\) and x + y + z ≠ 0,then show that \(\frac { a+b }{ 2 }\).
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 9

iv. If \(\frac{y+z}{a}=\frac{z+x}{b}=\frac{x+y}{c}\) , then show that \(\frac{x}{b+c-a}=\frac{y}{c+a-b}=\frac{z}{a+b-c}\).
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 10
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 11

v. If \(\frac{3 x-5 y}{5 z+3 y}=\frac{x+5 z}{y-5 x}=\frac{y-z}{x-z}\) , then show that every ratio = \(\frac { x }{ y }\).
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 12

Ratio And Proportion Class 9 Practice Set 4.4 Question 4.
Solve:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 13
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 14
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 15
∴ 7(4x – 5)3(2x + 3)
∴ 28x – 35 = 6x + 9
∴ 28x – 6x = 9 + 35
∴ 22x = 44
∴ x = 2
∴ x = 2 is the solution of the given equation.

ii. \(\frac{5 y^{2}+40 y-12}{5 y+10 y^{2}-4}=\frac{y+8}{1+2 y}\)
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 16
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 17
∴ y + 8 = 3(1 + 2y)
∴ y + 8 = 3 + 6y
∴ 8 – 3 = 6y – y
∴ 5 = 5y
∴ y = 1
∴ y = 1 is the solution of the given equation.

Class 9 Maths Digest

Practice Set 4.2 Algebra 9th Standard Maths Part 1 Chapter 4 Ratio and Proportion Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 4.2 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 4 Ratio and Proportion.

9th Standard Maths 1 Practice Set 4.2 Chapter 4 Ratio and Proportion Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Practice Set 4.2 Chapter 4 Ratio and Proportion Questions With Answers Maharashtra Board

Question 1.
Using the property \(\frac { a }{ b }\) = \(\frac { ak }{ bk }\), fill in the blanks by substituting proper numbers in the following.
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 1
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 2
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 3

Question 2.
Find the following ratios.
i. The ratio of radius to circumference of the circle.
ii. The ratio of circumference of circle with radius r to its area.
iii. The ratio of diagonal of a square to its side, if the length of side is 7 cm.
iv. The lengths of sides of a rectangle are 5 cm and 3.5 cm. Find the ratio of numbers denoting its perimeter to area.
Solution:
i. Let the radius of circle be r.
then, its circumference = 2πr
Ratio of radius to circumference of the circle
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 4
The ratio of radius to circumference of the circle is 1 : 2π.

ii. Let the radius of the circle is r.
∴ circumference = 2πr and area = πr2
Ratio of circumference to the area of circle
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 5
∴ The ratio of circumference of circle with radius r to its area is 2 : r.

iii. Length of side of square = 7 cm
∴ Diagonal of square = √2 x side
= √2 x 7
= 7 √2 cm
Ratio of diagonal of a square to its side
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 6
∴ The ratio of diagonal of a square to its side is √2 : 1.

iv. Length of rectangle = (l) = 5 cm,
Breadth of rectangle = (b) = 3.5 cm
Perimeter of the rectangle = 2(l + b)
= 2(5 + 3.5)
= 2 x 8.5
= 17 cm
Area of the rectangle = l x b
= 5 x 3.5
= 17.5 cm2
Ratio of numbers denoting perimeter to the area of rectangle
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 7
∴ Ratio of numbers denoting perimeter to the area of rectangle is 34 : 35.

Question 3.
Compare the following
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 8
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 9
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 10
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 11
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 12

Question 4.
Solve.
ABCD is a parallelogram. The ratio of ∠A and ∠B of this parallelogram is 5 : 4. FInd the measure of ∠B. [2 Marksl
Solution:
Ratio of ∠A and ∠B for given parallelogram is 5 : 4
Let the common multiple be x.
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 13
m∠A = 5x°and m∠B=4x°
Now, m∠A + m∠B = 180° …[Adjacent angles of a parallelogram arc supplementary]
∴ 5x° + 4x°= 180°
∴ 9x° = 180°
∴ x° = 20°
∴ m∠B=4x°= 4 x 20° = 80°
∴ The measure of ∠B is 800.

