Maharashtra Board Class 11 Hindi रचना पत्र लेखन

Balbharti Maharashtra State Board Hindi Yuvakbharati 11th Digest रचना पत्र लेखन Notes, Questions and Answers.

Maharashtra State Board 11th Hindi रचना पत्र लेखन

पत्रलेखन एक कला है आजकल इसका साहित्यिक महत्त्व भी स्वीकारा जाने लगा है। एक अच्छे पत्र की पाँच विशेषताएँ होती हैं।

  1. सरल भाषा शैली।
  2. विचारों की सुस्पष्टता।
  3. संक्षेप एवं संपूर्णता।
  4. प्रभावान्विति।
  5. बाहरी सजावट।

Maharashtra Board Class 11 Hindi रचना पत्र लेखन

पत्र लिखते समय निम्नलिखित वातों को ध्यान में रखना चाहिए –

  1. जहाँ तक संभव हो, पत्र में स्वाभाविकता का निर्वाह होना चाहिए। पत्र में कहीं बनावटीपन नहीं होना चाहिए।
  2. साधारण संबंधियों या अधिकारी या अपरिचित व्यक्तियों को लिखे पत्रों में कहीं भी अनावश्यक विस्तार या भावुकता नहीं होनी चाहिए।
  3. सरकारी और कामकाजी पत्रों में कहीं अनावश्यक विस्तार या भावुकता नहीं होनी चाहिए।
  4. निकट संबंधियों के लिखे पत्रों में पूर्ण आत्मीयता और स्वाभाविकता होनी चाहिए।
  5. पत्र को उपयुक्त परिच्छेदों में विभाजित करके लिखना चाहिए।
  6. पत्र की भाषा शुद्ध, सरल व प्रवाहपूर्ण होनी चाहिए। वर्तनी (Spelling) एवं विराम चिह्नों का समुचित प्रयोग होना चाहिए।
  7. पत्र संक्षिप्त, सुव्यवस्थित, सुस्पष्ट एवं हेतुपूर्ण होना चाहिए। अनावश्यक बातों के लिए पत्र में कोई जगह नहीं होती।

पत्र के प्रकार:

  1. व्यक्तिगत या पारिवारिक पत्र
  2. सामाजिक पत्र
  3. व्यावसायिक अथवा व्यापारिक पत्र
  4. कार्यालयीन पत्र

मुख्य रूप से औपचारिक और अनौपचारिक दो तरह के पत्र माने गए है।

औपचारिक पत्र : इस पत्र में संदेश, कथ्य, अपरिचित व्यक्ति एवं अधिकारी को लिखा जाता है इसमें प्राय: कार्यालयीन पत्र, सरकारी पत्र, व्यावसायिक व व्यासपीठ पत्र तथा शिकायती पत्र आते हैं। अनौपचारिक पत्र : इसमें व्यक्तिगत; सगे संबंधियों के पत्र, घरेलू या पारिवारिक पत्र आते हैं। अनौपचारिक पत्रों में पत्र लेखक और जिसे पत्र लिखा जाता है, उसके संबंध के अनुसार अभिवादन या अभिनिवेदन में भिन्नता होती। है निम्नलिखित तालिका में सारी बातें स्पष्ट की गई हैं।

Maharashtra Board Class 11 Hindi रचना पत्र लेखन

Maharashtra Board Class 11 Hindi रचना पत्र लेखन 1

विशेष : जो संबंध छोटे-बड़े नहीं हैं या जिन संबंधो में व्यक्तिगत पत्रों जैसी नितांत आत्मीयता नहीं है बल्कि मात्र व्यावहारिकता है वहाँ ‘प्रणाम’ या ‘शुभाशीष’ जैसे किसी अभिवादन की आवश्यकता नहीं होती हैं।

Maharashtra Board Class 11 Hindi रचना पत्र लेखन

पत्र का प्रारूप

अनौपचारिक पत्र

दिनांक : ………………………………..
संबोधन : ………………………………..
अभिवादन : ………………………………..
प्रारंभ : ………………………………..विषय विवेचन : ……………………………………………………………………………………………………………………………………..
……………………………………………………………………………………………………………………………………………………………..
……………………………………………………………………………………………………………………………………………………………..तुम्हारा / तुम्हारी : ………………………………..
नाम : ………………………………..
पता : ………………………………..
ई-मेल आईडी : ………………………………..

औपचारिक पत्र

दिनांक : ………………………………..
प्रति,
………………………………..
………………………………..विषय : ………………………………..
संदर्भ : ………………………………..
महोदय : ………………………………..
विषय विवेचन : ……………………………………………………………………………………………………………………………………..
……………………………………………………………………………………………………………………………………………………………..
……………………………………………………………………………………………………………………………………………………………..भवदीय/भवदीया,
हस्ताक्षर : ………………………………..
नाम : ………………………………..
पता : ………………………………..
ई-मेल आईडी : ………………………………..

Maharashtra Board Class 11 Hindi रचना पत्र लेखन

पत्र के नमूने

1. व्यक्ति गत / अनौपचारिक पत्र

दिनांक : 7 सितंबर, 2019.
आदरणीय पिताजी,
सादर प्रणाम।आपको यह जानकर खुशी होगी कि मैं यहाँ आनंद से हूँ। मैं अपने महाविद्यालय में कई सहपाठियों को मित्र बना चुका हूँ, जो अच्छे . स्वभाव के, परिश्रमी और अध्ययनशील है। मैं यहाँ अभी नया हूँ फिर भी सब का स्नेह प्राप्त है। यहाँ के प्राचार्य और प्राध्यापक सभी अच्छे हैं। उनका हम पर पूरा ध्यान रहता है। मैं विज्ञान परिषद का मंत्री चुना गया हूँ।यहाँ जीवन अत्यंत व्यस्त है। हर क्षण कीमती है। सब में एक तरह की प्रतियोगिता है। सभी एक-दूसरे से आगे निकलना चाहते हैं। मैं आप को विश्वास दिलाता हूँ कि जीतोड़ परिश्रम करके मैं परीक्षा में अच्छे अंक लाऊँगा। शेष कुशल है। पूजनीय माता जी को प्रणाम व प्रिया को आशीर्वाद।आपका स्नेहाकांक्षी,
शरद
नाम : शरद देशमुख
पता : बी- 212, साई कृपा,
महात्मा गांधी रोड,
विलेपार्ले (पूर्व), मुंबई – 400 057
ई-मेल आईडी : sharad2000@gmail.com

2. वधाई पत्र :

दिनांक. 15 जून, 2017
प्रिय सविता
सप्रेम नमस्ते।यह जानकर प्रसन्नता हुई कि तुम बारहवीं कक्षा में प्रथम श्रेणी में उत्तीर्ण हुई हो और तुम्हें 86 प्रतिशत अंक मिले हैं तुम्हारी इस सफलता पर मैं तुम्हें हार्दिक बधाई देती हूँ। आशा करती हूँ कि तुम्हें आगे की परीक्षा में भी ऐसी ही सफलता मिलती रहे।वैद्यकीय या अभियांत्रिकी शिक्षा में तुम अपनी रुचि के अनुसार ही प्रवेश लो, तुम्हें अवश्य सफलता मिलेगी। तुम्हारे माता-पिता को प्रणाम।तुम्हारी कुशलता की कामना के साथ।
तुम्हारी सहेली,
प्रभा
नाम : प्रभा शर्मा
पता : डी, 107, साकेत,
नवघर रोड, ठाणे (पू.)
ई-मेल आईडी : psharma.2017@gmail.com

Maharashtra Board Class 11 Hindi रचना पत्र लेखन

3. निमंत्रण पत्र:

दिनांक : 15 अप्रैल, 2019,
प्रिय भाई भावेश,
सप्रेम नमस्ते।आपको यह जानकर प्रसन्नता होगी कि अगामी 5 मई, 2019, रविवार के दिन मेरे नए घर का गृहप्रवेश है! इस शुभ अवसर पर सपरिवार उपस्थित होकर हमे कृतार्थ करें।आशा है कि आप हमें अनुग्रहित करेंगे।आपका शुभाकांक्षी,
अनिल कुमार।
नाम : अनिल कुमार पाठक
पता : 70/क, कलासागर,
खार (प.), मंबई-400 052.
ई-मेल आईडी : anilpathale@yahoo.com

4. भावी योजना हेतु मित्र को पत्र

दिनांक : 20 मार्च, 2019.
प्रिय मित्र अशोक,
नमस्ते।तुम्हारा पत्र मिला। समाचार पाकर प्रसन्नता हुई। पिछले हप्ते ही मेरी परीक्षा समाप्त हुई है। अगले हप्ते सी इ टी की परीक्षा भी है, जिसकी तैयारी कर रहा हूँ। मेरे प्रश्न पत्र अच्छे गए हैं। बारहवीं में 85% अंक पाने की उम्मीद है।माता जी और पिता जी चाहते हैं कि मैं अभियंता (इंजीनियर) बनू किंतु मेरी रुचि डॉक्टरी में है। बचपन से ही एक सपना देखा है। डॉक्टरी में अर्थलाभ के साथ मानव-सेवा का सुअवसर भी प्राप्त होगा। यह किसी अन्य व्यवसाय में संभव नहीं है।यदि तुम्हारी सलाह भी मुझे शीघ्र मिले तो बेहतर होगा। चाचा और चाची को मेरा प्रणाम। शेष कुशल है।तुम्हारा मित्र,
सतीश
नाम :- सतीश ठाकुर,
पता : 105, कलाकुंज,
शनिवार पेठ, पुणे – 7.
ई-मेल आई.डी. : satish.thakur@gmail.com

Maharashtra Board Class 11 Hindi रचना पत्र लेखन

(5) कार्यालयीन पत्र :

दिनांक : 20 अक्टूबर, 2019
प्रति,
श्री.पुलिस इंस्पेक्टर, शहर पुलिस थाना, वर्धा। विषय : पटाखे असमय फोडने पर प्रतिबंध लगाने हेतु अनुरोधन-पत्रमान्यवर महोदय,
दीवाली के इस शुभ अवसर पर रंग में भंग डालने की मेरी कोई मनिषा नहीं है। पर्व त्योहार मनाने की स्वतंत्रता में मैं बाधा नहीं डालना| चाहता हूँ। परंतु दीवाली के पटाखों से मुहल्ले में दिन-रात शोर-शराबा चलता है। घर में बुजुर्ग और छोटे बच्चे भी होते हैं। उनपर इसका बुरा प्रभाव पड़ता है।ऊपर से प्रदूषण भी बढ़ता है। मैं सुरेश भोसले आपको विनम्र अनुरोध करता हूँ कि आप इन पटाखों के फोड़ने पर कुछ-कुछ प्रतिबंध लगाएँ। एक निश्चित समय पर ही फोड़ने की इजाजत दें। ज्यादा आवाज करनेवाले पटाखों पर प्रतिबंध डाल दें। इस से ध्वनि प्रदूषण कम होगा और सबकी परेशानी मिटेगी।उम्मीद करता हूँ कि आप हमारी परेशानी को गंभीरता से लेंगे और अपने अधिकारों का उपयोग कर ठोस कदम उठाएँगे। तसदी के लिए माफी चाहता हूँ।भवदीय,
सुरेश भोसले।
नाम : सुरेश भोसले,
पता : 50, सेवा सदन,
गोखले नगर, वर्धा।
ई-मेल आई.डी : sureshb1978@gmail.com

(6)

दिनांक : 30 मई, 2019.
सेवा में,
श्रीमान प्रधानाध्यापक,
वैद्यनाथ विद्यालय,
परली।
विषय : पाँचवी कक्षा में प्रवेश दिलाने के लिए प्रार्थना पत्रमान्यवर महोदय,
वैद्यनाथ विद्यालय परली में ही नहीं बल्कि महाराष्ट्र के सबसे अच्छे विद्यालयों में से एक है। मैं चाहती हूँ कि मेरा छोटा भाई कमलेश आगे की पढ़ाई आपके विद्यालय में करे। पिछले वर्ष चौथी कक्षा में उसे अस्सी प्रतिशत अंक आए हैं। वह पढ़ाई के साथ-साथ खेल में भी अच्छा है।दौड़ प्रतियोगिता में उसने राज्यस्तर पर कांस्य पदक प्राप्त किया है। नृत्य और अभिनय जैसी कलाओं में भी निपुण है। उसके इन सभी गुणों का आपके विद्यालय में और विकास होगा। उम्मीद करती हूँ कि आप मना नहीं करेंगे।इस पत्र के साथ मैं चौथी के अंक-पत्र की प्रतिलिपि भेज रही हूँ। आपसे नम्र निवेदन है कि आप मेरे भाई को पाँचवी कक्षा में प्रवेश देने की कृपा करें।धन्यवाद।
प्रार्थी,
शैलजा पाठक।
नाम : शैलजा पाठक,
पता : 460, आसरा,
नेताजी मार्ग, परली।
ई-मेल आई.डी.: shaila.pathale@gmail.com

Maharashtra Board Class 11 Hindi रचना पत्र लेखन

7. व्यावसायिक पत्र :

दिनांक : 16 जून, 2019
सेवा में,
मा. व्यवस्थापक,
क्वालिटी स्पोर्टस्
अप्पा बळवंत चौक, पुणे।
विषय : खेल सामग्री की माँग
संदर्भ : अखबार में छपा विज्ञापनमान्यवर महोदय,
जन-जागरण में प्रकाशित आपके विज्ञापन से ज्ञात हुआ कि आपके यहाँ सभी प्रकार की खेल सामग्री उपलब्ध है। मैं माधव बाग के क्रीड़ा-मंडल का अध्यक्ष होने के नाते आपको यह पत्र लिख रहा हूँ। जल्द ही हमारे यहाँ वार्षिक खेल उत्सव शुरू होगा। इसके लिए मुझे निम्नलिखित खेल-सामग्री की आवश्यकता है।

अनु. क्र.  1.  2.  3.  4.
सामग्री  फुटबॉल  बास्केटबॉल  हॉकी स्टिक्स  नेट
नग  10  10  08  02

नियमानुसार पाँच सौ रुपए का पोस्टल आर्डर आपको भेज रहा हूँ। शेष रकम वी.पी.पी. छुड़ाते समय अदा की जाएगी। उचित कमीशन देने की कृपा करें। खेल सामग्री जल्द से जल्द ऊपर लिखे पते पर भेजने की कोशिश करें।

धन्यवाद,
भवदीय,
अरूण पाटील।
पता : माधव बाग,
सांगली।
ई-मेल आई.डी.: arunp-2898@gmail.com

Maharashtra Board Class 11 Hindi रचना पत्र लेखन

8. सामाजिक पत्र :

दिनांक : 20 जून, 2019
सेवा में,
मा. स्वास्थ्य अधिकारी,
नगर परिषद, कोल्हापुर।विषय : मुहल्ले की अस्वच्छता दूर कराने के लिए निवेदनमहोदय,

मैं कोल्हापुर की नागरिक हूँ और शिवनेरी, खासबाग मैदान के पास रहती हूँ। मैं मुहल्ले के नागरिकों के प्रतिनिधि के रूप में आपका ध्यान एक महत्त्वपूर्ण समस्या की ओर आकर्षित करना चाहती हूँ।पिछले कई दिनों से मुहल्ले की सफाई ठीक से नहीं हुई है। जगह-जगह गंदगी फैली हुई है।

कचरे की पेटियाँ बहुत छोटी हैं और उनकी संख्या भी पर्याप्त नहीं है। उचित मात्रा में कीटनाशक औषधियों का छिड़काव भी नहीं किया जाता। भयंकर बदबू के कारण आने-जाने वालों को भारी परेशानी का सामना करना पड़ता है। मुहल्ले में मच्छरों का प्रकोप भी बढ़ा है।

इसके कारण संक्रामक रोगों के फैलने की आशंका उत्पन्न हो गई है।आकस्मिक रूप से हुई भारी वर्षा ने जनता के कष्ट और भी बढ़ा दिए हैं।अत: आप से विनम्र निवेदन है कि तत्काल सफाई का उचित प्रबंध किया जाए। नई कचरा पेटियाँ रखी जाएँ और कीटनाशक दवाएँ छिड़की जाएँ।आशा है, इस दिशा में तत्काल उचित कार्रवाई करेंगे।

तसदी के लिए क्षमस्व,
भवदीया,
संगीता कोटणीस।
नाम : सांगीत कोटणीस
पता : 46, शिवनेरी, शाहू नगर,
खासबाग मैदान, कोल्हापुर।
ई-मेल आई.डी.: sangeeta-2010@gmail.com

Maharashtra Board Class 11 Hindi रचना निबंध लेखन

Balbharti Maharashtra State Board Hindi Yuvakbharati 11th Digest रचना निबंध लेखन Notes, Questions and Answers.

Maharashtra State Board 11th Hindi रचना निबंध लेखन

निबंध लेखन :

गद्य लिखना अगर कवियों की कसौटी है तो निबंध लिखना गद्यकारों की कसौटी है। निबंध शब्द दो शब्दों से मिलकर बना है नि-बंध। बंध का अर्थ है बाँधना या बंधा हुआ इसमें लगे ‘नि’ उपसर्ग का अर्थ होता है अच्छी तरह से। अत: निबंध का तात्पर्य उस रचना से है जिसे अच्छी तरह बाँधा गया हो।

किसी भी विषय पर अपने भाव, विचार, अनुभव जानकारी इत्यादि को अपनी शैली में क्रमबद्ध कर अभिव्यक्त करना ही निंबध है। निबंध कैसे लिखा जाय? यह महत्त्वपूर्ण है। भाषा शैली का इसमें विशेष महत्त्व है।

Maharashtra Board Class 11 Hindi रचना निबंध लेखन

निबंध लेखन में महत्त्वपूर्ण बातें

Maharashtra Board Class 11 Hindi रचना निबंध लेखन 1

उपर्युक्त क्रम से अंकित एक से बारह तत्त्वों को अनुच्छेद के अनुसार व्यक्त किया जा सकता है। इसी रूप में निबंध को विस्तार दिया जाता है। यदि इसको संक्षिप्त करना है तो दो तत्त्वों को एक अनुच्छेद में समाहित कर अभिव्यक्त किया जा सकता है।

विषय को भली प्रकार से समझ बूझकर उसकी भूमिका बाँधनी चाहिए और विषय प्रवेश के साथ उसके महत्त्व को उजागर करना चाहिए। विस्तार में विषय के प्रकार, शिक्षा विकास, सामाजिक महत्त्व आदि दिखाना चाहिए। विचार स्पष्ट, तर्कपूर्ण एवं सुलझा हुआ होना चाहिए। निबंध में विषयांतर एवं पुनरुक्ति दोष से बचना आवश्यक होता है।

निबंध के संपादन के साथ-समापन भी आकर्षक होना चाहिए। इसमें लेखक का अपना विचार होना आवश्यक होता है। निबंध की भाषा सरल, प्रभावी व व्याकरणनिष्ठ होनी चाहिए। वाक्य जितने छोटे व स्पष्ट होंगे, निबंध उतना ही प्रभावशाली होगा।

निबंध को प्रभावशाली बनाने के लिए प्रसिद्ध काव्य पंक्तियों, उक्तियों, मुहावरों, सटीक लोकोक्तियों व घटनाओं का प्रयोग किया जा सकता है। वर्तनी की शुद्धता के साथ विराम चिह्नों का प्रयोग कुशलता पूर्वक करना चाहिए।

Maharashtra Board Class 11 Hindi रचना निबंध लेखन

निबंध के प्रकार : निबंध पाँच प्रकार के होते हैं :

  1. वर्णनात्मक निबंध
  2. कथात्मक या विवरणात्मक निबंध
  3. कल्पनात्मक निबंध
  4. आत्मकथात्मक निबंध
  5. विचारात्मक निबंध।

(1) वर्णनात्मक निबंध : इस निबंध में वर्णन की प्रधानता रहती है। वर्णन में कभी-कभी निजी अनुभूति एवं कल्पना का रंग भी भरना पड़ता है। वस्तु, स्थान, घटना, प्रसंग, यात्रा, अनुभव आदि का रोचक वर्णन किया जाता है। प्राकृतिक दृश्य, त्योहार, उत्सव में एक घंटा आदि निबंध इसी प्रकार के अंतर्गत आते हैं। ‘वर्षा का एक दिन’ निबंध भी इसी के अंतर्गत आता है।

(2) कथात्मक या विवरणात्मक निबंध : किसी घटना अथवा कथा का विवरण, किसी प्रसंग का चित्रण या निरूपण, किसी की जीवन कथा, या आत्मकथा आदि का समावेश इस प्रकार के निबंधों में होता है। निर्जीव वस्तु की आत्मकथा भी यथार्थ का भ्रम करा सके, ऐसी शैली में लिखना चाहिए। जैसे – महात्मा गांधीजी, रेल दुर्घटना, बाढ़ का प्रकोप आदि निबंध।

(3) कल्पनात्मक निबंध : जिन निबंधों में कल्पना तत्त्व की प्रधानता होती है, उसे कल्पना प्रधान निबंध कहते हैं। इसके अंतर्गत जो बात नहीं होती, उसकी कल्पना की जाती है, कभी असंभव – सी बातों को संभव माना जाता है। लेखक कल्पना की ऊँची उड़ान ले सकता है। इस प्रकार के निबंधों के अंतर्गत यदि – होता, अगर …… न होता, मेरी अभिलाषा आदि विषय हैं। जैसे – यदि परीक्षा न होती, अगर मैं बंदी होता, अगर मैं प्रधानमंत्री होता आदि।

(4) आत्मकथात्मक निबंध : इसमें किसी वस्तु, प्राणी या व्यक्ति की आत्मकथा होती है। विद्यार्थी अपने आपको वह वस्तु, प्राणी या व्यक्ति मानकर निबंध लिखता है। इसमें लेखक कल्पना की उड़ान भर सकता है। इसमें जीवित व निर्जीव दोनों तरह की घटना का आरंभ उत्तम पुरुष से होता है। इसमें किसी के दुःख-सुख के साथ लेखक अपने विचारों को भी प्रस्तुत करता है। जैसे – कुर्सी की आत्मकथा, फूल की आत्मकथा, फटे पुस्तक की आत्मकथा आदि।

(5) विचारात्मक निबंध : ऐसे निबंधों में विचार प्रमुख होता है इसमें कल्पना का पुट न के बराबर होता है। इसका आधार तर्क या प्रमाण होता है। किसी के पक्ष या विपक्ष में सकारात्मक तथा नकारात्मक तथ्यों का संपादन बड़ी कुशलता से किया जाता है। समीक्षा व आकलन इस निबंध का आधार होता है।