ii. The ratio of present ages of Albert and Salim is 5 : 9. Five years hence ratio of their ages will be 3 : 5. Find their present ages.
Solution:
The ratio of present ages of Albert and Salim is 5 : 9
Let the common multiple be x.
∴ Present age of Albert = 5x years and
Present age of Salim = 9x years
After 5 years,
Albert’s age = (5x + 5) years and
Salim’s age = (9x + 5) years
According to the given condition,
Five years hence ratio of their ages will be 3 : 5
\(\frac{5 x+5}{9 x+5}=\frac{3}{5}\)
∴ 5(5x + 5) = 3(9x + 5)
∴ 25x + 25 = 27x + 15
∴ 25 – 15 = 27 x – 25 x
∴ 10 = 2x
∴ x = 5
∴ Present age of Albert = 5x = 5 x 5 = 25 years
Present age of Salim = 9x = 9 x 5 = 45 years
∴ The present ages of Albert and Salim are 25 years and 45 years respectively.

iii. The ratio of length and breadth of a rectangle is 3 : 1, and its perimeter is 36 cm. Find the length and breadth of the rectangle.
Solution:
The ratio of length and breadth of a rectangle is 3 : 1
Let the common multiple be x.
Length of the rectangle (l) = 3x cm
and Breadth of the rectangle (b) = x cm
Given, perimeter of the rectangle = 36 cm
Since, Perimeter of the rectangle = 2(l + b)
∴ 36 = 2(3x + x)
∴ 36 = 2(4x)
∴ 36 = 8x
∴ \(x=\frac{36}{8}=\frac{9}{2}=4.5\)
Length of the rectangle = 3x = 3 x 4.5 = 13.5 cm
∴ The length of the rectangle is 13.5 cm and its breadth is 4.5 cm.

iv. The ratio of two numbers is 31 : 23 and their sum is 216. Find these numbers.
Solution:
The ratio of two numbers is 31 : 23
Let the common multiple be x.
∴ First number = 31x and
Second number = 23x
According to the given condition,
Sum of the numbers is 216
∴ 31x + 23x = 216
∴ 54x = 216
∴ x = 4
∴ First number = 31x = 31 x 4 = 124
Second number = 23x = 23 x 4 = 92
∴ The two numbers are 124 and 92.

v. If the product of two numbers is 360 and their ratio is 10 : 9, then find the numbers.
Solution:
Ratio of two numbers is 10 : 9
Let the common multiple be x.
∴ First number = 10x and
Second number = 9x
According to the given condition,
Product of two numbers is 360
∴ (10x) (9x) = 360
∴ 90x2 = 360
∴ x2 = 4
∴ x = 2 …. [Taking positive square root on both sides]
∴ First number = 10x = 10x2 = 20
Second number = 9x = 9x2 = 18
∴ The two numbers are 20 and 18.

Question 5.
If a : b = 3 : 1 and b : c = 5 : 1, then find the value of [3 Marks each]
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 14
Solution:
Given, a : b = 3 : 1
∴ \(\frac { a }{ b }\) = \(\frac { 3 }{ 1 }\)
∴ a = 3b ….(i)
and b : c = 5 : 1
∴ \(\frac { b }{ c }\) = \(\frac { 5 }{ 1 }\)
b = 5c …..(ii)
Substituting (ii) in (i),
we get a = 3(5c)
∴ a = 15c …(iii)
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 15

Ratio and Proportion 9th Class Practice Set 4.1 Question 6. If \(\sqrt{0.04 \times 0.4 \times a}=0.4 \times 0.04 \times \sqrt{b}\) , then find the ratio \(\frac { a }{ b }\).
Solution:
\(\sqrt{0.04 \times 0.4 \times a}=0.4 \times 0.04 \times \sqrt{b}\) … [Given]
∴ 0.04 x 0.4 x a = (0.4)2 x (0.04)2 x b … [Squaring both sides]
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 16

9th Algebra Practice Set 4.2 Question 7. (x + 3) : (x + 11) = (x – 2) : (x + 1), then find the value of x.
Solution:
(x + 3) : (x + 11) = (x- 2) : (x+ 1)
\(\quad \frac{x+3}{x+11}=\frac{x-2}{x+1}\)
∴ (x + 3)(x +1) = (x – 2)(x + 11)
∴ x(x +1) + 3(x + 1) = x(x + 11) – 2(x + 11)
∴ x2 + x + 3x + 3 = x2 + 1 lx – 2x – 22
∴ x2 + 4x + 3 = x2 + 9x – 22
∴ 4x + 3 = 9x – 22
∴ 3 + 22 = 9x – 4x
∴ 25 = 5x
∴ x = 5

Class 9 Maths Digest