गरीबी एक अभिशाप, माँ की ममता, वृक्ष लगाओ देश बचाओ, विविधता में एकता, वही मनुष्य है कि जो मनुष्य के लिए मरे, जीवन का लक्ष्य, आदर्श मित्र, आदर्श विदयार्थी, सदाचार का महत्त्व, समय का सदुपयोग, परोपकार, राष्ट्रभाषा की समस्या, समाचार पत्र, विज्ञान-वरदान या अभिशाप, स्त्री भ्रूण हत्या, भ्रष्टाचार उन्मूलन आदि विषय इसके अंतर्गत आते हैं।

Maharashtra Board Class 11 Hindi रचना निबंध लेखन

Maharashtra Board Class 11 Hindi निबंध

1. होली का त्यौहार

हमारे यहाँ त्योहारों का सिलसिला वर्षभर चलता है। इसीलिए हमारे देश को त्योहारों का देश कहते हैं। ईद, बकरी ईद, ओणम, पोंगल, बैसाखी, रक्षा बंधन, होली, दशहरा, दीपावली, इत्यादि प्रमुख त्योहार हैं। होली रंगों का त्यौहार है।

होली का त्योहार मनाने के पीछे धार्मिक कारण है। कहते हैं कि हिरण्यकश्यप नामक शैतान, प्रहलाद जैसे ईश्वर भक्त बेटे का पिता था, जो घमंड के कारण अपने आप को ईश्वर समझता था। उसकी एक बहन होलिका थी जिसे वरदान था कि वह अग्नि में नहीं जलेगी।

होलिका अपने भाई की मदद के लिए प्रहलाद को लेकर जलती हुई अग्नि में बैठ गई। नारायण की कृपा से प्रहलाद तो बच गया लेकिन होलिका जल गई। तभी से होलिका दहन किया जाने लगा। यह असत्य पर सत्य की विजय का पर्व है। जिसके दूसरे दिन लोग रंगों से एक दूसरे का स्वागत करते हैं।

हमारा देश किसानों का देश है। यह उनकी फसलों का भी त्योहार है। फसल का रसास्वादन होली की खुशी लेकर आता है। लोग एक-दूसरे को अबीर-गुलाल लगाकर नाचते-गाते हैं। इस दिन शैतान को कबीरा सुनाकर ताना भी मारा जाता है। होली के गीत अत्यंत मनोरंजक व आकर्षक होते हैं।

भगवान श्री कृष्ण राधा के साथ होली खेलते थे। बरसाने और ब्रज की लठमार होली आज भी उसी उमंग से मनाई जाती है। लोग मिठाई बाँटते हैं, ठंडाई पीते हैं। अपने गिले-शिकवे मिटाकर एक-दूसरे को गले लगाते हैं। सभी होली के रंग में घुल-मिल जाते हैं।

कुछ गलत परंपराएँ चल पड़ी हैं जिसे रोकना अनिवार्य है। जैसे – गंदा पानी, कीचड़, गोबर, पेंट, शराब व भाँग का प्रचलन। नशे की हालत में किया गया व्यवहार इस सुंदर पर्व को बदरंग कर देता है, जिससे आर्थिक नुकसान के साथ आपसी दुश्मनी को बढ़ावा मिलता है। घातक रंगों के प्रयोग से आँखों की रोशनी पर भी कुप्रभाव पड़ता है।

Maharashtra Board Class 11 Hindi रचना निबंध लेखन

होली के स्नेह सम्मेलन एक – दूसरे को आपस में जोड़ते हैं-

होली के दिन दिल मिल जाते हैं
रंगों में रंग मिल जाते हैं।
गिले-शिकवे सभी भूल कर
दुश्मन भी गले मिल जाते हैं।

यदि गंदगी फूहड़ता तथा नशे पर रोक लगाई जा सके, तो इससे उत्तम पर्व कोई भी नहीं हो सकता।

2. राष्ट्रभाषा हिंदी

राष्ट्रभाषा हमारे विचारों की संवाहक होती है। इसके माध्यम से हम अपने भावों और विचारों को अभिव्यक्त करते हैं। प्रत्येक देश की भाषा उसकी अपनी पहचान होती है। उसका संपूर्ण कार्य उसी भाषा में होता है। राष्ट्रभाषा किसी राष्ट्र के उद्गार का माध्यम होती है। फ्रांस, चीन, जर्मनी, जपान, रूस अपनी भाषा की बदौलत आज पूरे विश्व में अपनी पहचान बनाए हुए हैं और महाशक्ति के रूप में जाने जाते हैं।

हमारे देश की सर्वाधिक जनता हिंदी भाषा का प्रयोग करती है, इसी कारण महात्मा गांधीजी ने कहा था कि हिंदी ही राष्ट्रभाषा बनने योग्य हैं। इसीलिए 14 सितंबर 1949 को भारतीय संविधान में हिंदी को राष्ट्रभाषा के रूप में प्रस्तावित किया गया। पूरे देश को हिंदी सीखने के लिए 15 वर्ष का समय दिया गया। इसे 14 सिंतबर 1964 से कार्यान्वित करने का भी प्रस्ताव था किंतु राजनैतिक कारणों से हिंदी को राष्ट्रभाषा के रूप में आज भी संसद में पारित नहीं किया गया है।

जिस देश की अपनी कोई भाषा नहीं, वह देश या राष्ट्र गूंगा है।

भूतपूर्व प्रधान मंत्री अटल बिहारी वाजपेयीजी ने हिंदी को संयुक्त राष्ट्र संघ की भाषा तो बना दिया किंतु राष्ट्रभाषा हिंदी संसद की भाषा नहीं बन सकी। मारीशस, फिजी, त्रिनिदाद, सूरीनाम, गुयाना, कनाडा, इंग्लैण्ड, नेपाल आदि देशों में हिंदी की अपनी एक अलग पहचान है। भारत में यह षडयंत्र की शिकार है।

14 सिंतबर को हर वर्ष ‘हिंदी दिवस’ मनाया जाता है। जब तक हम व्यावहारिक रूप में राष्ट्रभाषा को स्वीकार नहीं करते तब तक भारत के संपूर्ण विकास पर प्रश्न चिह्न लगा रहेगा।

राष्ट्रभाषा हिंदी ही है, जो पूरे-देश को एक सूत्र में बाँधने की क्षमता रखती है। इसे शिक्षा का माध्यम बनाने से हमारे देश में अत्यधिक बहुमुखी प्रतिभाएँ निकल कर आगे आएँगी। महात्मा गांधीजी ने भी स्वीकार किया था कि शिक्षा मातृभाषा में होनी चाहिए; उच्च व तकनीकी शिक्षा भी हिंदी माध्यम से दी जा सकती है।

Maharashtra Board Class 11 Hindi रचना निबंध लेखन

3. भ्रष्टाचार :

एक राष्ट्रीय अभिशाप । एक समय था जब चुनाव से पहले हर राजनैतिक दल इस देश से भ्रष्टाचार मिटाने का वादा किया करते थे। देश में चुनाव होते गए और राजनैतिक दल अदल-बदल कर सत्तारूढ़ होते गए। जैसे-जैसे दिन बीतता गया इस देश में भ्रष्टाचार बढ़ता गया, अब तो आकंठ डूबे भ्रष्टाचार और राजनेता एक-दूसरे के पर्याय बन गये हैं। अब कोई भी राजनैतिक दल भ्रष्टाचार मिटाने की बात नहीं करता। सभी इस विशालकाय दैत्य के सामने नतमस्तक हैं।

भ्रष्टाचार का अर्थ है दूषित आचरण या बेईमानी। आज भ्रष्टाचार की काली छाया संपूर्ण देश में अमावस्या की तरह व्याप्त हो गई है और सत्तासीन लोग भ्रष्टाचार मिटाने के नाम पर बहती गंगा में हाथ धो रहे हैं। अब भ्रष्टाचार के नाम पर नाक-भौं सिकोड़ने की बजाय इसे अंगीकार कर लिया गया है।

आज भी कुछ लोग ऐसे हैं, जो भ्रष्टाचार से कोसों दूर हैं किंतु वे भ्रष्टाचारियों का विरोध करने की हिम्मत नहीं जुटा पाते। दुःस्साहस करनेवाले मुँह की खाते हैं उनकी आवाज नक्कारखाने में तूती की आवाज बनकर रह जाती है।

वैसे तो भ्रष्टाचार कमोबेश पूरे विश्व में व्याप्त है किंतु हमारे देश में यह सिंहासनारूढ़ है। इसका कारण है हमारे देश की चुनाव पद्धति। जिसे जीतने के लिए प्रत्याशी पानी की तरह पैसा बहाते हैं। अपनी सेवानिष्ठा ईमानदारी, योग्यता के बल पर न ही कोई चुनाव लड़ता है और न ही जीत पाता है। चुनाव में सफल होने पर वह हर हाल में अपना खर्च किया हुआ पैसा ब्याज के साथ वसूलता है। पैसे की प्राप्ति की अधीरता ही उसे भ्रष्टाचारी बनने को मजबूर करती है।

इसका दूसरा कारण है भौतिकवादी सभ्यता का प्रसार और पाश्चात्य देशों का अंधानुकरण। लोग सारे नियम कानून को ताक पर रखकर पैसा कमाने के चक्कर में भ्रष्टाचारी बन जाते हैं। चारों तरफ धन बटोरने की अफरा-तफरी मची हुई है। लोग विदेशी बैंकों में पैसे जमा करते जा रहे हैं।

आज का प्रत्यक्ष आकड़ा बताता है कि भारतीय भ्रष्टाचारियों का चौदह हजार लाख करोड़ रुपया विदेशी बैंकों की शोभा बढ़ा रहा है जो निश्चित रूप से काला धन है। सबने इसे अपनी जीवन पद्धति में शामिल कर लिया है।

नशीले पदार्थो का व्यापार कानून व्यवस्था के रखवालों के हाथ की कठपुतली बन चुका है। देश का युवावर्ग भ्रष्टाचारियों को आदर्श मानकर उसी रास्ते पर चल रहा है। उनके मन से राष्ट्राभिमान और राष्ट्र-प्रेम लुप्त होता जा रहा है। तकनीकी और प्राथमिक शिक्षण व्यवसाय बन चुका है।

Maharashtra Board Class 11 Hindi रचना निबंध लेखन

बाबा रामदेव, अन्ना हजारे जैसे लोग इसके खिलाफ आवाज उठाते हैं। यदि हम राष्ट्र को विश्व की प्रथम पंक्ति में बिठाना चाहते है तो भ्रष्टाचार रूपी रावण का दहन आवश्यक है। समाज सेवकों की मेहनत रंग लाएगी। सत्तासीनों की पोल खुलेगी, जनता जगेगी, निश्चित रूप से काला धन वापस आएगा।

देश का युवावर्ग जिस दिन जगेगा भ्रष्टाचार के रावण का अंत होगा और ध्वंस होगा भ्रष्टाचार का साम्राज्य। नए राष्ट्र का उदय होगा और तब साकार होगा। ‘मेरा भारत महान’ का स्वप्न।

4. मैं मोवाईल वोल रहा हूँ

आज विज्ञान प्रदत्त सुविधाओं को हम नकार नहीं सकते। दूरदर्शन, दूरध्वनि, ट्रांजिस्टर ,संगणक, विमान, राकेट, आदि की खोज ने मानव जीवन को एक नई दिशा दी है। कुछ दिन पहले ही पेजर आया बाद में लोगों को पता चला कि फोन भी आ रहा है। अब जब से मेरा आगमन हुआ है मैनें लोगों की दुनिया में क्रांति ला दी है।

जब मेरा बड़ा भाई टेलिफोन इस दुनिया में आया तो उसने पत्रलेखन की कमी को दूर कर लोगों के आपसी संबंध को जोड़ने का प्रयास किया। लेकिन जैसे ही मैंने इस दुनिया में कदम रखा बड़े भाई की परेशानी दूर कर दी। लोगों ने मुझे अपनी जेब में रखना शुरू किया।

मैंने भी लोगों की हर सुविधा का ध्यान रखा। फोटोग्राफी, खेल, सिनेमा, धारावाहिक, एफ एम रेडियो से लेकर हर सुविधा जो दृश्य – श्रव्य साधनों द्वारा प्राप्त होती है, मैंने दी। हाँ! आया, ठीक सुना आपने मैं मोबाइल बोल रहा हूँ। जब से मैंने इस दुनिया में कदम रखा है, तब से सारे संसार में एक क्रांति आ गई है।

विज्ञान ने जो कुछ भी दिया मैं भी उसी की एक कड़ी हूँ। मैं आप लोगों की दिन – रात सेवा कर रहा हूँ। मैंने ऐसी मुहब्बत दी है कि मुझे एक पल के लिए भी आप अपने से अलग नहीं कर पाते।

आपको मैंने सुविधा दी और आप ने भी अपनी जेब से मुझे निकाल कर हाथ की बजाय एक तार से जोड़कर अपने कान में लगा लिया और घंटों बातें करते रहते हैं।

मेरे दोस्तों मुझे दुःख है कि लोगों ने मेरा दुरुपयोग करना शुरू कर दिया है। पता नहीं लोग इतना झूठ क्यों बोलते हैं। मेरी मोहब्बत में अंधे होकर अपनी जान क्यों दे रहे हैं? लोगों का मुझ पर आरोप है कि मैं लोगों का समय बरबाद कर रहा हूँ।

मैंने लोगों को झूठ बोलना सिखाया है। मैंने माहौल को गंदा किया है। आतंकवाद और भ्रष्टाचार को बढ़ाने में भी मेरा उपयोग हो रहा है। परीक्षा के समय भी छात्र मेरा उपयोग नकल करने में करते हैं। लेकिन इसमें मेरी गलती नहीं है।

Maharashtra Board Class 11 Hindi रचना निबंध लेखन

मैं सबकी मदद करता हूँ। लोगों के दुःख, दर्द को दूर करता हूँ। लोगों के आपसी संबंधों में मधुरता लाता हूँ। इंटरनेट पर होनेवाली, घटनाओं की जानकारी देता हूँ। लोग मेरा सदुपयोग करने की बजाए दुरुपयोग करें, तो इसमें मेरी क्या गलती? मेरी दीवानगी में यदि आप अपना काम छोड़कर निष्क्रिय बन रहे हैं तो मैं क्या करूँ? मेरे दोस्तों मेरा सही प्रयोग करके मुझे बदनामी से आप ही बचा सकते हैं।

यदि मेरा सदुपयोग करेंगे तो मैं कभी किसी को कोई नुकसान नहीं पहुंचा सकता। मैं सूचना पहुँचाने का माध्यम हूँ। मनोरंजन का साधन हूँ। ज्ञान का भंडार हूँ। आपकी हर समस्या का समाधान हूँ। मुझे वही बने रहने दीजिए। मैं तो हमेशा आपकी सेवा में संलग्न रहना चाहता हूँ।

5. दीपावली के पटाखे

पिछले पंद्रह दिनों से लगातार पटाखों के शोर ने मेरी नींद उड़ा दी है। मैं तंग आ गया हूँ घर में बीमार पत्नी कराह रही थी। मैंने नीचे जाकर लोगों से मिन्नतें की लेकिन त्योहार के नाम पर शोर मचानेवालों ने परंपरा की बात कहकर मेरा मजाक उड़ाया। नियम से दस बजे तक ही पटाखे फोड़ने चाहिए लेकिन पूरी रात तक इसका क्रम चलता रहा। दिवाली के दिन तो हद हो गई।

जिसने मुझे चिढ़ाया था, परंपरा की दुहाई दी थी, संस्कृति और पर्व के नाम पर भाषण सुनाया था, पटाखे के धमाके से उसके पिता को दिल का दौरा पड़ा। आधी रात को हम लोग उन्हें अस्पताल ले गए पर दुर्भाग्य कि अब वे एक जिंदा लाश बनकर रह गए हैं।

ध्वनि प्रदूषण का कुप्रभाव सारी खुशियों पर पानी फेर गया। मैंने सुबह सारे कचरे को इकट्ठा करवाकर जलाया, सफाई करवाई, युवकों, बड़ों व बच्चों को बुलाकर समझाया कि जितना पैसा पटाखों में खर्च किया जाता है, उतने पैसों से हम बगीचा बनवा सकते हैं, जो हमें प्रदूषण से राहत देगा।

फिर किसी को जिंदा लाश नहीं बनना पड़ेगा। त्योहार खुशियाँ बाँटने के लिए होते हैं, दर्द देने के लिए नहीं। थोड़े लोगों में सहमति बनी। आज हमारी सोसायटी का बगीचा अन्य लोगों के लिए आदर्श बन चुका है। सबने पटाखे न फोड़ने का संकल्प तो नहीं किया किंतु नियमानुसार फोड़कर पर्व को मनाने का निर्णय अवश्य लिया।

व्यक्ति संस्कारों से सँवरता है, निखरता है। उसके व्यक्तित्व को गढ़ने का कार्य भी संस्कार ही करते हैं। किशोरावस्था और कुमारावस्था में छात्रों के लिए संस्कारगत मूल्यों की शिक्षा अनिवार्य है। इसका मानव जीवन के आचरण पर अत्यधिक प्रभाव पड़ता है।

कुछ नीतिपरक मूल्य मनुष्य को आदर्श नागरिक बनाने में सहायक होते हैं। इस संदर्भ में किसी महान मानव के चरित्र के ऊपर भी कुछ लिखा जा सकता है।

Maharashtra Board Class 11 Hindi रचना निबंध लेखन

उदाहरणार्थ कुछ संकेत निम्नलिखित हैं।

  • जनमत का आदर करनेवाला मानव वास्तविक नायक बन जाता है। संसार के महान पुरुषों के चरित्र को आधार बनाकर इस कथन को अभिव्यक्ति दी जा सकती है।
  • आज शहरी जीवन में स्वार्थांधता इतनी बढ़ गई है कि अपनत्व का भाव लुप्त होता जा रहा है। संवेदना धुंधली होती जा रही है, मानवता कहीं न कहीं लुप्त होती जा रही हैं।

6. अब्राहम लिंकन

अमेरिका के एक गरीब परिवार में जन्म लेनेवाला बालक अब्राहम लिंकन जिसने बचपन में अत्यंत अभावपूर्ण परिस्थिति में परवरिश पायी। घर की टूटी खिड़कियाँ और टूटी हुई छत, ऊपर से बिजली का अभाव, बचपन में पिता के साथ मजदूरी करने को मजबूर भरपेट भोजन का अभाव उसे घेरे रहता था।

कहते हैं “जहाँ चाह वहाँ राह” कुशाग्र बुद्धि, बहादुर, हँसी मजाक करने वाला बालक मित्रों से पुस्तकें माँगकर पढ़ उसे लौटा देता। बुद्धि इतनी तीव्र कि पुस्तक का एक-एक शब्द उसकी याददाश्त का हिस्सा बन जाते।

बिजली के अभाव में सड़क के खंभे से आते प्रकाश को पढ़ने के लिए प्रयोग करते देख एक अमीर ने उसको पढ़ने के लिए पुस्तकें उपलब्ध कराई। उसकी लगन, मेहनत और प्रतिभा ने उसे महान वकील बना दिया।

अमेरिका का कलंक वहाँ की दास प्रथा थी। उससे मुक्ति दिलाने का काम अब्राहम लिंकन ने किया। इसी दृढ संकल्प शक्ति से वे एक दिन अमेरिका के राष्ट्रपति बने। यदि हमारे अंदर दृढ़ इच्छा शक्ति है तो सृजनात्मक मूल्य अपने आप विकसित होते हैं और हमें ऊँचाई प्रदान करते है।

हमारे बीच ऐसी प्रतिभाओं की कमी नहीं है। हमें नहीं भूलना चाहिए कि गरीबी की कोख से पले- बढ़े, संघर्षरत, दृढ़ इच्छा शक्ति वाले गाँव के एक किसान बालक लालबहादुर शास्त्री ने भारत का प्रधान मंत्री बनकर देश को “जय जवान जय किसान” का नारा दिया।

संत महात्माओं, साहित्यकारों, मनीषियों ने अपने विचारों को अभिव्यक्त कर जो अमृत संदेश दिया, उसे भुलाया नहीं जा सकता। उनकी प्रसिद्ध उक्तियाँ ही सूक्तियाँ कहलाती हैं। उन उक्तियों या सूक्तियों को आधार मान कर आप अपने विचार अभिव्यक्त कर सकते हैं। कुछ उदाहरण निम्न हैं।

Maharashtra Board Class 11 Hindi रचना निबंध लेखन

  1. “ढाई आखर प्रेम का, पढ़े सो पंडित होय।”
  2. है अंधेरी रात पर दीया जलाना कब मना है?
  3. “तभी समर्थ भाव है कि तारता हुए तरे, वही मनुष्य है कि जो मनुष्य के लिए मरे।’
  4. “नाश के दुःख से कभी, दबता नहीं निर्माण का सुख”
  5. “मन के हारे हार है, मन के जीते जीत।”

इन कहावतों में मानव जीवन का महान सत्य प्रस्तुत किया गया है। मानव जीवन में उसका मन ही उसकी सारी गतिविधियों का संचालन करता है। जीवन में अनुकूल -प्रतिकूल परिस्थितियों का आना – जाना लगा रहता है। यदि प्रतिकूल परिस्थितियों में हम अपना धैर्य बनाए रखें, तो हम उस पर विजय पाने में सफल रहते हैं। इसके विपरीत यदि हम में निराशा और अधीरता घर कर जाए तो साधन संपन्न रहने पर भी पराजय ही हमारे हाथ लगती है।

सच्ची तंदुरुस्ती और आत्मनिर्भरता हमारे विजय का मार्ग प्रशस्त करती है। खेल में कभी हार तो कभी जीत मिलती है लेकिन हार में यदि हम निराश हो जाएँ तो सब कुछ बिखर जाएगा। हमें हर परिस्थिति में यह मानकर चलना है।

“क्या हार में क्या जीत में किंचित नहीं भयभीत मैं संघर्ष-पथ पर जो मिले, यह भी सही वह भी सही “हार मानूँगा नहीं, वरदान माँगूगा नहीं” इस सूत्र को जीवन का आधार बनाकर एक साधारण परिवार में जन्म लेने वाले छत्रपती शिवाजी महाराज ने अपनी दृढ़ इच्छा शक्ति से आदिलशाही सुलतानों, पुर्तगालियों, मुगलों से लोहा लिया और विजय पाई। समाज के तमाम विरोध के बावजूद महात्मा ज्योतिबा फुले ने महाराष्ट्र में स्त्री शिक्षा के प्रचार-प्रसार का महान कार्य किया।

7. 26 जुलाई

वाह रे! मुंबई और वाह रे मुंबईकर! ऐसी ताकत हिम्मत और हौसले को प्रणाम करता हूँ वरना हिम्मत, हौसला और दृढ इच्छाशक्ति के बिना उस परिस्थिति से उबर पाना आसान न था। क्या छोटा क्या बड़ा? क्या अमीर क्या गरीब। एकता की एक श्रृखंला बन गई। दुनिया के सामने एक मिसाल – लोग कह उठे वाह रे! मुंबई और वाह रे मुंबईकर!

जब से मनुष्य ने विज्ञान की शक्ति पाकर प्रकृति से छेड़छाड़ प्रारंभ की तथा उसका दोहन प्रारंभ किया, तभी से वह प्राकृतिक सुखों से वंचित होता गया। वह भूल गया कि मूक दिखाई देने वाली प्रकृति की वक्रदृष्टि सर्वनाश का कारण बन सकती है। 26 जुलाई की विभिषिणा ने हम मुंबई वासियों को आगाह किया है।

Maharashtra Board Class 11 Hindi रचना निबंध लेखन

हमें इस बात का ध्यान रखना होगा कि आज हमारे परिवेश में पर्यावरण का संरक्षण निहायत जरूरी है। प्लास्टीक की। थैलिया हमारे स्वास्थ्य एवं पर्यावरण के लिए बेहद हानिकारक हैं क्योंकि 60 फीसदी प्लास्टीक ही रिसाइकिल हो पाती है।

प्लास्टीक का यह कचरा ज्यादातर नालियों और सीवेज को ठप्प कर देता है, शेष समुद्र पर होने वाले अतिक्रमण और वृक्षों की कटाई ने भी अपनी भूमिका अदा की है। जिसके कारण ही वर्षा का जल समुद्र की खाड़ी में नहीं जा पाता और जल जमाव से लोग त्रस्त होते हैं।

पर्यावरण की सुरक्षा से ही इस समस्या को सुलझाया जा सकता है। वन रोपण तथा वृक्ष लगाने से यह समस्या कम हो सकती है। जनसंख्या वृद्धि पर भी हमें अंकुश लगाना होगा। कंक्रीट के जंगल की सीमा बांधनी होगी। समुद्र के अतिक्रमण को रोकना होगा। वरना सुख देने वाली यह प्रकृति हमें गटक जाएगी।

26 जुलाई 2005 की वह कहर भरी शाम। समुद्री तूफान और बरसात का सिलसिला जो आरंभ हुआ, पूरी रात चलता रहा। हर गली पानी से भर गई। पहली मंजिल तक पानी पहुंचा, रेलवे प्लेट फार्म डूब गए, सड़कों पर पानी, गाड़ियों के ऊपर से पानी बह रहा था। सब तरफ अफरा-तफरी का माहौल।

सबकी सोच, कि अब क्या होगा? कैसे निपटा जाय। इस मुसीबत से लोगों ने हिम्मत नहीं हारी, पूरी रात कौन कहाँ रहा पता नहीं? मंदिरों, मस्जिदों, चर्चों के दरवाजे खुल गए। लोगों ने शरण ली। सबने जिसकी जितनी ताकत थी एक – दूसरे को सँभाला, हिम्मत बँधाए रखा। करोड़ों का नुकसान हुआ।

रेलवे, बस सबकी सेवाएं ठप्प हो गईं। वाह रे! हिम्मत चौबीस घंटे बाद धीरे-धीरे सब कुछ सामान्य होने लगा। हालात को सामान्य बनाने में सबका योगदान रहा। यह थी हमारी एकता वर्गगत, जातिगत, धर्मगत, दलगत, विचारों से ऊपर। सर्वधर्म समभाव का ऐसा उदाहरण जिसे हम आज भी नमन करते हैं।

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

Balbharti Maharashtra State Board Hindi Yuvakbharati 11th Digest व्याकरण शब्द संपदा Notes, Questions and Answers.

Maharashtra State Board 11th Hindi व्याकरण शब्द संपदा

(1) लिंग : जिस शब्द से संज्ञा के स्त्री या पुरुष होने का बोध होता है, उसे ‘लिंग’ कहते हैं। लिंग के मुख्यत: दो भेद माने गए हैं :

  • पुल्लिंग
  • स्त्रीलिंग

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

पुल्लिंग : पुल्लिंग संज्ञा के उस रूप को कहते हैं जिससे उसके पुरुष होने का बोध होता है। जैसे – राजेश, राकेश, प्रभाकर, चाँद, सूर्य, बैल, घोड़ा आदि।

स्त्रीलिंग : जिस शब्द से स्त्री होने का बोध होता है उसे स्त्रीलिंग कहते हैं। जैसे – राधा, शीला, घोड़ी, बकरी, मछली, मैना, तितली, कोयल आदि।

लिंग निर्णय : अंग्रेजी, मराठी, संस्कृत की अपेक्षा हिंदी में लिंग निर्णय की प्रक्रिया थोड़ी जटिल है। जहाँ तक प्राणिवाचक संज्ञा शब्दों का प्रश्न है उसमें कोई परेशानी नहीं है, लेकिन जहाँ अप्राणिवाचक संज्ञा शब्दों की बात आती है वहाँ कठिनाई बढ़ जाती है क्योंकि इसके लिए कोई विशेष नियम नहीं है। एक ही शब्द के अलग अर्थ होने से या अलग-अलग शब्दों के एक ही अर्थ होने से भी लिंग बदल जाते हैं। जैसे –

भिन्नार्थक शब्द : अप्राणिवाचक बहुत से शब्दों के समरूपी होने पर लिंग भेद होता है। जैसै :

शब्द  अर्थ  लिंग
कलम  लेखनी  स्त्रीलिंग
कलम  वृक्ष शाखा का कलम  पुल्लिंग
ओर  छोर  पुल्लिंग
ओर  तरफ  स्त्रीलिंग
सरकार  स्वामी  पुल्लिंग
सरकार  शासन चलानेवाली  स्त्रीलिंग
विधि  ब्रहमा  पुल्लिंग
विधि  प्रणाली  स्त्रीलिंग
हार  पराजय के अर्थ में  स्त्रीलिंग
हार  माला के अर्थ में  पुल्लिंग
सविता  सूर्य  पुल्लिंग
सविता  किसी लड़की का नाम  स्त्रीलिंग
तारा  नक्षत्र  पुल्लिंग
तारा  लड़की का नाम  स्त्रीलिंग

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

कुछ प्राणियों में लिंग का निर्णय व्यवहार से होता है। जैसे – बंदर, तीतर, चीता, बैल पुल्लिंग है जबकि – मछली, कोयल, मैना, गौरैया स्त्रीलिंग है।

अप्राणिवाचक में द्रवों के नाम, धातुओं, ग्रहों, वनस्पतियों, अनाजों, रत्नों, दिनों, स्थल भागों के नाम पुल्लिंग होते हैं। जब कि – भाववाचक संज्ञा (ट, ट, हट) कृदंत, नदियों के नाम, नक्षत्रों के नाम, तिथियों के नाम, पक्वानों के नाम आदि स्त्रीलिंग होते हैं।

लिंग परिवर्तन कर वाक्य फिर से लिखिए :

(1) बेटे ने काका से बातचीत की।
बेटी ने काकी से बातचीत की।

(2) शेर ने बकरे पर आक्रमण किया।
शेरनी ने बकरी पर आक्रमण किया।।

(3) बैल घास चर रहा है।
गाय घास चर रही है।

(4) पंडित का भाई पूजा कर रहा है।
पंडिताइन की बहन पूजा कर रही है।

(5) नायक अभिनय कर रहा है।
नायिका अभिनय कर रही है।

(6) कुत्ता भौंक रहा है।
कुतिया भौंक रही है।

(7) चाचा जी देव जैसे हैं।
चाची जी देवी जैसी हैं।

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

(2) वचन : संज्ञा, सर्वनाम, विशेषण और क्रिया के जिस रूप से संख्या का बोध होता हैं, उसे वचन कहते हैं। हिंदी में दो वचन होते हैं।

  1. एकवचन
  2. बहुवचन

एकवचन : संज्ञा के अथवा शब्द के जिस रूप से एक ही व्यक्ति या वस्तु होने का ज्ञान हो उसे एकवचन कहते हैं। जैसे – बिल्ली, बिजली, लड़का, नदी, पुस्तक, घर आदि.

बहुवचन : संज्ञा अथवा शब्द के जिस रूप से उसके एक से अधिक होने का बोध होता है उसे बहुवचन कहते हैं। जैसे – बिल्लियाँ, लड़कियाँ, लड़के, घोड़े, बहुएँ आदि।

अपवाद : कुछ शब्दों में दोनों रूप समान होते है। जैसे – मामा, नाना, बाबा, पिता, योद्धा, युवा, आत्मा, देवता, जमाता।

सूचनानुसार – परिवर्तन

अधोरेखांकित शब्द का वचन परिवर्तित कर वाक्य फिर से लिखिए :

(1) उदा. लड़के विद्यालय जाते हैं।
उत्तर :
लड़का विद्यालय जाता है।

(2) नदी ने फसल को डुवो दिया।
उत्तर :
नदियों ने फसल को डुबो दिया।

(3) आप कहाँ जा रहे हैं?
उत्तर :
तुम कहाँ जा रहे हो?

(4) बकरी घास चर रही है।
उत्तर :
बकरियाँ घास चर रही हैं।

(5) नदियों ने फसलों को हरा-भरा कर दिया।
उत्तर :
नदी ने फसल को हरा-भरा कर दिया।

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

(3) विलोम विरुद्धार्थी शब्द : जो शब्द अर्थ की दृष्टि से एक-दूसरे के विरोधी होते हैं उन्हें विलोम, विपरीतार्थी या विरुद्धार्थी शब्द कहते हैं।

  • निम्न x उच्च
  • धनी x निर्धन
  • विष x अमृत
  • अर्थ x अनर्थ
  • उदय x अस्त
  • प्रात: x सायं
  • सजीव x निर्जीव
  • सदाचार x दुराचार
  • आय x व्यय
  • आदान x प्रदान
  • स्वर्ग x नरक
  • मान x अपमान
  • सत्य x असत्य
  • सज्जन x दुर्जन
  • गुण x अवगुण
  • शुभ x अशुभ
  • उचित x अनुचित
  • अनुकूल x प्रतिकूल
  • पक्ष x विपक्ष
  • उपस्थित x अनुपस्थित
  • एक x अनेक
  • आस्तिक x नास्तिक
  • आदर x निरादर
  • उन्नति x अवनति
  • सफलता र असफलता
  • सौभाग्य x दुर्भाग्य
  • आदि x अंत
  • नवीन x प्राचीन
  • उदार x अनुदार
  • लौकिक x अलौकिक
  • स्मृति – विस्मृति
  • आयात x निर्यात
  • शिक्षित x अशिक्षित
  • उत्तीर्ण x अनुत्तीर्ण
  • यश x अपयश
  • सुलभ x दुर्लभ Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा
  • प्रत्यक्ष x परोक्ष
  • खुशबू x बदबू
  • सार्थक x निरर्थक
  • मुख्य x गौण
  • समर्थन x विरोध
  • उत्थान x पतन
  • पंडित x मूर्ख
  • निर्माण x विनाश
  • संयोग x वियोग
  • उपकार x अपकार
  • साक्षर x निरक्षर
  • सूक्ष्म x स्थूल
  • बंजर x उपजाऊ
  • कृतज्ञ x कृतघ्न
  • आलस्य x उद्यम
  • साकार x निराकार
  • बुराई x भलाई
  • क्रोध x शांति
  • रक्षक x भक्षक
  • स्तुति x निंदा
  • वीर x कायर
  • वरदान – अभिशाप
  • रुग्ण x स्वस्थ
  • मानव x दानव
  • महान x क्षुद्र
  • सम x विषम
  • मधुर x कटु
  • महात्मा x दुरात्मा
  • कनिष्ठ x ज्येष्ठ
  • आकाश x पाताल

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

(4) पर्यायवाची शब्द :

  • असभ्य – अशिष्ट, गँवार, उजड्ड
  • कहानी – कथा, अख्यायिका, किस्सा
  • बुद्धि – मति, मेधा, प्रज्ञा, अक्ल
  • बारिश – वर्षा, बरसात, वृष्टि
  • पति – कांत, स्वामी, वर, भर्ता
  • वसंत – मधुऋतु, ऋतुराज, पिकमित्र
  • अनोखा – अनूठा, अनुपम, अलौकिक
  • थोड़ा – अल्प, रंच, कम
  • मृत्यु – निधन, देहांत, मौत
  • सुंदर – चारु, रम्य, ललाम
  • पत्नी – कांता, वधू, भार्या

(5) अनेक शब्दों के लिए एक शब्द :

  • जिस पर विश्वास किया जा सके – विश्वसनीय
  • जिसकी उपमा न दी जा सके – अनुपम
  • सब कुछ जाननेवाला – सर्वज्ञ
  • जो कभी बूढ़ा न हो – अजर
  • जो नियम के अनुसार न हो – अनियमित
  • जिसका कोई अंत न हो – अनंत
  • जो देखने योग्य हो – दर्शनीय
  • जो दूर की सोचता हो – दूरदर्शी
  • जो मीठा बोलता हो – मृदुभाषी
  • अनुकरण करने योग्य – अनुकरणीय
  • किए हुए उपकार को न माननेवाला – कृतघ्न
  • काम में लगा रहने वाला – कर्मठ
  • जिसे कहा न जा सके – अकथनीय
  • जो कम बोलता हो – मितभाषी
  • जिसे पाना कठिन हो – दुर्लभ

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

(6) भिन्नार्थक शब्द : कुछ शब्दों के प्रयोग कई अर्थों में होते हैं। उनका अर्थ वाक्य में प्रयोग से ही निश्चित हो सकता है।

  • अंबर – आकाश, कपड़ा
  • अंतर – हृदय, फर्क
  • आदि – आरंभ, इत्यादि
  • अली – सखी, पंक्ति
  • काल – समय, मृत्यु
  • कनक – सोना, धतूरा
  • तीर – बाण, तट
  • पट – कपड़ा, दरवाजा
  • पृष्ठ – (किताब का) पन्ना, पीठ
  • भेद – प्रकार, रहस्य
  • हरि – ईश्वर, सिंह
  • हार – फूलों की माला, हारना
  • गति – दशा, चाल
  • मित्र – साथी, सूर्य
  • हल – खेत जोतने का औजार, समाधान
  • स्नेह – तेल, प्रेम

(7) शब्द-युग्म : शब्दों का वह जोड़ा होता है जो देखने और सुनने में एक जैसे होते हैं अथवा मिलते-जुलते हैं लेकिन वर्तनी में कहीं न कहीं कोई अंतर अवश्य होता है। इस प्रकार वर्तनी की भिन्नता अथवा उसमें थोड़ा-सा परिवर्तन अर्थ में बहुत बड़ा अंतर उत्पन्न कर देते हैं। अत: इन्हें जानना व समझना जरूरी हो जाता है। यहाँ कुछ शब्द-युग्म दिए गए हैं।

अँगना : आँगन।
वाक्य: गाँव के घर में अँगना/आँगन का बहुत महत्त्व हैं।

अंगना : रमणी या सुंदर स्त्री।
वाक्य: अँगना में अंगना के पायल को छम-छम सुनाई दे रही थी।

अन्न : अनाज, खाद्य पदार्थ।।
वाक्यः किसान खेतों में अन्न उपजाते हैं।

अन्य : दूसरा या पराया।
वाक्य: इस काम को कोई अन्य व्यक्ति नहीं करेगा।

अगम : कठिन, दुर्गम।
वाक्यः ईश्वर को संतों ने अगम बताया है।

आगम : प्राप्ति, आय:
वाक्यः उसके पास अब कोई आगम नहीं है।

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

अवलंब : आश्रय, सहारा।
वाक्य: उसके पति की मृत्यु के साथ ही उसका अवलंब टूट गया।

अविलंब : तुरंत, शीघ्र।
वाक्यः इस कार्य को अविलंब करना है।

अंत : समाप्ति।
वाक्य: बादशाह औरंगजेब की मृत्यु के साथ ही मुगल राज्य का अंत हो गया।

अंत्य : अंतिम।
वाक्यः हिंदुओं की अंत्य विधि श्मशान में होती है।

अनल : आग।
वाक्यः अनल सब कुछ जला देता है।

अनिल : हवा।
वाक्य: ऊँचाई पर अनिल का दबाव कम हो जाता है।

अश्व : घोड़ा।
वाक्य: चेतक एक महान अश्व था।

अश्म : पत्थर।
वाक्य: अश्म से ठोकर खाकर वह गिर पड़ा।

अमित : बहुत, असीम।
वाक्य: लैला का मजनू से अमित प्रेम था।

अमीत : अमित्र, शत्रु।
वाक्य: इंसानियत के पुजारी अमीत को भी गले लगाते हैं।

आदि : आरंभ, शुरू या इत्यादि।
वाक्य: आदिकाल से ही भारतीय संस्कृति संसार में श्रेष्ठ रही है।

आदी : अभ्यस्त।
वाक्य: वह सुबह जल्दी उठने का आदी है।

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

आसन : बैठने की छोटी चटाई। वाक्य: यह पिता जी का आसन है।
आसन्न : निकट आया हुआ, तुरंत। वाक्य: उसका परीक्षा-काल आसन्न है।

इति : समाप्ति, अंत।
वाक्य: इसकी यही इति है।

ईति : विपत्ति, बाधा।
वाक्यः बेचारे मोहन के पिता की मौत होते ही उसके ईती का आरंभ हो गया।

उन : ‘उस’ सर्वनाम का बहुवचन।
वाक्य: उन लोगों को शादी में जाना है।

ऊन : भेड़ आदि के बाल।
वाक्य: शीत से बचने के लिए ऊनी वस्त्रों का प्रयोग होता है।

उपकार : भलाई।
वाक्य: यह उपकार का जमाना नहीं है।

अपकार : बुराई।
वाक्यः किसी का अपकार करके तुम्हें क्या मिलने वाला है ?

कंगाल : गरीब।
वाक्यः भूकंप आने से भुज के लोग कंगाल हो गए।

कंकाल : हड्डियों का ढाँचा।
वाक्य: बीमारी से वह कंकाल बन चुका है।

कलि : युग, कलह, झगड़ा।
वाक्यः कलियुग में सब कुछ उल्टा होता है।

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

कली : अधखिला फूल।
वाक्यः फूल बनने से पहले कली नहीं मसलनी चाहिए।

कहा : कहना का भूतकाल।। वाक्यः उसने कहा था।
कहाँ : स्थान बोधक अव्यय। वाक्यः आप कहाँ जा रहे हैं?

कुल : वंश, परिवार, पूर्ण।
वाक्यः (अ) दो संख्याओं को जोड़ने पर हमें कुलयोग ज्ञात होता है।
(ब) भगवान राम रघुकुल में जन्में थे।

कूल : तट, किनारा।
वाक्यः श्याम यमुना के कूल पर बंसी बजाते थे।

कुजन : बुरे लोग।
वाक्यः कुजनों के साथ रहने से नुकसान होता है।

कूजन : पक्षियों की मधुर ध्वनि या कलरव।
वाक्यः पक्षियों के कूजन से सवेरा होने का आभास हुआ।

किला : गढ़।
वाक्यः सिंहगढ़ का किला छत्रपति शिवाजी महाराज ने जीत लिया।

कीला : छूटा, बड़ी कील।
वाक्य: मैंने यह कीला अपनी जमीन में गाड़ा है।

ग्रह : सूर्य, चंद्र आदि।
वाक्य: हमारी संस्कृति में नौ ग्रह पूजे जाते हैं।

गृह : घर।
वाक्य: सोमवार को मेरा गृह प्रवेश हुआ।

कि : समुच्चयबोधक अव्यय।
वाक्यः राम के पिता ने कहा कि वह आलस्य छोड़ दें।

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

की : करना क्रिया का भूतकाल। संबंध कारक चिह्न।
वाक्य : मैंने पढ़ाई पूरी की। गाँव की नदियाँ बलखाती हुई बह रही है।

चिर : दीर्घ – बड़ा या हमेशा/शाश्वत।
वाक्यः चिरकाल से चली आई भारतीय संस्कृति महान है।

चीर : वस्त्र / कपड़ा।
वाक्य: द्रौपदी का चीर हरण किया गया था।

तरणी : नौका।
वाक्यः रामजी ने केवट की तरि से गंगा नदी पार की।

तरणि : सूर्य
वाक्य: सब्जियों में तरी ज्यादा होने से स्वाद बिगड़ गया।

तरंग : लहर।
वाक्य: समंदर की तरंगें भयानक होती जा रही थीं।

तुरंग : घोड़ा।
वाक्यः तुरंग पर सवार सैनिक जंग में महत्त्वपूर्ण भूमिका अदा करते थे।

नित : रोज, प्रतिदिन।
वाक्य: नित प्रात:काल उठकर टहलना स्वास्थ्य के लिए लाभदायक है।

नीत : प्राप्त, लाया हुआ।
वाक्य: हमारे देश में पर्दा प्रथा मुगलों द्वारा नीत है।

नियत : तय, निश्चित।
वाक्य: तुम्हें नियत समय पर ही वहाँ पहुँचना है।

नीयत : इच्छा, इरादा, मंशा।
वाक्यः इस मामले में तुम्हारी नीयत में खोट नजर आ रही है।

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

दिन : दिवस।
वाक्यः बुरे दिन में कोई मदद नहीं करता।

दीन : गरीब।
वाक्यः मुझ दीन के रक्षक दीनानाथ हैं।

देव : देवता, सुर।
वाक्य: भारत में अनेक देव पूजे जाते हैं।

दैव : भाग्य, नसीब।
वाक्य: आलसी हमेशा दैव-दैव पुकारता है।

प्रसाद : ईश्वरीय कृपा। वाक्य: मैं भगवान का प्रसाद पाकर धन्य हो गया। प्रासाद : महल।
वाक्यः राजा भव्य प्रासाद में रहता था।

परिणाम : फल, नतीजा।
वाक्यः चोरी का परिणाम हमेशा बुरा होता है।

परिमाण : मात्रा, माप।
वाक्य: यह दवा किस परिमाण में लेनी है?

पुर : नगर, शहर।
वाक्यः रघुवीर जी की बहू सीतापुर गई।

पूर : पूर्णत्व, बाढ़, अधिकता।
वाक्य : मोहन की थोड़ी-सी कमाई से घर-खर्च पूरा नहीं पड़ता था।

प्रणाम : नमस्कार, सलाम।
वाक्य : हमें बड़ों को प्रणाम करना चाहिए।

प्रमाण : सबूत।
वाक्य : इस समय मेरे पास अपनी बात का कोई प्रमाण नहीं है।

प्रहर : याम, पहर (तीन घंटे का समय)।
वाक्य : रात्रि के तीसरे प्रहर में पूरी तरह सन्नाटा छा जाता है।

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

प्रहार : आघात या चोट।
वाक्य: महाराणाप्रताप के प्रहार से मुगल सेना तितर-बितर हो गई।

पर : पंख, परंतु।
वाक्यः मोर के पर रखना शुभकारी होता है।

पार : किनारा, मंजिल तक पहुँचना।
वाक्यः मेरा घर नदी के उस पार है।

फुट : बारह इंच की माप।
वाक्य: इसकी लंबाई छ: फुट है।

फूट : मतभेद, बैर, अलगाव।
वाक्य: इस चुनाव में प्रत्येक दल में फूट पड़ी और बागी उम्मीदवार निर्दलीय चुनाव लड़े।

बलि : बलिदान, नैवेद्य।
वाक्य: बकरी ईद में बकरे की बलि दी जाती है।

बली : बलवान, वीर।
वाक्यः तन के साथ-साथ मन का भी बली होना जरूरी है।

बट : रास्ता।
वाक्यः पत्नी अपने पति की बाट जोह रही थी।

बाँट : भाग, हिस्सा।
वाक्य: मक्खन बाँट में बिल्लियों का नुकसान तय है।

बहु : बहुत, अधिक।
वाक्यः मेरा बहु प्रतीक्षित सपना पूरा हुआ।

बहू : पुत्रवधू, विवाहिता ली।
वाक्यः सास और बहू को टक्कर जगत प्रसिद्ध है।

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

भिड़ : ततैया, लड़ना।
वाक्य: दोनों पक्षों के सैनिक आपस में भिड़ गए।

भीड़ : मजमा, जनसमूह।
वाक्य: मेले की भीड़ में खो जाने का अंदेशा रहता है।

बास : गंध।
वाक्य: कचरे के डिब्बे से बहुत ही बास आ रही थी।

बाँस : एक वनस्पती
वाक्य: बाँस बहुत ही उपयोगी वनस्पती है।

भवन : घर, महल।
वाक्य: जयपुर में शानदार भवन है।

भुवन : संसार, जग।
वाक्यः सारे भुवन में महँगाई की मार है।

मूल : जड़, नींव।
वाक्य: दोनों परिवारों के विवाद के मूल में एक-दूसरे के प्रति नफरत है।

मूल्य : कीमत।
वाक्य: यह घड़ी काफी मूल्यवान है।

राज : राज्य, शासन।
वाक्य: महात्मा गांधीजी देश में रामराज लाना चाहते थे।

राज़ : भेद, रहस्य।
वाक्यः इस खंडहर में गहरा राज़ छिपा हुआ है।

शिला : पत्थर, पाषाण।
वाक्य: सम्राट अशोक के जमाने में शिलालेखों का विशेष महत्त्व था।

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

शीला : सुशील।
वाक्य: यह बड़ी सुशीला पुत्री है।

सास : पति या पत्नी की माँ।।
वाक्यः सास-बहू में झगड़े होते रहते हैं।

साँस : श्वास।
वाक्य: जब तक साँस चल रही है तब तक हमें संघर्ष करना है।

सुर : देवता, लय।
वाक्यः (अ) सुर में गाना एक साधना है।
(ब) बृहस्पतिजी सुरों के गुरु हैं।

सूर : सूर्य, अंधा।
वाक्यः मोहन सूर है लेकिन उसकी आवाज में जादू है।

सर्ग : काव्य का अध्याय।
वाक्यः कामायनी को सर्गों में विभक्त किया गया है।

स्वर्ग : देवताओं का निवास, जन्नत।
वाक्य : अच्छे लोग मृत्यु के बाद सीधे स्वर्ग जाते हैं।

शुक्ति : सीप।
वाक्यः शुक्ति में मोती बनता है।

सूक्ति : अच्छी उक्ति।
वाक्य: संतों की सूक्ति हमेशा प्रेरक होती है।

सुधि : स्मरण, याद।
वाक्य: परदेश जाने के बाद पति ने पत्नी की सुधि नहीं ली।

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

सुधी : विद्वान।
वाक्य: सुधी जनों की संगत में हमेशा सुख मिलता है।

सकल : सब, संपूर्ण।
वाक्य: गेहूँ की सकल उत्पाद का पच्चीस प्रतिशत पंजाब में होता है।

शक्ल : सूरत, चेहरा टुकड़ा।
वाक्य: तेजाब फेंककर उसकी शक्ल को बिगाड़ दिया गया।

शुल्क : फीस, चंदा।
वाक्यः रमा विद्यालय में बच्चे का शुल्क जमा करने गई है।

शुक्ल : उज्ज्वल, शुद्ध पक्ष।
वाक्यः शुक्ल पक्ष के अंतिम दिन पूर्णिमा होती है।

(8) उपसर्ग : जो शब्दांश किसी शब्द के प्रारंभ में जुड़कर शब्द के अर्थ को प्रभावित करते हैं उन्हें उपसर्ग कहा जाता है।
उदा. देश – स्वदेश, परदेश, उपदेश

हिंदी में प्रयुक्त होने वाले कुछ, उपसर्ग इस प्रकार है :
Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा 1
Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा 2
Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा 3
Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा 4

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

(9) प्रत्यय : कुछ शब्दांश शब्दों के अंत में जुड़कर उनके अर्थ में परिवर्तन लाते हैं उन्हें प्रत्यय कहते हैं।
उदा. – जल + ज = जलज, जल + द = जलद
Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा 5
Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा 6

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

(10) कृदंत : धातु में कृत प्रत्यय लगने से बनने वाला शब्द कृदंत कहलाता है।
जैसे-
Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा 7

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

तद्धित : संज्ञा, सर्वनाम, विशेषण अथवा अव्यय के अंत में प्रत्यय लगाकर बने शब्द तद्धित शब्द कहलाते हैं।
जैसे –
संज्ञा शब्द – तद्धित शब्द
सोना – सुनार, सुनहरा
मुख – मुखिया, मौखिक …. आदि

सर्वनाम शब्द – तद्धित शब्द
अपना – अपनापन, अपनत्व
निज – निजत्व …. आदि

विशेषण शब्द – तद्धित शब्द
मीठा – मिठाई, मिठास
एक – एकता, इकहरा …… आदि

अव्यय शब्द – तद्धित शब्द
पीछे – पिछला
अवश्य – आवश्यक
बहुत – बहुतायत …… आनि

(11) तत्सम शब्द : जो शब्द हिंदी में संस्कृत भाषा से बिना किसी परिवर्तन के ले लिए गए है उन्हें ‘तत्सम शब्द’ कहा जाता है।
उदा. : नित्य, विद्वान, प्रात:, शनैः शनैः, ज्ञान, अक्षर, सूर्य, गृह, ग्राम …… आदि।

(12) तद्भव शब्द : समय और परिस्थिति के कारण संस्कृत के शब्दों में परिवर्तन आता गया और आज व्यवहार में प्रयुक्त हैं ऐसे शब्द तद्भव शब्द कहलाते हैं।
जैसे –

तत्सम शब्द  तद्भव शब्द
अंगुली  उंगली
अश्रु  आँसू
काक  कौआ
गृह  घर
पुत्र  पुत
कोकिल  कोयल
हस्ती  हाथी
जिह्वा  जीभ
दुग्ध  दूध
भ्राता  भाई
श्राप  शाप
मुख  पूँह
अग्नि  आग
अग्र  आगे
गर्दभ  गधा
चंद्र  चाँद
पितृ  पिता
कृष्ण Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा  किशन
हस्त  हाथ
बिंदु  बूंद
भगिनी  बहन
क्षेत्र  खेत
सप्त  सात
मेघ  मेह
रात्रि  रात
श्वास  साँस
शय्या  सेज
मूल्य  मोल
धैर्य  धीरज
कृषक  किसान
छिद्र  छेद
ज्येष्ठ  जेठ
दूर्वा  दूब
दु:ख  दुख
पद  पैर
पीत  पीला
पुच्छ Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा  पूँछ
भिक्षा  भीख
भद्र  भला
सूत्र  सूत
लक्ष्मण  लखन
वर्ष  बरस
सूर्य  सूरज
शर्करा  शक्कर
श्वसुर  ससुर
श्वश्रू  सास
निष्ठ  मीठा
रत्न  रतन
घट  घड़ा
चौत्र  चत
तृण  तिनका
दीप  दीया
पक्षी  पंछी
पुष्प  फूल
पुष्कर  पोखर
मयुर  मोर
मृतिका  मिट्टी
रक्षा Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा  राखी
लौह  लोहा
व्याघ्र  बाघ
बक  बगुला
खीर  क्षीर

विदेशी शब्द : अरबी, फारसी, अंग्रेजी या अन्य किसी भी दूसरे देश की भाषा के शब्द जिनका हिंदी में प्रयोग किया जाता है उन्हें विदेशी शब्द कहते हैं।

जैसे : डॉक्टर, राज़, इलाज, रेल्वे, सिग्नल, इशारा, दीदार, आरमान, शक्ल …. आदि।

मानक वर्तनी :

किसी भी भाषा के दो प्रमुख तत्त्व होते हैं।

  • व्याकरण
  • लिपि

लिपि का एक पक्ष है सामान्य और विभिन्न ध्वनियों के पृथक-पृथक, प्रतीक -वर्णों की वृद्धि, उनका परस्पर आकार भेद, लिखावट में सरलता, स्थान लघुता स्वं प्रयत्नलाघव, जिससे भाषा दुरूहता समाप्त होती है। लिपि का दूसरा पक्ष है वर्तनी (Spelling) एक शब्द को प्रकट करने के लिए अलग-अलग अक्षरों का प्रयोग वर्तनी को कठिन बना देता है। देवनागरी लिपि में यह दोष सबसे कम है, फिर भी कुछ विशेष कठिनाइयाँ हैं।

इन सभी कठिनाइयों को दूर कर हिंदी की वर्तनी में एकरूपता लाने के लिए भारत सरकार के शिक्षा मंत्रालय ने 1961 में एक विशेषज्ञ समिति नियुक्त की थी।

समिति ने अप्रैल 1962 में अपनी अंतिम सिफारिशें प्रस्तुत की, जिन्हें सरकार ने स्वीकृत किया। यह सुधार प्रायः टंकण लिपि और संगणक की सुविधानुसार किया गया। 1967 में “हिंदी वर्तनी मानकीकरण” नामक पुस्तिका में इसकी व्याख्या और उदाहरण विस्तार से प्रकाशित किया गया है।

वर्तनी संबंधी कुछ नियम इस प्रकार है।

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

(1) संयुक्त वर्ण

(क) खड़ी पाई वाले व्यंजन:

खड़ी पाई वाले व्यंजनों (म्दहेदहाहू) का संयुक्त रूप खड़ी को हटाकर ही बनाया जाना चाहिए,

जैसे – ख्याति, लग्न, विघ्न, कच्चा, छज्जा, सज्जा, नगण्य उल्लेख, कुत्ता, पथ्य, ध्वनि, प्यास, न्यास, डिब्बा, सभ्य, रम्य, शय्या, राष्ट्रीय, त्र्यंबक, व्यास, स्वीकृत श्लोक, यक्ष्मा, प्रज्ञा।

(ख) अन्य व्यंजन:

(अ) क और फ के संयुक्ताक्षर : पक्का, दफ्तर, रफ्तार, चक्का आदि की तरह बनाए जाएँ, न कि पक्का, दफ्तर की तरह। इसमें फ और क की बाहों को गोला न कर सीधा कर दिया जाता है। (आ) ङ्, ट, ठ, ड, ढ, द और ह के संयुक्ताक्षर हलंत ( ) चिह्न लगाकर ही बताए जाए। वाङ्मय लट्टू, बुड्ढा, विद्या, चिह्न, ब्रह्मा, ब्राह्मण, उद्यम लट्ठा आदि।

(इ) श्र का प्रचलित रूप ही मान्य होगा। इसे श के रूप में नहीं लिखा जाएगा। त + र के संयुक्त रूप के लिए त्र और र दोनों रूपों के प्रयोग की छूट हैं। किंतु क्र को कर के रूप में नहीं लिखा जाएगा।

(ई) हलंत चिह्नयुक्त वर्ण से बनने वाले संयुक्ताक्षर के द्वितीय व्यंजन के साथ इ की मात्रा का प्रयोग संबंधित व्यंजन के तत्काल पूर्व ही किया जाएगा, न कि पूरे युग्म से पूर्व जैसे कुट्टिम द्वितीय, को कुटिम, द्वितीय, बुद्धिमान, चिह्नित आदि को स्वीकारा जाएगा।

(उ) संस्कृत में संयुक्ताक्षर पुरानी शैली में भी लिखे जा सकेंगे, जैसे – संयुक्त, चिह्न, विद्या, विद्वान, वृद्ध, अट्ट, द्वितीय, बुद्धि, शुद्धि आदि।
(नियम 2) क और फ के बाहों की गोलाई अंग को काटकर या हटाकर)
क – मुक्त, पक्का, चक्कर, टक्कर, शक्कर।
फ- मुफ्त, दफ्तर, रफ्तार।
(नियम 3) ट, ड, द, ह को हलंत करके) लट्टू, चट्टान, इकट्ठा, पट्ठा, बुड्ढा, लड्डू, शुद्ध, वृद्ध, बुद्धिमान, उद्योग, गद्य, पद्य, खाद्य, प्रसिद्ध अद्भुत, ब्रह्म, चिह्न, ब्राह्मण।
(नियम 4) संयुक्त वर्णाक्षर के साथ ‘इ’ की मात्रा का प्रयोग हलंत चिह्नयुक्त वर्ण से बननेवाले संयुक्ताक्षर के द्वितीय वर्ण के तत्काल पूर्व किया जाता है। जैसे – बुद्धि, शुद्धि, चिह्नित, द्वितीय, द्विगुणित, चिट्ठियाँ, छुट्टियाँ, सिद्धि, वृद्धि आदि।
(नियम 5) खड़ी पाई को हटाकरः

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

खड़ी पाई वाले व्यंजन के संयुक्ताक्षर :

  • ख : ख्याति
  • ण : नगण्य प : प्यार
  • ल : उल्लेख ग : मग्न
  • त : पत्ता ब : ब्यौरा,
  • ष : राष्ट्र ग : नग्न
  • थ : पथ्य
  • भ : सभ्य स : स्वाद
  • घ : विघ्न ध : ध्यान
  • म : रम्य य : त्र्यंबक
  • च : अच्छा न : न्याय
  • म : गम्य श : श्लोक
  • ज : लज्जान : अन्न
  • य : शय्या क्ष : लक्ष्य

(2) विभक्ति चिह्न : (कारक चिह्न)

(क) हिंदी के विभक्ति चिह्न सभी प्रकार के संज्ञा शब्दों में प्रतिपदिक से पृथक लिखे जाय,
जैसे – राम ने, राम को, राम से, सभी ने, सभी को, सभी से आदि। सर्वनाम शब्दों में विभक्ति चिह्न मिलाकर लिखे जाते हैं।
जैसे -उसने, उसको, उसपर आदि।

(ख) सर्वनामों के साथ यदि दो विभक्ति चिह्न है उसमें पहला मिलाकर और दूसरा अलग से लिखा जाय।
जैसे – उसके लिए- इसमें से, आदि।

(ग) सर्वनाम और विभक्ति ‘ही’ ‘तक’ आदि का प्रयोग हो तो विभक्ति को अलग लिखा जाए।
जैसे – आप ही के लिए, मुझ तक को।

(3) क्रियापद : संयुक्त क्रियाओं में सभी अंगभूत क्रियाएँ पृथक लिखी जाएँ। जैसे- पढ़ा करता है, आ सकता है, खेला करेगा, नाचता रहेगा, चढ़ते ही जा रहे हैं, बढ़ते चले आ रहे हैं इत्यादि।

(4) हाइफन (-) हाइफन का विधान स्पष्टता के लिए किया जाता है।

(क) द्वंद्व समास में पदों के बीच हाइफन रखा जाए यथाः
राम-लक्ष्मण, माता-पिता, शिव-पार्वती, देख-रेख, चाल-चलन, हँसी-मजाक, पढ़ना लिखना, खाना-पीना, खेलना-कूदना, स्त्री-पुरुष इत्यादि।

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

(ख) ‘सा’ ‘जैसा’ आदि से पूर्व हाइफन रखा जाये। जैसे -तुम-सा, राम-जैसा, चाकू-से तीखे, चलने। जैसे – आदि.

(ग) तत्पुरुष समास में हाइफन का प्रयोग तभी किया जाय जहाँ पर हाइफन के बिना भ्रम होने की संभावना हो। अन्यथा हाइफन का प्रयोग नहीं होगा।
जैसे – भू-तत्व.
सामान्यत: तत्पुरुष समास में हाइफन के प्रयोग की आवश्यकता नहीं होती जैसे – रामराज्य, राजकुमार, गंगाजल, ग्रामवासी, आत्महत्या, राजमाता, आदि। इसी तरह अ-नख (बिना नख का) में हाइफन न लगाने से इसका अर्थ बदल कर क्रोध हो जाएगा। अ-नति (नम्रता की कमी), अनति (थोड़ा) अ-परस (जिसे किसीने छुआ न हो) – अपरस – (एक चर्मरोग), भू-तत्व (पृथ्वी का तत्त्व) भूतत्त्व (भूत होने का भाव) आदि समस्त पदों की स्थिति विशेष होती है जहाँ हाइफन का प्रयोग किया जाता है।
(घ) कठिन संधियों से बचने के लिए भी हाइफन का प्रयोग किया जाता है। जैसे -द्वि-अक्षर, द्वि-अर्थक आदि।
(च) स्पष्टीकरण के लिए भी हाइफन का प्रयोग किया जाता है। जैसे – उदाहरणार्थ – यथा-आदि

विशेष अभ्यास हेतु

(क) हाइफन वाले शब्द : उषा-सा, एक-सा, घबराया-सा, छोटा-सा, जरा-सा, थोड़ा-सा, फूल-सा, रात-सा, साधारण-सा, हल्का सा, धक-सा आदि।

(ख) दवदव समास : आठ-दस, इधर-उधर, एक- दूसरा करता-धोती, खान पान, खेल-कद, नाच-गाना, रात-दिन, गोरा-चिट्टा, घर-परिवार, माता-पिता, जेठानी-देवरानी, भाई-बहन, दिन-रात, टूटा-फूटा, नहाना-धोना, बोल-चाल, हाथ-पैर, लाभ -हानि, भैया-भाभी, काका-काकी, रूप -रेखा आदि।

(ग) द्विरुक्त शब्द : आगे-आगे, कच-कच, खी-खी, जगह – जगह, तरह -तरह, धीरे-धीरे, नन्हा-नन्हा, बड़े-बड़े, भिन्न-भिन्न, रोज-रोज, शिव-शिव, सच-सच, हिला -हिला, बीच- बीच , गरम- गरम, छोटी-छोटी, मोटी-मोटी, सर-सर इत्यादी।

(घ) अन्य : जैसे-ही, भू-स्वामित्व, भू-सर्वेक्षण, भू-दान, मन-ही-मन, आदि।

(5) अव्यय : तक, साथ, आदि अव्यय सदा अलग लिखे जाएँ।।

जैसे – आपके साथ, यहाँ तक । हिंदी में आह, ओह ऐ, ही, तो, सो, भी न, जब, कब यहाँ, वहाँ, कहाँ, सदा, क्या, पड़ी, जी, तक, भर, मात्र, केवल, किंतु, परंतु, लेकिन, मगर, चाहे, या अथवा तथा आदि अनेक प्रकार के भावों को बोध करानेवाले अव्यय हैं। कुछ अव्ययों के आगे विभक्ति चिह्न भी आते है।

जैसे – अब से, तब से, यहाँ से, वहाँ से, कहाँ से, सदा से आदि। नियमानुसार अव्यय हमेशा अलग लिखे जाने चाहिए। जैसे – आप ही के लिए, मुझ तक को, आप के साथ, गज भर, रात भर. वह इतना, भर कर दे, मुझे जाने तो दो, काम भी नहीं बना, पचास रुपए मात्र है।

सम्मानार्थक श्री और जी अव्यय भी पृथक लिखे जाए। जैसे – श्री राम, महात्मा जी, माता जी, पिता जी, आदि। समस्त पदों में प्रति, मात्र, यथा, आदि अलग न लिखकर एक साथ लिखना चाहिए। जैसे – प्रतिदिन, प्रतिक्षण, प्रतिशत, मानवमात्र, निमित्तमात्र, यथासमय, यथायोग्य, यथोचित, यथासंभव आदि।

यह नियम है कि समास होने पर समस्त पद एक ही माना जाता है अत: उसे पृथक न लिखकर एक साथ ही लिखा जाना चाहिए।

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

(6) श्रुतिमूलक :

(क) श्रुतिमूलक ‘य’ ‘व’ का प्रयोग विकल्प से होता है, वहाँ न किया जाए अर्थात किए – किये, नई – नयी, हुआ-हुवा, आदि में पहले वाले सकारात्मक रूप को ही स्वीकारा जाना चाहिए। यह नियम विशेषण, क्रियाविशेषण अव्यय आदि के सभी रूपों और स्थितियों में लागू माना जाए। जैसे – दिखाए गए, राम के लिए, पुस्तक लिए हुए, नई दिल्ली आदि।

(ख) जहाँ ‘य’ श्रुतिमूलक शब्द का मूल रूप होता है वहाँ वैकल्पिक, श्रुतिमूलक स्वरात्मक परिवर्तन की आवश्यकता नहीं होती । यहाँ व्याकरण के अनुसार परिवर्तन नहीं होना चाहिए। जैसे – स्थायी, अव्ययी भाव, दायित्व आदि को स्थाई, अव्यई भाव, दाइत्व नहीं लिखा जा सकता।

(7) अनुस्वार या अनुनासिकता के चिह्न (चंद्र बिंदु)

अनुस्वार ()और अनुनासिकता चिह्न (*) दोनो प्रचलित रहेंगे।

(क) संयुक्त व्यंजन के लय में जहाँ पंचमाक्षर के बाद सवर्गीय शेष चार वर्ण में से कोई वर्ण हो तो एकरूपता और मुद्रण/ लेखन की सुविधा के लिए अनुस्वार का ही प्रयोग किया जाना चाहिए। जैसे – गंगा, चंचल, ठंडा, संपादक आदि में पंचमाक्षर के बाद स्थान पर अनुस्वार का प्रयोग किया जाना चाहिए।

(गड्गा, ठण्डा, सन्ध्या, सम्पादक, नहीं। यदि पंचमाक्षर के बाद किसी अन्य वर्ग का कोई वर्ण आए अथवा वहीं पंचमाक्षर दुबारा आए तो पंचमाक्षर अनुस्वार के रूप में परिवर्तित नहीं होगा। जैसे – वाड्:मय, अन्न, सम्मेलन, सम्मति, सम्मान, चिन्मय, उन्मुख आदि। अत: वांमय, अंन, संमेलन, संमति, संमान, चिंमय आदि रूप ग्राह्य नहीं हैं। और स्पष्ट करने के लिए भिन्न रूप को देखें।

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा 1

एक से चार वर्ण के साथ अनुस्वार (.) का प्रयोग होगा और पाँचवे वर्ण के अनुस्वार आनेपर आधे ड., म, ण, न, म का प्रयोग ( हलंत) होगा।

(ख) चंद्रबिंदु (*) के बिना प्राय: अर्थ से में संदेह की गुंजाइश रहती है। जैसे – हंस-हँस, अंगना-अंगना आदि में। इसलिए, ऐसे संदेह को दूर करने के लिए चंद्रबिंदु (*) का प्रयोग अवश्य किया जाना चाहिए।

Maharashtra Board Class 11 Hindi व्याकरण शब्द संपदा

लेकिन जहाँ (विशेषकर शिरोरेखा के ऊपर जुड़ने वाली मात्रा के साथ) चंद्रबिंदु (*) के प्रयोग से छपाई आदि में बहुत कठिनाई हो और चंद्रबिंदु के स्थान पर बिंदु (अनुस्वार चिह्न) का प्रयोग किसी प्रकार का संदेह उत्पन्न न करे, वहाँ उसका प्रयोग यथा स्थान अवश्य करना चाहिए।

इसी प्रकार छोटे बच्चों की प्रवेशिकाओं में जहाँ चंद्रबिंदु का उच्चारण दिखाना अभीष्ट हो, वहाँ उसका यथा स्थान प्रयोग किया जाना चाहिए। जैसे – कहाँ, हँसना, अँगना, वहाँ, यहाँ, सँवरना, आदि।

Maharashtra Board Class 11 Hindi व्याकरण मुहावरे

Balbharti Maharashtra State Board Hindi Yuvakbharati 11th Digest व्याकरण मुहावरे Notes, Questions and Answers.

Maharashtra State Board 11th Hindi व्याकरण मुहावरे

भाषा को स्पष्ट और प्रभावशाली बनाने के लिए मुहावरों का प्रयोग किया जाता है। मुहावरा ऐसा वाक्यांश होता है जो सामान्य अर्थ से भिन्न किसी विशेष अर्थ का बोध कराता है। उसके अंत में प्राय: किसी क्रिया का सामान्य रूप लगा होता है। इनके प्रयोग से भाषा में सरसता, सुंदरता और स्वाभाविकता आती है।

Maharashtra Board Class 11 Hindi व्याकरण मुहावर

मुहावरों की विशेषताएँ :

  1. मुहावरे लोक जीवन की धरोहर हैं।
  2. इनके अंत में प्राय: ‘ना’ होता है।
  3. मुहावरे पूर्ण वाक्य नहीं होते।
  4. मुहावरों के अर्थ प्रकट करने के लिए क्रियापद का विशेष महत्त्व होता है।
  5. मुहावरे भाषा में कलात्मक अभिव्यक्ति की एक शैली है।
  6. अन्य भाषा में मुहावरों का शाब्दिक अनुवाद नहीं हो सकता।
  7. वाक्य में प्रयुक्त होने पर मुहावरों के शब्दों में रूपांतर हो जाता है। क्रिया लिंग, वचन, कारक आदि के अनुसार बदल जाती है। मुहावरे वाक्य में सरसता, विलक्षणता, तीखापन और प्रवाह उत्पन्न करते हैं। इससे हमारी अभिव्यक्ति में निखार आता है।

मुहावरों के प्रयोग में सावधानी :

  • मुहावरों का वाक्यों में प्रयोग करते समय इनके लाक्षणिक अर्थ की पूर्ण जानकारी होनी चाहिए अन्यथा अर्थ के अनर्थ होने की संभावना रहती है।
  • मुहावरे ज्यों के त्यों वाक्य में प्रयुक्त नहीं होते इसलिए प्रयोग के अनुसार उसके लिंग, वचन, कारक के अनुसार क्रिया में परिवर्तन करना चाहिए।

पाठ में प्रयुक्त मुहावरे तथा उनके वाक्य प्रयोग :

अंकुर जमाना : प्रारंभ करना
वाक्य : भाई के मन में कपट का अंकुर ऐसा जम गया था कि अब वह वृक्ष बन गया था।

अपने पैरों पर खड़ा होना : आत्मनिर्भर होना।
वाक्य : पढ़-लिखकर सीया अपने पैरों पर खड़ा होना चाहती है।

Maharashtra Board Class 11 Hindi व्याकरण मुहावर

आँच न आने देना : संकट न आने देना।
वाक्य : गरीबी में भी माता-पिता ने अपने बच्चों पर आँच न आने दी

आँखों में सैलाब उमड़ना : फूट-फूटकर रोना।
वाक्य : पति की मृत्यु पर पत्नी की आँखों में सैलाब उमड़ आया था।

आँखें फटी रहना : आश्चर्यचकित रह जाना।
वाक्य : बालक कृष्ण के मुख में ब्रह्मांड को देखकर यशोदा मैया की आँखें फटी रह गईं।

आईने में मुँह देखना : अपनी योग्यता जाँचना।
वाक्य : आईने में मुँह देखकर काम करना चाहिए ताकि सफलता का फल प्राप्त हो।

आसमान के तारे तोड़ना : असंभव कार्य करना।
वाक्य : यह प्रतियोगिता जीतकर भार्गव ने आसमान के तारे तोड लाए हैं।

ईंट का जवाब पत्थर से देना : कड़ा जवाब देना।
वाक्य : हमारी टीम ने खेल जीतने के लिए ईंट का जवाब पत्थर से दिया

उधेड़ वुन में लगना : सोच-विचार करना।
वाक्य : पैसों की उधेड-बून में लगे लोग जीवन का मजा नहीं उठा पाते।

एक आँख से देखना : सामान्य रूप से देखना, पक्षपात न करना।
वाक्य : माँ अपने सभी बच्चों को एक आँख से देखती है

Maharashtra Board Class 11 Hindi व्याकरण मुहावर

एक और एक ग्यारह होना : एकता में बल होना।
वाक्य : जब दोनों भाई एक और एक ग्यारह हो गए तो उनका बुरा चाहने वाले उनका कुछ नहीं बिगाड़ सके।

कदम बढ़ाना : प्रगति करना।
वाक्य : समस्या को पीछे छोड़कर कदम बढाना जीवन का सही मार्ग है।

कमर कसना : पूरी तरह तैयार होना।
वाक्य : बरसाती समस्याओं से निपटने के लिए हमने बरसात आने से पहले ही कमर कस ली है।

कमर सीधी करना : आराम करना, सुस्ताना।
वाक्य : इतना पसीना बहाने के बाद कमर सीधी करने का मौका मिला तो नई समस्या खड़ी हो गई।

कलई खुलना : भेद प्रकट होना, राज या रहस्य खुलना।
वाक्य : कोई कितना भी धूर्त क्यों न हो एक न एक दिन उसकी कलई खुल जाती है।

कान देना : ध्यान से सुनना।
वाक्य : अध्यापक की बात पर विद्यार्थी कान देंगे तो सफलता अवश्य मिलेगी।

किस्मत खुलना : भाग्य चमकना।
वावय : आज तो मेरी किस्मत खुल गई जो आपके दर्शन हुए।

गले का हार होना : अत्यंत प्रिय होना।
वाक्य : छोटा शेख घर में सभी के गले का हार था।

Maharashtra Board Class 11 Hindi व्याकरण मुहावर

गागर में सागर भरना : थोड़े में बहुत कहना।
वाक्य : बिहारी जी ने अपने दोहों में गागर में सागर भर दिया है इस बात को सभी हिंदी प्रेमियों ने स्वीकारा है।

घी के दीये जलाना : खुशी मनाना।
वाक्य : जब श्रीराम जी 14 वर्ष के वनवास के बाद अयोध्या लौटे तो अयोध्या वासियों ने घी के दीये जलाए

चिकना घड़ा होना : निर्लज्ज होना, किसी बात का असर न होना।
वाक्य : रमेश को समझाना बेकार है क्योंकि वह तो चिकना घड़ा है।

चुटकी लेना : व्यंग्य करना।
वाक्य : चुटकी लेने की आदत कभी-कभी भारी पड़ जाती है।

जबान देना : वचन देना।
वाक्य : रमेश ने अगर जबान दी है तो वह जरूर निभाएगा।

झंडे गाड़ना : पूर्ण रूप से प्रभाव जमाना।
वाक्य : छोटी उम्र में ही शिवाजी महाराज ने 12 मावलों के साथ मुगलो के आधे किले पर झंडे गाड़ दिए थे।

डंका पीटना : प्रचार करना।
वाक्य : अपनी छोटी सी सफलता का भी डंका पीटने में सीया पीछे नहीं हटती।

तितर-बितर होना : बिखर जाना।
वाक्य : माँ की मृत्यु के बाद परिवार तितर-बितर हो गया।

Maharashtra Board Class 11 Hindi व्याकरण मुहावर

हजारों दीप जल उठना : आनंदित हो उठना।
वाक्य : विदेश जाने के लिए वीजा मिल गया तो रमेश के मन में हजारों दीप जल उठे

रुपये दाँत से पकड़ना : कंजूसी करना।
वाक्य : इस महँगाई के दौर में हर कोई रुपये दाँत से पकडकर जी रहा है।

दूध का दूध, पानी का पानी करना : इंसाफ करना, न्याय करना।
वाक्य : रंगे हाथ पकड़े जाने पर सच्चाई सबके सामने आ गई और दूध का दूध और पानी का पानी हो गया।

नाम कमाना : यश प्राप्त करना।
वाक्य : कड़ी मेहनत करके राज ने नाम कमाया इसलिए सब उसकी इज्जत करते हैं।

पाँचों उँगलियाँ घी में होना : हर तरफ से लाभ होना।
वाक्य : अब बेटा भी बराबरी से काम करने लगा तो लाला जी की पाँचो उँगलियाँ घी में है।

फला न समाना : अत्यधिक प्रसन्न होना।
वाक्य : मनोकामना पूरी होने पर सीया फूली न समाई

वीडा उठाना : किसी काम को करने की ठान लेना।
वाक्य : देश के नागरिकों को पर्यावरण सुरक्षा का बीड़ा उठाना होगा।

वाँछे खिलना : अत्यधिक प्रसन्न होना।
वाक्य : चुनाव जीतने के बाद नेता की बाँछे खिल उठीं।

मरजीवा होना : कठोर साधना से लक्ष्य तक पहुँचने वाला होना।
वाक्य : अलवर में सात नदियों को जीवित कर श्री राजेंद्र सिंह जी मरजीवा हो गए

Maharashtra Board Class 11 Hindi व्याकरण मुहावर

मल्हार गाना : आनंद मनाना।
वाक्य : समय पर बारिश होने से किसान मल्हार गाने लगे

राई का पहाड़ बनाना : बात को बढ़ा-चढ़ाकर कहना।
ताक्य : रमेश ने बात को इस ढंग से बताया कि राई का पहाड बन गया।

लोहा मानना : श्रेष्ठता स्वीकार करना।
वाक्य : औरंगजेब भी शिवाजी के युद्ध कौशल का लोहा मानता था।

सफेद झूठ बोलना : पूरी तरह से झूठ बोलना।
वाक्य : दुष्ट प्रवृत्ति के लोग सफेद झूठ बोलने से बाज नहीं आते।

सिर खपाना : ऐसे काम में समय लगाना जिसमें कोई लाभ नहीं।
वाक्य : सुबह से शाम तक सिर खपाते रहे लेकिन पिताजी ने दी पहेली हल नहीं कर पाए।

सिर पर सेहरा बाँधना : अधिक यश प्राप्त करना।
वाक्य : काव्य गायन प्रतियोगिता में रमेश केवल सफल ही नहीं हुआ बल्कि उसके सिर पर सेहरा बँधा।

सोना उगलना : बहुत अधिक लाभ होना।
वाक्य : मेरे देश की मिट्टी ऐसी उपजाऊ है कि सोना उगलती है।

सौ वात की एक वात : असली बात, निचोड़।
वाक्य : सौ बात की एक बात कहूँ, मुझे बेटा-बेटी में भेदभाव बिलकुल पसंद नहीं।

Maharashtra Board Class 11 Hindi व्याकरण मुहावर

हाथ-पैर मारना : बहुत प्रयत्न करना।
वाक्य : इधर-उधर हाथ-पैर मारने के बाद मेरा लोन सेंक्शन हुआ।

हौसले बुलंद होना : उत्साह बने रहना।
वाक्य : शरीर कमजोर हो गया है लेकिन अभी भी राय साहब के हौसले बुलंद हैं

श्रीगणेश करना : कार्य आरंभ करना।
वाक्य : दो पैसे जमा होते ही रमेश ने अपने व्यवसाय का श्रीगणेश किया

दाँतों तले उँगली दबाना : आश्चर्यचकित होना।
वाक्य : रणभूमि में अभिमन्यु की वीरता देखकर कौरवों ने दाँतों तले उँगली दबाई

अंधे की लाठी होना : निराधार का सहारा बनाना।
वाक्य : मदर टेरेसा भारत आकर अंधे की लाठी बनकर अपना कार्य करने लगी।

आग से खेलना : मुसीबत मोल लेना।
वाक्य : आज़ादी की लड़ाई लड़ते समय आग से खेलकर कई देशवासियों ने अपना घर-परिवार दाँव पर लगा दिया था।

मुट्ठी गर्म करना : रिश्वत देना।
वाक्य : भ्रष्टाचार की जड़ें इतनी गहराई तक पहुँच गई हैं कि जब तक मुट्ठी गर्म न करो कोई काम ही नहीं करता।

इतिश्री होना : समाप्त होना।
वाक्य : 15 अगस्त 1947 को देश आज़ाद हुआ और अंग्रेज शासन की इतिश्री हुई

उड़ती चिड़िया पहचानना : तीक्ष्ण बुद्धि वाला होना।
वाक्य : बीरबल उडती चिडिया पहचान लेते थे और हर समस्या को सुलझाने में अकबर की सहायता करते है।

Maharashtra Board Class 11 Hindi व्याकरण मुहावर

हथेली पर सरसों जमाना : कठिन कार्य करना।
वाक्य : दुश्मनों की छावनी में जाकर उनके भेद जानना मतलब हथेली पर सरसों जमाना है।

कंचन बरसना : धन-दौलत से परिपूर्ण होना।
वाक्य : कभी हमारे देश में कंचन बरसता था परंतु विदेशी आक्रमण ने इसे खोखला कर दिया।

कानों कान खबर न होना : बिल्कुल पता न चलना।
वाक्य : सेठ जी ने बेटी का विवाह कर दिया लेकिन किसी को कानों कान खबर न हुई

गाल बजाना : अपनी प्रशंसा आप करना।
वाक्य : मोहन अपनी सफलता पर खूब गाल बजाता था परंतु परिणाम सामने आने पर शर्मिंदा हुआ।

घड़ों पानी पड़ना : बहुत लज्जित होना।
वाक्य : बेटे की करतूतों का भेद खुलते ही पिता पर घडों पानी पड़ गया।

चिकनी-चुपड़ी बातें करना : चापलूसी करना, मीठी-मीठी बातें बोलना।
वाक्य : अब चिकनी-चुपड़ी बातें करने से कोई लाभ नहीं, सच्चाई सब जान गए हैं।

छाती पर साँप लोटना : ईर्ष्या होना।
वाक्य : गीता के कक्षा में प्रथम आने की खबर सुनते ही मीता की छाती पर साँप लोटने लगा।

तूती बोलना : प्रभाव होना।
वाक्य : मंत्री महोदय के खास आदमी होने की वजह से उसकी तूती बोलती है।

Maharashtra Board Class 11 Hindi व्याकरण मुहावर

दो टुक जवाब देना : स्पष्ट बोलना।
वाक्य : मैंने आपसे दो टुक बात कर ली है, आगे आपकी मर्जी।

नुक्ताचीनी करना : आलोचना करना।
वाक्य : हर बात में नुक्ताचीनी करने की आदत के चलते रमेश के दोस्त कम और दुश्मन ही अधिक है।

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Balbharti Maharashtra State Board 11th Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry Important Questions and Answers.

Maharashtra State Board 11th Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 1.
How is the structural formula of a molecule represented? Give an example.
Answer:
Structural formula:
i. Structural formula of a molecule shows all the constituent atoms denoted with their respective chemical symbols and all the covalent bonds therein represented by a dash joining mutually bonded atoms.
ii. Structural formula of methane is:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 1

Question 2.
Write a note on Lewis structures with the help of an example.
Answer:
Lewis structures:
i. The electron dot structures are called as Lewis structures,
e. g. The Lewis structure of methane is shown below.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 2
ii. All the valence electrons of carbon and hydrogen are shown as dots around them. Two dots drawn between two atoms indicate one covalent bond between them. The covalent bond can be represented by a dash joining mutually bonded atoms.
iii. The dash formula represents simplified Lewis formula of the molecule.
e.g. Dash formula of methane:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 3

Question 3.
How is the condensed formula of an organic molecule written?
Answer:
The complete structural formula is further simplified by hiding some or all the covalent bonds and indicating the number of identical groups attached to an atom by a subscript. The resulting formula of a compound is known as condensed formula.
e.g.

  1. The condensed formula of ethane is written as CH3-CH3 or CH3CH3.
  2. The condensed formula of n-pentane is written as CH3CH2CH2CH2CH3 or CH3(CH2)3CH3.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 4.
What do you understand by the term bond-line formula?
Answer:
Bond-line or zig-zag formula:
i. The condensed formula is simplified into bond-line formula, which is also known as zig-zag formula.
ii. In this representation of an organic molecule, the symbols of carbon and hydrogen atoms are not written. The carbon-carbon bonds are represented by lines drawn in a zig-zag manner
iii. The terminals of the zig-zag line indicate methyl groups and the intersection of lines denote a carbon atom bonded to appropriate number of hydrogen atoms which satisfy the tetravalency of the carbon atom.
e.g. Propane is represented by bond-line or zig-zag formula:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 4
iv. If a compound contains heteroatom(s) or H-atom(s) bonded to heteroatom(s), then they are represented by their symbols.
e.g. Ethanol is represented by bond-line or zig-zag formula:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 5

Question 5.
Name the different methods used to represent three-dimensional structure of a molecule on the paper.
Answer:
Four different methods are used to represent three-dimensional structure of a molecule on the paper:

  1. Wedge formula
  2. Fischer projection formula or cross formula
  3. Newman projection formula
  4. Sawhorse or andiron or perspective formula

Question 6.
Write a short note on: Wedge formula.
Answer:
Wedge formula:
i. The three-dimensional (3-D) structure of organic molecules can be represented on plane paper by using solidMaharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 6 and dashed Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 7 wedges and normal line (-) for single bonds.
ii. In this formula, the solid wedge is used to indicate a bond projecting up from the plane of paper, towards the reader (observer), whereas the dashed wedge is used to depict a bond going backward, below the paper away from the reader.
iii. The bonds lying in plane of the paper are depicted by using a normal line (-).
iv. Wedge formula of methane molecule is shown below:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 8

Question 7.
How is Fischer projection formula of a molecule drawn? Explian by giving an example.
Answer:
Fischer projection (cross) formula:

  • In this representation, a three dimensional molecule is projected on plane of paper.
  • Fischer projection formula can be drawn by visualizing the molecule with its main carbon chain vertical.
  • Each carbon on the vertical chain is represented by a cross. By convention, the horizontal lines of the cross represent bonds projecting up from the carbon and the vertical lines represent the bonds going below the carbon.

Fischer projection formula of a molecule along with its wedge formula is represented below:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 9
[Note: Fischer projection formula is more commonly used in carbohydrate chemistry.]

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 8.
Write the Fischer projection and wedge formula for 2-chloro-propan-2-ol.
Answer:
2-Chloropropan-2-ol has formula CH3C(Cl)(OH)CH3.
Fischer projection and wedge formula for 2-chloropropan-2-ol can be given as:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 10

Question 9.
Convert the following wedge formula to Fischer projection formula:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 11
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 12

Question 10.
Explain how will you represent the Newman projection formula and Sawhorse formula of ethane molecule?
Answer:
i. Newman projection formula of ethane molecule:
a. A Newman projection views the carbon-carbon single bond directly head-on. The front carbon atom is represented by a point while the rear carbon atom is represented by a circle. The point is drawn at the centre of the circle.
b. Bonds attached to the front carbon atom are represented by three lines drawn at an angle of 120° to each other from the centre of the circle and bonds attached to the rear carbon atom are represented by three lines drawn at an angle of 120° to each other from the circumference of the circle.
c. Newman projections of ethane molecule is represented in adjacent diagram.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 13

ii. Sawhorse (or andiron or perspective) formula of ethane molecule:
a. In this representation, a C-C single bond is represented by a long slanting line. The lower end of the line represents the front carbon and the upper end represents the rear carbon.
b. The remaining three bonds at the two carbons are shown to radiate from the respective carbons. (As the central C-C bond is drawn rather elongated the bonds radiating from the front and rear carbons do not intermingle.)
c. Sawhorse formula of ethane molecule is represented in adjacent diagram.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 14

Question 11.
Explain the classification of organic compounds based on carbon skeleton.
Answer:
On the basis of their carbon skeleton, organic compounds are classified into two main groups:
i. Acyclic or aliphatic or open chain compounds:
a. Organic compounds in which carbon atoms are joined to form an open chain are called aliphatic compounds.
b. Their structure may consist of straight chains (in which carbon atoms are bonded to one or two other carbon atoms) or branched chains (in which at least one carbon atom is bonded to three or four other carbon atoms).
e.g.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 15

ii. Cyclic or closed chain or ring compounds:
a. Organic compounds in which carbon atoms are joined to form one or more closed rings with or without hetero atom are called cyclic compounds.
b. They are further divided into two types: Homocyclic and heterocyclic compounds.
1. Homocyclic or carbocyclic compounds: The cyclic organic compounds which have a ring made up of only carbon atoms are called as homocyclic or carbocyclic compounds.
They are further divided into:
i. Alicyclic compounds: These are cyclic compounds (ring of 3 or more C-atoms) exhibiting properties similar to those of aliphatic compounds.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 16
ii. Aromatic compounds: These compounds have special stability.
Aromatic compounds are further classified as benzenoid and non-benzenoid aromatics.
a. Benzenoid aromatics contain at least one benzene ring in the structure.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 17
b. Non-benzenoid aromatics contain an aromatic ring, other than benzene.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 18

2. Heterocyclic compounds: Cyclic organic compounds which contain one or more heteroatoms (such as O, N, S, etc.) in the ring are called heterocyclic compounds.
They are further divided into:
i. Heterocyclic aromatic compounds: Aromatic compounds which contain at least one heteroatom in the ring are called heterocyclic aromatic (hetero-aromatic) compounds.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 19
ii. Heterocyclic non-aromatic compounds: Alicyclic compounds, which contain at least one heteroatom in the ring are called heterocyclic non-aromatic compounds (hetero-alicyclic) compounds.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 20

Question 12.
What is a functional group? Give two examples.
Answer:
Functional group:
i. A part of an organic molecule which undergoes change as a result of a reaction is called functional group.
OR
An atom or a group of atoms in the organic molecule which determines its characteristic chemical
properties is called functional group.
e.g. a. The functional group in alcohols is -OH group.
b. The functional group in aldehydes is -CHO group.

ii. There are a large variety of functional groups in organic compounds. Hence, organic compounds can be classified based on the nature of functional group present in them.
iii. The resulting individual class of compounds is called a family and is named after the constituent functional group.
e.g. Family of alcohols, which includes organic compounds having -OH functional group.

Note: Functional groups in organic compounds:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 21
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 22
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 23

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 13.
Indicate all the functional groups present in the following compounds.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 24
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 25

Question 14.
Identify the functional group in the following compounds:
i. n-Butyl alcohol
ii. Propanone
iii. Acetylene
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 26

Question 15.
Write the name of the family of the following organic compounds:
i. CH3(CH2)3CH2Cl
ii. CH3CH2CH2NH2
iii. CH3CH2COCH3
iv. CH3CH2OCH3
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 27

Question 16.
Write a note on homologous series.
Answer:
Homologous series:

  • A series of compounds of the same family in which each member has the same type of carbon skeleton and functional group, and differs from the next member by a constant difference of one methylene group (-CH2-) in its molecular and structural formula is called as homologous series.
  • The individual members of the series are called homologues and they can be represented by a same general formula.
  • Two successive homologues differ by one – CH2 (methylene) unit (i.e., molecular weight of each successive member differs by 14 units).
  • Homologues show similar chemical properties.
  • Physical properties (like melting point, boiling point, density, solubility, etc.) of the homologues show a gradual change with increase in the molecular weight of the member.

Note: Consider the homologous series of straight chain aldehydes. The boiling point increases down the series as molecular weight increases.

Name Molecular formula Boiling point
Formaldehyde HCHO -21 °C
Acetaldehyde CH3CHO 21 °C
Propionaldehyde C2H5CHO 48 °C
Butyraldehyde C3H7CHO 75 °C
Valeraldehyde C4H9CHO 103 °C

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 17.
Alkanes constitute a homologous series of straight chain saturated hydrocarbons. Write down the structural formulae of the first five homologues of this series. Write their molecular formulae and deduce the general formula of such homologous series.
Answer:
The first five homologues are generated by adding one – CH2 – at a time, starting with the first homologue, methane (CH4).
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 28
By counting carbon and hydrogen atoms in the five homologues, we get their molecular formulae as CH4, C2H6, C3H8, C4H10 and C5H12.
Comparing these molecular formulae and assigning the number of carbon atoms as ‘n’, the following general formula is deduced: CnH2n+2.

Question 18.
Write down structural formulae of (i) the third higher and (ii) the second lower homologue of CH3CH2COOH.
Answer:
i. Structural formula of the third higher homologue is obtained by adding three – CH2 – units to the carbon chain of the given structure.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 29
ii. Structural formula of the second lower homologue is obtained by removing two – CH2 – units from the carbon chain of the given structure.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 30

Question 19.
Write the general formula of homologous series of alcohols.
Answer:
General formula of homologous series of alcohols can be represented as, CnH2n+1OH (where n = 1, 2, 3, …).

Question 20.
Write the name and molecular formulae of the first three higher homologues of propyl chloride.
Answer:
General formula: CnH2n+1Cl (where n = 1, 2, 3, …)

No. of carbon atoms Molecular formula Name
n = 3 C3H7Cl Propyl chloride
n = 4 C4H9Cl Butyl chloride
n = 5 C5H11Cl Pentyl chloride
n = 6 C6H13Cl Hexyl chloride

Question 21.
What is the molecular formula of:
i. first higher homologue of propionic acid?
ii. first lower homologue of propionic acid?
Answer:
i. First higher homologue of propionic acid:
(Addition of 1-CH3 group to CH3CH2COOH)
Butyric acid: C3H7COOH

ii. First lower homologue of propionic acid:
(1-CH3 group less from CH3CH3COOH)
Acetic acid: CH3COOH

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 22.
How are the saturated (sp3) carbon atoms in a molecule classified based on the number of other carbon atoms bonded to it? Give an example that has all the four types of carbon atoms.
Answer:
i. The saturated (sp3) carbons in a molecule are classified as primary, secondary, tertiary and quaternary in accordance with the number of other carbons bonded to it by single bonds.

  • Primary carbon atom (1°): This carbon atom is bonded to only one other carbon atom. Terminal carbon atoms are always 1° carbon atoms.
  • Secondary carbon atom (2°): This carbon atom is bonded to two other carbon atoms.
  • Tertiary carbon atom (3°): This carbon atom is bonded to three other carbon atoms.
  • Quaternary carbon atom (4°): This carbon atom is bonded to four other carbon atoms.

ii. An example molecule having all the four types of carbon atoms:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 31
Thus, in 2,2,5-trimethylhexane, there are five primary, two secondary, one tertiary and one quaternary carbon atoms.
[Note: Hydrogen atoms attached to primary’, secondary and tertiary carbon atoms are referred to as primary, secondary and tertiary H-atoms respectively.]

Question 23.
Give common name/trivial name of the following compounds.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 32
Answer:
i. Lactic acid
ii. Glycine
iii. Glycerol
iv. Chloroform

Question 24.
Give a basic idea about IUPAC nomenclature system and comment on IUPAC names of straight chain alkanes.
Answer:
i. International Union of Pure and Applied Chemistry (IUPAC) was founded (in 1919) and a systematic method of nomenclature for organic compounds was developed under its banner.
ii. This was done because of growing number of organic compounds with increasingly complicated structures and it was difficult to name them. To simplify and avoid confusions, IUPAC system is accepted and widely used all over the world today. According to this system, a unique name is given to each organic compound.

Following things are taken into consideration while naming a particular organic compound:

  • To arrive at the IUPAC name of an organic compound, its structure is considered to be made of three main parts: parent hydrocarbon, branches and functional groups.
  • The IUPAC names of a compound are obtained by modifying the name of its parent hydrocarbon further incorporating names of the branches and functional groups as prefix and suffix.

IUPAC names of straight chain alkanes:
a. The homologous series of straight chain alkanes forms the parent hydrocarbon part of the IUPAC names of aliphatic compounds.
b. The IUPAC name of a straight chain alkane is derived from the number of carbon atoms it contains.
c. IUPAC names of the first twenty alkanes are mentioned in the following table:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 33

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 25.
Match the following:

Column – I Column – II
i. C19H40 a. Undecane
ii. C12H26 b. Nonadecane
iii. C11H24 c. Dodecane
d. Nonane

Answer:
i – b,
ii – c,
iii – a

Question 26.
Explain the following with two examples:
i. straight chain alkyl groups
ii. branched chain alkyl group
Answer:
i. Straight chain alkyl group: It is obtained by removing one H-atom from the terminal carbon of an alkane molecule.
ii. It is named by replacing ‘ane’ of the alkane by ‘yl’.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 34
iii. Branched chain alkyl group: It is obtained by removing a H-atom from any one of the non-terminal carbons of an alkane or any H-atom from a branched alkane.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 35

Note: Straight chain alkyl groups
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 36
Trivial names of small branched alkyl groups
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 37

Question 27.
Write names of following groups.
i. C6H5
ii. (CH3)3C-
Answer:
i. Phenyl group
ii. tert-Butyl group

Question 28.
State the rules to assign IUPAC nomenclature of a branched chain alkane.
Answer:
i. Select the longest continuous chain of carbon atoms to be called the parent chain. All other carbon atoms not included in this chain constitute, side chains or branches or alkyl substituents. For example:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 38
Parent chain has five carbon atoms and -CH3 group is alkyl substituent.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 39
Parent chain has six carbon atoms and methyl group is the alkyl substituent.
If two chains of equal length are located, then the one with maximum number of substituents is selected as the parent chain.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 40
Parent chain hexane with one alkyl substituent is the incorrect chain.

ii. The parent chain is numbered from one end to the other to locate the position, called locant number of the alkyl substituent. The numbering is done in that direction which will result in lowest possible locant numbers.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 41
iii. Names of the alkyl substituents are added as prefix to the name of the parent alkane. Different alkyl substituents are listed in alphabetical order with each substituent name preceded by the appropriate locant number. The name of the substituent is separated from the locant number by a hyphen.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 42
The name is 4-ethyl-3-methylheptane and not 3-methyl-4-ethylheptane.
iv. When both the numberings give the same set of locants, that numbering is chosen which gives smaller locant to the substituent having alphabetical priority.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 43
The name is 3-ethyl-4-methylhexane and not 3-methyl-4-ethylhexane.

v. If two or more identical substituents are present the prefix di (for 2), tri (for 3), tetra (for 4) and so on, are used before the name of the substituent to indicate how many identical substituents are there. The locants of identical substituents are listed together, separated by commas.

There must be as many numbers in the name as the substituents. A digit and an alphabet are separated by hyphen. The prefixes di, tri, tetra, sec and tert are ignored in alphabetizing the substituent names. Substituent and parent hydrocarbon names are joined into one word.

vi. Branched alkyl group having no accepted trivial name is named with the longest continuous chain beginning at the point of attachment as the base name. Carbon atom of this group attached to parent chain is numbered as ‘1’. The name of such substituent is enclosed in bracket.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 44

Question 29.
Complete the following table.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 45
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 46
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 47

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 30.
Explain the rules for IUPAC nomenclature of unsaturated hydrocarbons (Alkenes and Alkynes).
Answer:
While writing IUPAC names of alkenes and alkynes following rules are to be followed in addition to rules for alkanes.
i. The longest continuous chain must include carbon-carbon multiple bond. Thus, the longest continuous chains in 1 and II contain four and six carbons, respectively.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 48
ii. Numbering of this chain must be done such that carbon-carbon multiple bond has the lowest possible locant number.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 49
iii. The ending ‘ane’ of alkane is replaced by ‘ene’ for an alkene and ‘yne’ for an alkyne.
iv. Position of carbon atom from which multiple bond starts is indicated by smaller locant number of two multiple bonded carbons before the ending ‘ene’ or ‘yne’. e.g.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 50
v. If the multiple bond is equidistant from both the ends of a selected chain, then carbon atoms are numbered from that end, which is nearer to first branching.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 51
vi. If the parent chain contains two double bonds or two triple bonds, then it is named as diene or diyne. In all these cases ‘a’ of ‘ane’ (alkane) is retained.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 52
vii. If the parent chain contains both double and triple bond, then carbon atoms are numbered from that end where multiple bond is nearer. Such systems are named by putting ‘en’ ending first followed by ‘yne’. The number indicating the location of multiple bond is placed before the name.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 53
viii. If there is a tie between a double bond and a triple bond, the double bond gets the lower number.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 54

Question 31.
Give IUPAC rules for naming simple monocyclic hydrocarbons.
Answer:
i. A saturated monocyclic hydrocarbon is named by attaching prefix ‘cyclo’ to the name of the corresponding open chain alkane.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 55
ii. An unsaturated monocyclic hydrocarbon is named by substituting ‘ene’, ‘yne’, etc. for ‘ane’ in the name of corresponding cycloalkane.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 56
iii. If side chains are present then the numbering of the ring carbon is started from a side chain.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 57
iv. If alkyl groups contain greater number of carbon atoms than the ring, the compound is named as derivative of alkane. Ring is treated as substituent.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 58

Question 32.
Give the IUPAC names of the following compounds:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 59
Answer:
i. 1-Ethyl-1-methyl-2-propylcyclohexane
ii. 1,2-Dimethylcyclobutane
iii. Cyclopentene
iv. 3-Cyclopropylhex-1-yne

Question 33.
Explain in short how naming of monofunctional compound is done.
Answer:
Naming of monofunctional compounds: When a molecule contains only one functional group, the longest carbon chain containing that functional group is identified as the parent chain and numbered so as to give the smallest locant number to the carbon bearing the functional group. The parent name is modified by applying appropriate suffix. Location of the functional group is indicated where necessary and when it is NOT numbered ‘1’.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 60
When the functional group cannot be used as suffix, and can be only the prefix, the molecule is named as parent alkane carrying the functional group as substituent at specified carbon.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 61

Question 34.
Complete the following.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 62
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 63

Question 35.
Give examples of functional groups which can appear only as prefix?
Answer:
Functional groups which can appear only as prefix are as follows:
i. Nitro group (-NO2)
ii. Halides (-X): Represented by prefix “halo” (like fluoro, chloro, bromo, iodo).
iii. Alkoxy group (-OR): Groups like methoxy (-OCH3), ethoxy (-OC2H5), etc.

Note: Functional groups appearing as prefix and suffix

Functional Group Prefix Suffix
-COOH Carboxy – oic acid
-COOR alkoxycarbonyl – oate
-COCl Chlorocarbonyl – oyl chloride
-CONH2 Carbamoyl – amide
-CN Cyano – nitrile
-CHO Formyl – al
-CO- Oxo – one
-OH Hydroxy – ol
-NH2 Amino – amine

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 36.
Write a note on principal functional group.
Answer:
i. The organic compounds possessing two or more functional groups (same or different) in their molecules are called polyfunctional compounds.
ii. When there are two or more different functional groups, one of them is selected as the principal functional group and the others are considered as substituents.
iii. The principal functional group is used as suffix of the IUPAC name while the other substituents are written with appropriate prefixes. The principal functional group is decided on the basis of the following order of priority:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 64

Question 37.
Explain the rules for naming mono or polyfunctional compounds.
Answer:

  • Identification of parent chain: The longest carbon chain containing the single or the principal functional group is identified as parent chain.
    e.g. Ethers are named as alkoxyalkane. While naming it, the larger alkyl group is chosen as parent chain.
  • Numbering of parent chain: It is done so as to give the lowest possible locant numbers to the carbon atom of this functional group.
  • Suffix: The name of the parent hydrocarbon is modified adequately with appropriate suffix in accordance with the single/principal functional group.
  • Names of the other functional groups (if any) are attached to this modified name as prefixes. The locant numbers of all the functional groups are indicated before the corresponding suffix/prefix.

[Note: The carbon atom in -COOR, -COCl, -CONH2, -CN and -CHO is C – 1 by rule and therefore, is not mentioned in the IUPAC name.]

Question 38.
Write IUPAC names for the following structures:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 65
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 66
Here, the principal functional group, ketone is located at the C-3 on the five carbon chain. The -OH group, the hydroxyl substituent is at C-2. Therefore, the IUPAC name is 2-hydroxypentan-3-one.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 67
Here, the principal functional group is carboxylic acid. The amino substituent is located at C-3 on four carbon chain. Therefore, the IUPAC name 3-aminobutanoic acid.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 68
Here, two same functional groups are present at C-1 and C-2 position. They are indicated by using the term ‘di’ before the class suffix. Therefore, the IUPAC name is propane-1,2-diol.
iv. CH2 = CH – CH = CH2
Here, the parent chain contains two double bonds at C-1 and C-3, hence it is named as diene. Therefore, the IUPAC name is buta-1,3-diene.

Question 39.
Give IUPAC rules for naming substituted benzene.
Answer:
i. Monosubstituted benzene : The IUPAC name of a monosubstituted benzene is obtained by placing the name of substituent as prefix to the parent skeleton which is benzene.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 69

ii. Some monosubstituted benzenes have trivial names which may show no resemblance with the name of the attached substituent group. For example, methylbenzene is known as toluene, aminobenzene as aniline, hydroxybenzene as phenol and so on. The common names written in the bracket are also used universally and accepted by IUPAC.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 70

iii. If the alkyl substituent is larger than benzene ring (7 or more carbon atoms) the compound is named as phenyl-substituted alkane.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 71

iv. Benzene ring can as well be considered as substituent when it is attached to an alkane with a functional group.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 72

v. Disubstituted benzene derivatives:
Common names of the three possible isomers of disubstitued benzene derivatives are given using one of the prefixes ortho (o-), meta (m-) or para (p-).
IUPAC system, however, uses numbering instead of prefixes, o-, m-, or p-.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 73

vi. If two substituents are different, then they enter in alphabetical order.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 74

vii. If one of the two groups gives special name to the molecule then the compound is named as derivative of the special compound.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 75

viii. Trisubstituted benzene derivatives : If more than two substituents are attached to benzene ring, numbers are used to indicate their relative positions following the alphabetical order and lowest locant rule. In some cases, common name of benzene derivatives is taken as parent compound.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 76

Question 40.
Write the structural formula of following derivatives of benzene.
i. 2,4,6-Trinitrotoluene
ii. 1-Chloro-2,4-dinitrobenzene
iii. 4-Broniobenzaldehyde
iv. 1-Iodo-3-phenylpentane
v. 2-Hydroxybenzaldehyde
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 77

Question 41.
Write the IUPAC names of the following compounds.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 78
Answer:
i. 5-Phenylpent-1-ene
ii. 2-Hydroxybenzoic acid

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 42.
Define the terms:
i. Isomerism
ii. Isomers
Answer:
i. Isomerism: The phenomenon of existence of two or more compounds possessing the same molecular formula is known as isomerism.

ii. Isomers: Two or more compounds having the same molecular formula are called as isomers of each other. [Note: The isomers are different compounds having same molecular formula and therefore they exhibit different physical and chemical properties.]

Question 43.
Define: Structural isomerism
Answer:
Structural isomerism: When two or more compounds have same molecular formula but different structural formulae, they are said to be structural isomers of each other and the phenomenon is known as structural isomerism.

Question 44.
Define: Stereoisomerism
Answer:
When different compounds have the same structural formula but different relative arrangement of groups/atoms in space, that is, different spatial arrangement of groups/atoms, it is called as stereoisomerism.

Question 45.
Give different types of structural isomerism that organic compounds can exhibit.
Answer:
Different types of structural isomerism that organic compounds may exhibit are as follows:

  • Chain isomerism
  • Position isomerism
  • Functional group isomerism
  • Metamerism
  • Tautomerism

Question 46.
Explain chain isomerism in alkanes with two suitable examples.
Answer:
Chain isomerism: When two or more compounds have the same molecular formula but different parent chain or different carbon skeletons, it is referred to as chain isomerism and such isomers are known as chain isomers.
e.g.
i. Butane (C4H10) exists in two isomeric forms:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 79
Here, n-butane contains longest chain of four carbon atoms whereas isobutane contains longest chain of three carbon atoms. Such isomers having different carbon skeletons are called as chain isomers.
[Note: Methylpropane has no other branched isomers, hence locant (2) can be dropped.]

ii. Pentene (C5H12) exists in three isomeric forms:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 80
[Note: The numbers of chain isomers increase with the increase in the number of carbon atoms in the molecule.]

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 47.
Write a note on position isomerism.
Answer:
i. The phenomenon in which diffèrent compounds having the same functional group at different positions on the parent chain is known as position isomerism.
ii. e.g. But-1-ene and but-2-ene are position isomers of each other as they have the same molecular formula (C4H8) and the sanie carbon skeleton hut the double bonds are located at different positions.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 81

Question 48.
Define: Functional group isomerism
Answer:
Different compounds having the same molecular formula but different functional groups are called as futictional group isomers and the phenomenon is called as junctional group isomerism.
e.g. CH3 – O – CH3 (Dimethyl ether) and C2H5 – OH (ethyl alcohol) have same molecular formula (C2H6O) but former has ether (-O-) functional group and the latter has alcoholic (-OH) functional group.

Question 49.
Explain: Metamerism
Answer:
i. Metamerism may be defined as a type of isomerism in which different compounds have same molecular formula and the same functional group but have unequal distribution of carbon atoms on either side of the functional group. Such isomers are known as metamers.

ii. e.g. Ether with molecular formula C4H10O has three metamers. They have same functional group as ether but have different distribution of carbon atoms attached to etheral oxygen. These metamers are:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 82

Question 50.
Explain: Tautomerism
Answer:
When same compound exists as mixture of two or more structurally distinct molecules which are in rapid equilibrium with each other, then the phenomenon is referred to as tautomerism. Such interconverting isomers are called tautomers.
i. In nearly all the cases, it is the proton which shifts from one atom to another atom in the molecule to form its tautomer.
ii. Keto-enol tautomerism is very common form of tautomerism.
iii. Here, a hydrogen atom shifts reversibly from the a-carbon of the keto form to oxygen atom of the enol. This type of isomerism is known as keto-enol tautomerism.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 83

Question 51.
Explain the terms substrate, reagent and byproduct in an organic reaction.
Answer:

  • Organic molecules primarily contain various types of covalent bonds between the constituent atoms. During an organic reaction, molecules of the reactant undergo change in their structure. A covalent bond at a carbon atom in the reactant is broken and a new covalent bond is formed at it, giving rise to the product.
  • The reactant that provides carbon to the new bond is called substrate. In other words, substrate is a chemical species which reacts with reagent to give corresponding products.
  • The other reactant which brings about this change is called reagent.
  • Apart from the product of interest, some other products are also formed in an organic reaction. These are called byproducts.

e.g. In following reaction, methane is the substrate and chlorine is the reagent. The product of interest is methyl chloride and the byproduct is HCl.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 84

Question 52.
Explain: Organic reactions are often a multi-step process.
Answer:

  • Organic molecules contain covalent bonds, which are made of valence electrons of the constituent atoms.
  • During an organic reaction, molecules of the reactant undergo change in their structure due to redistribution of valence electrons of constituent atoms.
  • This results in the bond breaking or bond forming processes as organic reaction proceeds. However, these processes are usually not instantaneous.
  • As a result of this, the overall organic reaction occurs by the formation of one or more unstable species called intermediates.

Thus, organic reactions are often a multi-step process.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 53.
What do you mean by reaction mechanism? Give importance of reaction mechanism.
Answer:
i. Mechanism of an organic reaction is the complete step by step description of exactly which bonds break and which bonds form, in what manner and in what order to give the observed products.

ii. In general, reaction mechanism is a sequential account of:

  • the electron movement taking place during each step
  • the bond cleavage and/or bond formation
  • accompanying changes in energy and shapes of various species and
  • rate of the overall reaction.

The individual steps, constitute the reaction mechanism.

iii. Importance of reaction mechanism:
The knowledge of mechanism of a reaction is useful for understanding the reactivity of the concerned organic compounds and, in turn, helpful for planning synthetic strategies.

Question 54.
What are the different ways in which a covalent bond fission can takes place?
Answer:
The covalent bond fission/cleavage takes place in two ways:

  1. Homolytic fission
  2. Heterolytic fission

Question 55.
Explain homolytic cleavage of a bond with suitable example.
Answer:
Homolytic cleavage:
i. A covalent bond consists of two electrons (i.e., a bond pair of electrons) shared between the two bonded atoms.
ii. In homolytic cleavage of a covalent bond, one of the two electrons go to one of the bonded atoms and the other is bound to the other atom.
iii. This type of cleavage gives rise to two neutral species carrying one unpaired electron each. Such a species with single unpaired electron is called as free radical.
iv. The free radicals are short lived (transitory) and unstable. Therefore, they are very reactive, having tendency to seek an electron for pairing.
v. Homolytic cleavage can be represented as follows:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 85
where movement of a single electron is represented by a half-headed curved arrow or fish hook,
vi. Thus, the symmetrical breaking of a covalent bond between two atoms such that each atom retains one electron of the shared pair forming free radicals is known as homolytic cleavage (homolysis).

Question 56.
What conditions favour homolytic cleavage?
Answer:
Homolytic cleavage is favoured in the presence of UV radiation or in presence of catalyst such as peroxides (H2O2) or at high temperatures.

Question 57.
Write a short note on free radical.
Answer:
Free radical:
i. A species with unpaired electron is called free radical.
OR
An uncharged species which is electrically neutral and which contains a single electron is called free radical.
ii. A free radical is highly reactive, unstable and therefore has a transitory existence (short-lived).
iii. Free radicals are formed as reaction intermediate which subsequently react with another radical/molecule to restore stable bonding pair.
iv. In a carbon free radical, the carbon atom having unpaired electron is sp hybridized and has planar trigonal geometry.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 86
v. The alkyl free radicals are classified as primary, secondary or tertiary depending upon the number of carbon atoms attached to the C-atom carrying the unpaired electron.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 87
vi. Stability of alkyl free radicals decreases in the order 3° > 2° > 1° > methyl free radical.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 58.
Explain heterolytic cleavage with suitable example.
Answer:
Heterolytic cleavage:
i. In hetcrolytic cleavage of a covalent bond, both shared electrons go to one of the two bonded atoms.
ii. This type of cleavage gives rise to two charged species, one with negative charge (anion) and the other with positive charge (cation).
iii. The negatively charged species has the more electronegative atom which has taken away the shared pair of electrons with it.
iv. Heterolytic cleavage can be represented as follows:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 88
Where B is more electronegative than A and the movement of an electron pair is represented by a curved arrow.
v. Thus, the unsymmetrical breaking of a covalent bond between two atoms in such a way that the more electronegative atom acquires both the electrons of the shared pair. thereby fòrming charged ions is known as heterolytic fission or heterolysis.

Question 59.
What is carbocation? Explain with the help of an example and comment on the stability of carbocation.
Answer:
Carbocation:
i. A carbon atom having sextet of electrons and a positive charge is called a carbocation.
ii. They are unstable and highly reactive species formed as intermediates in many organic reactions.
iii. In a carbocation, the central carbon atom is sp2 hybridized and has trigonal planar geometry.
e. g. In a methyl carbocation C If, the positively charged carbon atom is covalently bonded to three hydrogen atoms. It is planar with H-C-H bond angle of 120°.
The unhybridized pz orbital is vacant and lies perpendicular to the plane containing the three sigma C-H bonds.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 89
iv. Carbocation are classified as primary (1°), secondary (2°) and tertiary (3°).
v. The stability of carbocations decreases in the order:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 90

Question 60.
Write a short note on carbanion.
Answer:
Carbanion:
i. Carbanion is a species with a negatively charged carbon atom having complete octet (eight electrons) in its valence shell.
ii. It is formed due to heterolytic bond fission when carbon atom is bonded to the more electropositive atom.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 91
(Where Z is more electropositive than C)
iii. Carbanions are unstable and highly reactive species formed as intermediates in many organic reactions.

Question 61.
Give the types of reagents used to carry out polar organic reactions.
Answer:
The polar organic reactions are brought about by two types of reagents.
Depending upon the ability to accept or donate electrons from or to the substrate, reagents are classified as

  1. Electrophiles (E+)
  2. Nucleophiles (Nu:)

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 62.
Explain the term electrophile. Give examples.
Answer:
Electrophiles:
i. The species which accept electron pairs from the substrate during the reaction are called electrophiles.
ii. The electrophiles are electron seeking (or electron loving) species because they themselves are electron deficient.
iii. e.g. a. Positively charged/cationic electrophiles:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 92
b. Neutral species with vacant orbitals or incomplete octet of electrons in the outermost orbit: AlCl3, BF3, FeCl3, SO2, BeCl2, ZnCl2, PCl5, etc.
iv. A polyatomic electrophile has an electron deficient atom in it called the electrophilic centre.
e.g. The electrophilic centre of the electrophile AlCl3 is AlCl3 which has only 6 valence electrons.

Question 63.
Explain the term nucleophile. Give examples.
Answer:
Nucleophiles:
i. The species which donate (give away) electron pairs to the substrate during the reaction are called nucleophiles.
ii. Since, nucleophiles are electron rich species, they donate a pair of electrons to acceptor atoms and thus, they are nucleus seeking (or nucleus loving) species.
iii. e.g. a. Negatively charged nucleophiles: OH, CN, Cl, Br, etc.
b. Neutral species containing at least one lone pair of electrons:
H2O, NH3, H2S, R – OH, R – NH2, R – OR, etc.
iv. A polyatomic nucleophile has an electron rich atom in it called the nucleophilic centre.
e.g. The nucleophilic centre of the nucleophile H2O is ‘O’ which has two lone pairs of electrons.

Question 64.
Identify the nucleophile and electrophile from NH3 and \(\stackrel{+}{\mathrm{C}} \mathrm{H}_{3}\). Also indicate the nucleophilic and electrophilic centres in them. Justify.
Answer:
The structural formulae of two reagents showing all the valence electrons are:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 93
Thus, NH3 contains N with a lone pair of electrons which can be given away to another species. Therefore, NH3 is a nucleophile and ‘N’ in it is the nucleophilic centre.
The \(\stackrel{+}{\mathrm{C}} \mathrm{H}_{3}\) is a positively charged electron deficient species having a vacant orbital on the carbon. It is an electrophile and the ‘C’ in it is the electrophilic centre.

Question 65.
What is the difference between nucleophilic reaction and electrophilic reaction. Give one example.
Answer:
In nucleophilic reaction nucleophile attacks the electrophilic centre in the substrate and brings about a nucleophilic reaction whereas, in electrophilic reaction an electrophile attacks a nucleophilic centre in the substrate and brings about an electrophilic reaction.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 94
Here, the nucleophilic centre N: in the nucleophile NH3 attacks the electrophilic centre ‘B’ in the electrophile BF3 to form the product.
[Note: Given reaction is not an organic reaction.]

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 66.
How electrophilic or nucleophilic centre is generated in a neutral substrate?
Answer:

  • The displacement of valence electrons resulting in polarization of an organic molecule is called electronic effect.
  • Polarization can be either due to the presence of an atom or substituent group, or due to the influence of certain atornattacking reagent or due to the certain structural feature present in the molecule.
  • Such polarization results in the formation of electrophilic or nucleophilic centre in the neutral organic molecule.

Question 67.
Explain the difference between permanent electronic effect and temporary electronic effect.
Answer:
i. Permanent electronic effect:
The electronic effect that occurs in a substrate in the ground state is a permanent effect.
e.g. Inductive effect and resonance effect are two examples of permanent electronic effect.

ii. Temporary electronic effect:
The electronic effect that occurs in a substrate due to approach of the attacking reagent is a temporary effect. This type of electronic effect is called as electromeric effect or polarizability effect.

Question 68.
Define: Inductive effect
Answer:
Inductive effect: When an organic molecule has a polar covalent bond in its structure, polarity is induced in adjacent carbon-carbon single bonds too. This effect is called as inductive effect.

Question 69.
Describe inductive effect in detail.
Answer:
Inductive effect:
i. When an organic molecule has a polar covalent bond in its structure, polarity is induced in adjacent carbon- carbon single bonds too. This effect is called as inductive effect.

ii. For example, in chloroethane molecule, the covalent bond between ‘C’ and ‘Cl’ is a polar covalent bond whereas C-2 and C-1 bond (C-C bond) is expected to be nonpolar covalent bond. But, this bond acquires some polarity as chlorine is more electronegative than carbon. Chlorine pulls the bonding pair of electrons towards itself. Thus, the chlorine atom acquires a fractional negative charge, while the C-1 carbon atom acquires a fractional positive charge. As C-1 is further bonded to C-2, the positive polarity of C-1 pulls the shared pair of electrons of the C-2 – C-l bond more towards itself. As a result, a smaller positive charge is developed on C-2. Thus, the electron density gets displaced towards the chlorine atom not only along the [C-1 – Cl] bond, but also along the [C-2 – C-1] bond due to the inductive effect of Cl. This is represented as follows:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 95

iii. The arrow head shown in the centre of the bond represents inductive effect. The direction of the arrow head indicates the direction of the permanent electron displacement along the sigma bond in the ground state.
iv. The inductive effect of an influencing group is transmitted along a chain of C-C bonds. However, this effect decreases rapidly with the increase in the number of intervening C-C single bonds and it becomes negligible beyond three C-C bonds.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 96

v. The direction of the inductive effect of a bonded group depends upon whether electron density of the bond is withdrawn from the bonded carbon or donated by the bonded carbon. On the basis of this ability, the groups/substituents are classified as either electron withdrawing (accepting) or electron donating (releasing) groups with respect to hydrogen.
e.g. In chloroethane, Cl withdraws electron density from the carbon chain and is electron withdrawing. Therefore, chlorine is said to exert an electron withdrawing inductive effect or negative inductive effect (-I effect) on the carbon chain.

vi. a. Substituents or groups that shows -I effect: -Cl, -NO2, -CN, -COOH, -COOR, -OAr, etc.
b. Substituents or groups that shows +I effect: Alkyl groups such as -CH3, -CH2CH3, etc.

Question 70.
Consider the following molecules and answer the questions:
CH3 – CH2 – CH2 – Cl, CH3 – CH2 – CH2 – Br, CH3 – CH2 – CH2 – I.
i. What type of inductive effect is expected to operate in these molecules?
ii. Identify the molecules from these three, having the strongest and the weakest inductive effect.
Answer:
i. The groups responsible for inductive effect in these molecules are -Cl, -Br and -I, respectively. All these are halogen atoms which are more electronegative than carbon. Therefore, all of them exert -I effect, that is, electron withdrawing inductive effect.
ii. The -I effect of halogens is due to their electronegativity. A decreasing order of electronegativity in these halogens follows Cl > Br > I. Therefore, the strongest -I effect is expected in CH3 – CH2 – CH2 – Cl, while the weakest -I effect is expected for CH3 – CH2 – CH2 – I.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 71.
Which of the CH3 – CHCl2 and CH3CH2Cl is expected to have stronger -I effect?
Answer:
The group exerting -I effect is -Cl. In CH3CH2Cl, there is only one -Cl atom while in CH3 – CHCl2 there are two -Cl atoms. Therefore, CH3 – CHCl2 is expected to have strong -I effect.

Question 72.
Give an account of expected and observed values of carbon-carbon bond lengths in benzene.
Answer:

  • In cyclic structure of benzene, three alternating C – C single bonds and C=C double bonds are present.
  • Expected values of bond length of the C – C bond and C = C are 154 pm and 133 pm respectively.
  • Experimental measurements show that benzene has a regular hexagonal shape and all the six carbon-carbon bonds have the same bond length of 138 pm, which is intermediate between C – C single bond and C=C double bond.
  • This means that all the six carbon-carbon bonds in benzene are equivalent.

Note: Structure of benzene
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 97

Question 73.
What do you understand by the term conjugated system of π bonds?
Answer:
When Lewis structure of a compound has two or more multiple bonds alternating with single bonds, it is called a conjugated system of π bonds.
e.g. Benzene molecule
[Note: In such a system or in species having an atom carrying p orbital attached to a multiple bond, resonance theory is applicable.]

Question 74.
Identify the species that contains a conjugated system of π bonds. Explain your answer,
i. CH2 = CH – CH2 – CH = CH2
ii. CH2 = CH – CH = CH – CH3
Answer:
i. It does not contain conjugated system of π bonds, as the two C = C double bonds are separated by two C – C single bonds.
ii. It contains a conjugated system of π bonds, as the two C = C double bonds are separated by only one C – C single bond.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 75.
Explain in detail the important points of resonance theory.
Answer:
Resonance theory:
i. The π electrons in conjugated system of π bonds are not localized to a particular π bond.
ii. For a compound having a conjugated system of π bonds (or similar other systems), two or more Lewis structures are written by showing movement of π electrons (that is, delocalization of π electrons) using curved arrows.
The Lewis structures so generated are linked by double headed arrow and are called resonance structures or contributing structures or cononical structures of the species. Thus, two resonance structures can be drawn for benzene by delocalizing or shifting the π electrons :
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 98
iii. The positions of the carbon atoms in the conjugated system of π bonds remain unchanged, but the positions of π electrons are different in different resonance structures.
e.g. In the resonance structure I of benzene there is a single bond between C1 and C2 while in the resonance structure II there is a double bond between C1 and C2.

iv. Any resonance structure is hypothetical and does not by itself represent any real molecule and can explain all the properties of the compound. The real molecule has, however, character of all the resonance structures those can be written. The real or actual molecule is said to be the resonance hybrid of all the resonance structures.
e.g. An actual benezene molecule is the resonance hybrid of structures I and II and exhibit character of both these structures. Its approximate representation can be shown as a dotted.circle inscribed in a regular hexagon. Thus, each carbon-carbon bond in benzene has single as well as double bond character and the ring has a regular hexagonal shape.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 99
v. Hypothetical energy of an individual resonance structure can be calculated using bond energy values. The energy of actual molecule is, however, lower than that of any one of the resonance structures. In other words, resonance hybrid is more stable than any of the resonance structures. The difference in the actual energy and the lowest calculated energy of a resonance structure is called resonance stabilization energy or just resonance energy. Thus, resonance leads to stabilization of the actual molecule.

Question 76.
State the rules to be followed for writing resonating structures.
Answer:
Rules to be followed for writing resonating structures:

  1. Resonance structures can be written only when all the atoms involved in the n conjugated system lie in the same place.
  2. All the resonance structures must have the same number of unpaired electrons.
  3. Resonance structures contribute to the resonance hybrid in accordance to their energy or stability. More stable (having low energy) resonance structures contribute largely and thus are important.

Question 77.
What are the important points considered while selecting the most stable resonance structure if there are several contributing/resonance structures for a compound?
Answer:
When several resonance structures are compared, then the resonance structure is considered to be more stable if it has:

  • more number of covalent bonds,
  • more number of atoms with complete octet or duplet,
  • less separation, if any, of opposite charges,
  • negative charge, if any, on more electronegative atom and positive charge, if any, on more electropositive atom and
  • more dispersal of charge.

[Note: When all the resonance structures of a species are equivalent to each other, the species is highly resonance stabilized. For example, R – COO-, \(\mathrm{CO}_{3}^{2-}\)]

Question 78.
Write resonance structures of H – COO and comment on their relative stability.
Answer:
i. First the detailed bond structure of H – COO showing all the valence electron is drawn and then other resonance structures are generated using curved arrow to show movement of π-electrons.
ii. Two resonance structures are written for H – COO.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 100
Both the resonance structures I and II are equivalent to each other, and therefore, are equally stable.

Question 79.
Identify the species which has resonance stabilization. Justify your answer.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 101
Answer:
i. The bond structure shows that there is no π bond. Therefore, no resonance and no resonance stabilization.
ii.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 102
N = O double b5itd is attached to ‘O’ which carries lone pair of electrons in a p orbital.
Therefore, resonance structures can be written as shown and species is resonance stabilized.
iii.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 103
The Lewis structure shows two C = C double bonds alternating with a C – C single bond.
Therefore, resonance structures can be written as shown and the species is resonance stabilized.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 80.
Write three resonance structures for CH3 – CH = CH – CHO. Indicate their relative stabilities and explain.
Answer:
Three resonance structures are:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 104
Stability order: I > II > III
I: Contains more number of covalent bonds, each carbon atom and oxygen atom has complete octet, and involves no separation of opposite charges. Therefore, the most stable resonance structure.

II: Contains one covalent bond less than in I, one carbon (C+) has only 6 valence electrons, involves separation of opposite charges; the resonance structure II has -ve charge on more electronegative ‘O’ and +ve charge on more electropositive ‘C’. It has intermediate stability.

III: Contains one covalent bond less than in I, oxygen has only 6 valence electrons, involves separation of opposite charge, has -ve charge on the more electropositive ‘C’ and +ve charge on more electronegative ‘O’. All these factors are unfavourable for stability. Therefore, it is the least stable.

Question 81.
Define: Resonance effect.
Answer:
The polarity produced in the molecule by the interaction between conjugated n bonds (or that between n bond and p orbital on attached atom) is called the resonance effect or mesomeric effect.

Question 82.
Explain in short:
i. Positive resonance (+R) effect
ii. Negative resonance (-R) effect
Answer:
i. Positive resonance (+R) effect or electron donating/releasing resonance effect:
a. If the substituent group has a lone pair of electrons to donate to the attached K bond or conjugated system of π bonds, the effect is called +R effect.
b. The +R effect increases electron density at certain positions in a molecule.
e.g. +R effect in aniline increases the electron density at ortho and para positions.
c. Halogen, -OH, -OR, -O, -NH2, -NHR, -NR2, – NHCOR, -OCOR, etc. are the groups which show +R effect.

ii. Negative resonance (-R) effect:
a. If the substituent group has a tendency to withdraw electrons from the attached π bond or conjugated system of π bonds towards itself the effect is called -R effect.
b. The -R effect results in developing a positive polarity at certain positions in a molecule.
e.g. -R effect in nitrobenzene develops positive polarity at ortho and para positions.
c. -COOH, -CHO, – CO -, -CN, -NO2, -COOR, etc., are the groups which represent -R effect.

Question 83.
Draw resonance structures showing +R effect in aniline.
Answer:
The following resonance structures can be drawn for aniline:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 105

Question 84.
Draw resonance structures showing -R effect in nitrobenzene.
Answer:
The following resonance structures can be drawn for nitrobenzene:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 106

Question 85.
Write a note on electromeric effect.
Answer:
Electromeric effect:
i. This is a temporary electronic effect exhibited by multiple-bonded groups in the excited state in the presence of a reagent.
ii. When a reagent approaches a multiple bond, the electron pair gets completely shifted to one of the multiply, bonded atoms, giving a charge separated structure.
iii.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 107
This effect is temporary and disappears when the reagent is removed from the reacting system.

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Question 86.
Explain the term hyperconjugation in short.
Answer:
Hyperconjugation:
i. Hyperconjugation is a permanent electronic effect.
ii. It explains the stability of a carbocation, free radical or alkenes.
iii. It involves delocalization of sigma electrons of a C – H bond of an alkyl group directly attached to a carbon atom, which is part of an unsaturated system or has an empty p orbital or a p orbital with an unpaired electron.
iv. Following species are stabilized by resonance:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 108

Question 87.
Explain hyperconjugation in ethyl carbocation.
Answer:
i. In ethyl cation \(\mathrm{CH}_{3} \stackrel{+}{\mathrm{CH}}_{2}\), positively charged carbon atom is attached to a methyl group.
ii. The positively charged carbon atom has six electrons; it is sp2 hybridized and has an empty p orbital available for hyperconjugation.
iii. One of the C – H bonds of the methyl group can align in plane of the empty p orbital. The sigma electrons constituting the C – H bond can be delocalized into this empty p orbital.
iv. Therefore, hyperconjugation arises due to the partial overlap of a C-H bond with the empty p orbital of an adjacent positively charged carbon atom. Thus, hyperconjugation is a σ-π conjugation.
v. Hyperconjugation structures in ethyl carbocation can be represented as:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 109
vi. In the contributing structures, there is no covalent bond shown between the carbon and one of the α-hydrogens. Hence, hyperconjugation is also called as ‘no bond resonance’.
vii. This type of overlap stabilizes the cation, because the electron density from the adjacent a bond helps in dispersing the positive charge.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 110

Question 88.
Explain the stability of tert-butyl cation, isopropyl cation, ethyl cation and methyl cation on the basis of hyperconjugation.
Answer:
i. Greater the number of alkyl groups attached to a positively charged carbon atom, more is the number of α-hydrogens, more is the hyperconjugation structures and more is the stability of the cation.

ii. Thus, the relative stability of the cations decreases in the order:
3° carbocation > 2° carbocation > 1° carbocation > Methyl cation
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 111

Question 89.
Explain hyperconjugation in propene.
Answer:
i. In propene, CH3 – CH = CH2, one of the sp2 hybridized carbon atom of the double bond is attached to sp3 hybridized carbon atom of methyl group.
ii. One of the C-H bonds of the methyl group can align in plane of the p orbital of sp2 hybridized C-atom and the electrons constituting the C-H bond in plane with this p orbital can then be delocalized into the p orbital.
iii. Therefore, hyperconjugation arises due to the partial overlap of a C-H bond with the p orbital of an adjacent sp2 hybridized carbon atom.
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 112
iv. Hyperconjugation (no bond resonance) structures for propene can be represented as:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 113

Question 90.
Write the Lewis dot structures of but-1-ene and but-2-ene? Also, write the bond line formula of both the compounds.
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 114

Question 91.
Due to contamination by viruses, the hospital authorities had asked Ranjan, the ward boy, to keep cleaning the hospital lobby using some antiseptic. Ranjan would wipe the floor by adding Dettol to water and would always keep the premises clean. One of the active ingredients in Dettol is chloroxylenol (4-chloro-3,5-dimethylphenol). Ranjan was also actively associated with an NGO, which was involved in Swachh Bharat campaign. Based on this passage, answer the following questions.
i. Which functional groups are present in chloroxylenol?
ii. Write the bond line and molecular formula of chloroxylenol.
iii. Identify one group each in chloroxylenol which show +I and -I effect, respectively.
Answer:
i. chloroxylenol is
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 115
Functional groups present in chloroxylenol are chloro (-Cl) and phenolic -OH group.

ii. The bond line formula of chloroxylenol can be shown as,
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 116
Its molecular formula is C8H9OCl or C8H8ClOH

iii. Group which shows +I effect = -CH3; group which shows -I effect = -Cl

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

Multiple Choice Questions

1. Which of the following method can be used to represent 3-D structure of organic molecules?
i. Wedge formula
ii. Fischer projection formula
iii. Newman projection formula
iv. Sawhorse formula
(A) Only ii and iii.
(B) Only i and iii.
(C) Only iii and iv.
(D) All of the above
Answer:
(D) All of the above

2. Which one is the INCORRECT statement?
(A) Open chain compounds are called aliphatic compounds.
(B) Unsaturated compounds contain multiple bonds in them.
(C) Saturated hydrocarbons are called alkenes.
(D) Aromatic compounds possess a characteristic aroma.
Answer:
(C) Saturated hydrocarbons are called alkenes.

3. Choose the INCORRECT statement from the following.
(A) Cyclohexane is an alicyclic compound.
(B) Pyridine is a heterocyclic compound.
(C) Piperidine is an aromatic compound.
(D) Tropone is a non-benzenoid compound.
Answer:
(C) Piperidine is an aromatic compound.

4. Which of the following is NOT a cyclic compound?
(A) Anthracene
(B) Pyrrole
(C) Phenol
(D) Neopentane
Answer:
(D) Neopentane

5. Which of the following is a cycloalkane?
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 117
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 118

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

6. Which one of the following could be a cyclic alkane?
(A) C5H5
(B) C3H6
(C) C4H6
(D) C2H6
Answer:
(B) C3H6

7. Which of the following is a heterocyclic compound?
(A) Naphthalene
(B) Thiophene
(C) Phenol
(D) Aniline
Answer:
(B) Thiophene

8. Which of the following is NOT aromatic?
(A) Benzene
(B) Toluene
(C) Cyclopentane
(D) Phenol
Answer:
(C) Cyclopentane

9. Cyclohexene is …………….
(A) aromatic
(B) alicyclic
(C) benzenoid
(D) aliphatic
Answer:
(B) alicyclic

10. An organic compound ‘X’ (molecular formula C6H7O2N) has six carbons in a ring system, two double bonds and also a nitro group as a substituent, ‘X’ is …………..
(A) homocyclic and aromatic
(B) homocyclic but not aromatic
(C) heterocyclic
(D) aromatic but not homocyclic
Answer:
(B) homocyclic but not aromatic

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

11. Which of the following structure represents an aldehyde?
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 119
Answer:
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 120

12. A member of a homologous series differs from immediate above or below member by …………… group.
(A) – CH3
(B) – CH2
(C) – CH2CH3
(D) – C6H5
Answer:
(B) – CH2

13. Which of the following is NOT a branched chain alkyl group?
(A) Isobutyl group
(B) n-Butyl group
(C) sec-Butyl group
(D) tert-Butyl group
Answer:
(B) n-Butyl group

14. In IUPAC nomenclature, the number which indicates the position of the substituent is called ………….
(A) locant
(B) delocant
(C) prefix
(D) suffix
Answer:
(A) locant

15. The IUPAC name of the following compound is …………..
(A) 1,1 -dimethyl-2-ethylcyclohexane
(B) 2-ethyl-1,1 -dimethylcyclohexane
(C) 1 -ethyl-2,2-dimethylcyclohexane
(D) 2,2-dimethyl-1-ethylcyclohexane
Answer:
(B) 2-ethyl-1,1 -dimethylcyclohexane

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

16. Which is the CORRECT name of ………….
Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry 121
(A) Propyl ethanoate
(B) Ethyl propanoate
(C) Methyl butanoate
(D) Butyl methanoate
Answer:
(C) Methyl butanoate

17. Homolytic fission is NOT favourable in presence of …………..
(A) UV light
(B) catalyst like peroxide
(C) polar solvent
(D) high temperature
Answer:
(C) polar solvent

18. The total number of electrons in the carbon atom of methyl free radical is ………….
(A) six
(B) seven
(C) eight
(D) nine
Answer:
(B) seven

19. The most unstable carbocation amongst the following is ……………
(A) (CH3)3C+
(B) (CH3)2CH+
(C) CH3 – CH2+
(D) CH3+
Answer:
(D) CH3+

20. Which of the following represents a pair of electrophiles?
(A) BF3, H2O
(B) AlCl3, NH3
(C) CN, ROH
(D) BF3, AlCl3
Answer:
(D) BF3, AlCl3

Maharashtra Board Class 11 Chemistry Important Questions Chapter 14 Basic Principles of Organic Chemistry

21. This group shows +I effect.
(A) -Br
(B) -CN
(C) -COOH
(D) -CH2CH3
Answer:
(D) -CH2CH3

22. Which of the following group shows negative resonance effect?
(A) -O-
(B) -COOH
(C) -NHCOR
(D) -NH2
Answer:
(B) -COOH

23. Resonance is NOT exhibited by ………….
(A) phenol
(B) aniline
(C) nitrobenzene
(D) cyclohexane
Answer:
(D) cyclohexane

24. All bonds in benzene are equal due to ………….
(A) tautomerism
(B) metamerism
(C) resonance
(D) isomerism
Answer:
(C) resonance

Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 1 Differentiation Ex 1.2 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2

Question 1.
Find the derivative of the function y = f(x) using the derivative of the inverse function x = f-1( y) in the following
(i) y = \(\sqrt {x}\)
Solution:
y = \(\sqrt {x}\) … (1)
We have to find the inverse function of y = f(x), i.e. x in terms of y.
From (1),
y2 = x ∴ x = y2
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 1

(ii) y = \(\sqrt{2-\sqrt{x}}\)
Solution:
y = \(\sqrt{2-\sqrt{x}}\) …(1)
We have to find the inverse function of y = f(x), i.e. x in terms of y.
From (1),
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 2

(iii) y = \(\sqrt[3]{x-2}\)
Solution:
y = \(\sqrt[3]{x-2}\) ….(1)
We have to find the inverse function of y = f(x), i.e. x in terms of y.
From (1),
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 3
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 4

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) y = log (2x – 1)
Solution:
y = log (2x – 1) …(1)
We have to find the inverse function of y = f(x), i.e. x in terms of y.
From (1),
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 5

(v) y = 2x + 3
Solution:
y = 2x + 3 ….(1)
We have to find the inverse function of y = f(x), i.e. x in terms of y.
From (1),
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 6

(vi) y = ex – 3
Solution:
y = ex – 3 ….(1)
We have to find the inverse function of y = f(x), i.e. x in terms of y.
From (1),
ex = y + 3
∴ x = log(y + 3)
∴ x = f-1(y) = log(y + 3)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 7

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(vii) y = e2x – 3
Solution:
y = e2x – 3 ….(1)
We have to find the inverse function of y = f(x), i.e. x in terms of y.
From (1),
2x – 3 = log y ∴ 2x = log y + 3
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 8

(viii) y = log2\(\left(\frac{x}{2}\right)\)
Solution:
y = log2\(\left(\frac{x}{2}\right)\) …(1)
We have to find the inverse function of y = f(x), i.e. x in terms of y.
From (1),
\(\frac{x}{2}\) = 2y ∴ x = 2∙2y = 2y+1
∴ x = f-1(y) = 2y+1
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 9

Question 2.
Find the derivative of the inverse function of
the following
(i) y = x2·ex
Solution:
y = x2·ex
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 10

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) y = x cos x
Solution:
y = x cos x
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 11
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 12

(iii) y = x·7x
Solution:
y = x·7x
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 13

(iv) y = x2 + logx
Solution:
y = x2 + logx
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 14

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(v) y = x logx
Solution:
y = x logx
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 15
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 16

Question 3.
Find the derivative of the inverse of the following functions, and also fid their value at the points indicated against them.
(i) y = x5 + 2x3 + 3x, at x = 1
Solution:
y = x5 + 2x3 + 3x
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\)(x5 + 2x3 + 3x)
= 5x4 + 2 × 3x2 + 3 × 1
= 5x4 + 6x2 + 3
The derivative of inverse function of y = f(x) is given by
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 17

(ii) y = ex + 3x + 2, at x = 0
Solution:
y = ex + 3x + 2
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\)(ex + 3x + 2)
The derivative of inverse function of y = f(x) is given by
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 18
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 19

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) y = 3x2 + 2 log x3, at x = 1
Solution:
y = 3x2 + 2 log x3
= 3x2 + 6 log x
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 20
The derivative of inverse function of y = f(x) is given by
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 21

(iv) y = sin (x – 2) + x2, at x = 2
Solution:
y = sin (x – 2) + x2
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 22
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 23

Question 4.
If f(x) = x3 + x – 2, find (f-1)’ (0).
Question is modified.
If f(x) = x3 + x – 2, find (f-1)’ (-2).
Solution:
f(x) = x3 + x – 2 ….(1)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 24

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
Using derivative prove
(i) tan-1x + cot-1x = \(\frac{\pi}{2}\)
Solution:
let f(x) = tan-1x + cot-1x
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 25
Since, f'(x) = 0, f(x) is a constant function.
Let f(x) = k.
For any value of x, f(x) = k
Let x = 0.
Then f(0) = k ….(2)
From (1), f(0) = tan-1(0) + cot-1(0)
= 0 + \(\frac{\pi}{2}=\frac{\pi}{2}\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 26

(ii) sec-1x + cosec-1x = \(\frac{\pi}{2}\) . . . [for |x| ≥ 1]
Solution:
Let f(x) = sec-1x + cosec-1x for |x| ≥ 1 ….(1)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 27
Since, f'(x) = 0, f(x) is a constant function.
Let f(x) = k.
For any value of x, f(x) = k, where |x| > 1
Let x = 2.
Then, f(2) = k ……(2)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 28

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 6.
Diffrentiate the following w. r. t. x.
(i) tan-1(log x)
Solution:
Let y = tan-1(log x)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 29

(ii) cosec-1(e-x)
Solution:
Let y = cosec-1(e-x)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 104

(iii) cot-1(x3)
Solution:
Let y = cot-1(x3)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 105

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) cot-1(4x
Solution:
Let y = cot-1(4x
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 106

(v) tan-1(\(\sqrt {x}\))
Solution:
Let y = tan-1(\(\sqrt {x}\))
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 107

(vi) sin-1\(\left(\sqrt{\frac{1+x^{2}}{2}}\right)\)
Solution:
Let y = sin-1\(\left(\sqrt{\frac{1+x^{2}}{2}}\right)\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 108

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(vii) cos-1(1 – x2)
Solution:
Let y = cos-1(1 – x2)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 109
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 30

(viii) sin-1\(\left(x^{\frac{3}{2}}\right)\)
Solution:
Let y = sin-1\(\left(x^{\frac{3}{2}}\right)\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 31

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ix) cos3[cos-1(x3)]
Solution:
Let y = cos3[cos-1(x3)]
= [cos(cos-1x3)]3
= (x3)3 = x9
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\)(x9) = 9x8.

(x) sin4[sin-1(\(\sqrt {x}\))]
Solution:
Let y = sin4[sin-1(\(\sqrt {x}\))]
= {sin[sin-1(\(\sqrt {x}\))]}8
= (\(\sqrt {x}\))4 = x2
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\)(x2) = 2x.

Question 7.
Diffrentiate the following w. r. t. x.
(i) cot-1[cot (ex2)]
Solution:
Let y = cot-1[cot (ex2)] = ex2
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 32

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) cosec-1\(\left(\frac{1}{\cos \left(5^{x}\right)}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 33

(iii) cos-1\(\left(\sqrt{\frac{1+\cos x}{2}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 34

(iv) cos-1\(\left(\sqrt{\frac{1-\cos \left(x^{2}\right)}{2}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 35
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 36

(v) tan-1\(\left(\frac{1-\tan \left(\frac{x}{2}\right)}{1+\tan \left(\frac{x}{2}\right)}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 37
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 38

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(vi) cosec-1\(\left(\frac{1}{4 \cos ^{3} 2 x-3 \cos 2 x}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 39

(vii) tan-1\(\left(\frac{1+\cos \left(\frac{x}{3}\right)}{\sin \left(\frac{x}{3}\right)}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 40
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 41

(viii) cot-1\(\left(\frac{\sin 3 x}{1+\cos 3 x}\right)\)
Solution:
Let y = cot-1\(\left(\frac{\sin 3 x}{1+\cos 3 x}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 42

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ix) tan-1\(\left(\frac{\cos 7 x}{1+\sin 7 x}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 43
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 44

(x) tan-1\(\left(\sqrt{\frac{1+\cos x}{1-\cos x}}\right)\)
Solution:
Let y = tan-1\(\left(\sqrt{\frac{1+\cos x}{1-\cos x}}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 45

(xi) tan-1(cosec x + cot x)
Solution:
Let y = tan-1(cosec x + cot x)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 46
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 47

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(xii) cot-1\(\left(\frac{\sqrt{1+\sin \left(\frac{4 x}{3}\right)}+\sqrt{1-\sin \left(\frac{4 x}{3}\right)}}{\sqrt{1+\sin \left(\frac{4 x}{3}\right)}-\sqrt{1-\sin \left(\frac{4 x}{3}\right)}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 48
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 49
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 50
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 51

Question 8.
(i) Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 60
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 52
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 53

(ii) Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 61
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 54
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 55

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 62
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 56
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 57

(iv) Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 63
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 58
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 59

(v) Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 64
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 65
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 66
= ex.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(vi) Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 67
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 68
y = sin-1[sin(2x)∙cosα – cos(2x)∙sinα]
= sin[sin(2x – α)]
= 2x – α, where α is a constant
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\)(2x – α)
= \(\frac{d}{d x}\)(2x) – \(\frac{d}{d x}\)(α)
= 2x∙log2 – 0
= 2x∙log2

Question 9.
Diffrentiate the following w. r. t. x.
(i) cos-1\(\left(\frac{1-x^{2}}{1+x^{2}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 69

(ii) tan-1\(\left(\frac{2 x}{1-x^{2}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 70

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) sin-1\(\left(\frac{1-x^{2}}{1+x^{2}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 71
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 72

(iv) sin-1(2x\(\sqrt{1-x^{2}}\))
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 73
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 74

(v) cos-1(3x – 4x3)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 75
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 76

(vi) cos-1\(\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 77
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 78

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(vii) cos-1\(\left(\frac{1-9^{x}}{1+9^{x}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 79
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 80

(viii) sin-1\(\left(\frac{4^{x+\frac{1}{2}}}{1+2^{4 x}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 81
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 82

(ix) sin-1\(\left(\frac{1-25 x^{2}}{1+25 x^{2}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 83
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 84

(x) sin-1\(\left(\frac{1-x^{3}}{1+x^{3}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 85
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 86

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(xi) tan-1\(\left(\frac{2 x^{\frac{5}{2}}}{1-x^{5}}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 87
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 88

(xii) cot-1\(\left(\frac{1-\sqrt{x}}{1+\sqrt{x}}\right)\)
Solution:
Let y = cot-1\(\left(\frac{1-\sqrt{x}}{1+\sqrt{x}}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 89
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 90

Question 10.
Diffrentiate the following w. r. t. x.
(i) tan-1\(\left(\frac{8 x}{1-15 x^{2}}\right)\)
Solution:
Let y = tan-1\(\left(\frac{8 x}{1-15 x^{2}}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 91

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) cot-1\(\left(\frac{1+35 x^{2}}{2 x}\right)\)
Solution:
Let y = cot-1\(\left(\frac{1+35 x^{2}}{2 x}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 92
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 93

(iii) tan-1\(\left(\frac{2 \sqrt{x}}{1+3 x}\right)\)
Solution:
Let y = tan-1\(\left(\frac{2 \sqrt{x}}{1+3 x}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 94

(iv) tan-1\(\left(\frac{2^{x+2}}{1-3\left(4^{x}\right)}\right)\)
Solution:
Let y = tan-1\(\left(\frac{2^{x+2}}{1-3\left(4^{x}\right)}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 95
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 96

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(v) tan-1\(\left(\frac{2^{x}}{1+2^{2 x+1}}\right)\)
Solution:
Let y = tan-1\(\left(\frac{2^{x}}{1+2^{2 x+1}}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 97

(vi) cot-1\(\left(\frac{a^{2}-6 x^{2}}{5 a x}\right)\)
Solution:
Let y = cot-1\(\left(\frac{a^{2}-6 x^{2}}{5 a x}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 98
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 99

(vii) tan-1\(\left(\frac{a+b \tan x}{b-a \tan x}\right)\)
Solution:
Let y = tan-1\(\left(\frac{a+b \tan x}{b-a \tan x}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 100

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(viii) tan-1\(\left(\frac{5-x}{6 x^{2}-5 x-3}\right)\)
Solution:
Let y = tan-1\(\left(\frac{5-x}{6 x^{2}-5 x-3}\right)\)
= tan-1\(\left[\frac{5-x}{1+\left(6 x^{2}-5 x-4\right)}\right]\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 101

(ix) cot-1\(\left(\frac{4-x-2 x^{2}}{3 x+2}\right)\)
Solution:
Let y = cot-1\(\left(\frac{4-x-2 x^{2}}{3 x+2}\right)\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 102
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.2 103

Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 1 Differentiation Ex 1.1 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1

Question 1.
Differentiate the following w.r.t. x :
(i) (x3 – 2x – 1)5
Solution:
Method 1:
Let y = (x3 – 2x – 1)5
Put u = x3 – 2x – 1. Then y = u5
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 1
Method 2:
Let y = (x3 – 2x – 1)5
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 2

(ii) \(\left(2 x^{\frac{3}{2}}-3 x^{\frac{4}{3}}-5\right)^{\frac{5}{2}}\)
Solution:
Let y = \(\left(2 x^{\frac{3}{2}}-3 x^{\frac{4}{3}}-5\right)^{\frac{5}{2}}\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 3

(iii) \(\sqrt{x^{2}+4 x-7}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 4

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) \(\sqrt{x^{2}+\sqrt{x^{2}+1}}\)
Solution:
Let y = \(\sqrt{x^{2}+\sqrt{x^{2}+1}}\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 5
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 6

(v) \(\frac{3}{5 \sqrt[3]{\left(2 x^{2}-7 x-5\right)^{5}}}\)
Solution:
Let y = \(\frac{3}{5 \sqrt[3]{\left(2 x^{2}-7 x-5\right)^{5}}}\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 7

(vi) \(\left(\sqrt{3 x-5}-\frac{1}{\sqrt{3 x-5}}\right)^{5}\)
Solution:
Let y = \(\left(\sqrt{3 x-5}-\frac{1}{\sqrt{3 x-5}}\right)^{5}\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 8
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 9

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 2.
Diffrentiate the following w.r.t. x
(i) cos(x2 + a2)
Solution:
Let y = cos(x2 + a2)
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\)[cos(x2 + a2)]
= -sin(x2 + a2)∙\(\frac{d}{d x}\)x2 + a2)
= -sin(x2 + a2)∙(2x + 0)
= -2xsin(x2 + a2)

(ii) \(\sqrt{e^{(3 x+2)}+5}\)
Solution:
Let y = \(\sqrt{e^{(3 x+2)}+5}\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 10

(iii) log[tan(\(\frac{x}{2}\))]
Solution:
Let y = log[tan(\(\frac{x}{2}\))]
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 11

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) \(\sqrt{\tan \sqrt{x}}\)
Solution:
Let y = \(\sqrt{\tan \sqrt{x}}\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 12

(v) cot3[log (x3)]
Solution:
Let y = cot3[log (x3)]
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 13

(vi) 5sin3x+ 3
Solution:
Let y = 5sin3x+ 3
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 14

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(vii) cosec (\(\sqrt{\cos X}\))
Solution:
Let y = cosec (\(\sqrt{\cos X}\))
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 15

(viii) log[cos (x3 – 5)]
Solution:
Let y = log[cos (x3 – 5)]
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 16

(ix) e3 sin2x – 2 cos2x
Solution:
Let y = e3 sin2x – 2 cos2x
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 17

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(x) cos2[log (x2+ 7)]
Solution:
Let y = cos2[log (x2+ 7)]
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 18
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 19

(xi) tan[cos (sinx)]
Solution:
Let y = tan[cos (sinx)]
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 20

(xii) sec[tan (x4 + 4)]
Solution:
Let y = sec[tan (x4 + 4)]
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 21
= sec[tan(x4 + 4)]∙tan[tan(x4 + 4)]∙sec2(x4 + 4)(4x3 + 0)
= 4x3sec2(x4 + 4)∙sec[tan(x4 + 4)]∙tan[tan(x4 + 4)].

(xiii) elog[(logx)2 – logx2]
Solution:
Let y = elog[(logx)2 – logx2]
= (log x)2 – log x2 …[∵ elog x = x]
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 22

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(xiv) sin\(\sqrt{\sin \sqrt{x}}\)
Solution:
Let y = sin\(\sqrt{\sin \sqrt{x}}\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 23

(xv) log[sec(ex2)]
Solution:
Let y = log[sec(ex2)]
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 24

(xvi) loge2(logx)
Solution:
Let y = loge2(logx) = \(\frac{\log (\log x)}{\log e^{2}}\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 25
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 26

(xvii) [log{log(logx)}]2
Solution:
let y = [log{log(logx)}]2
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 27

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(xviii) sin2x2 – cos2x2
Solution:
Let y = sin2x2 – cos2x2
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 28
= 2sinx2∙cosx2 × 2x + 2sinx2∙cosx2 × 2x
= 4x(2sinx2∙cosx2)
= 4xsin(2x2).

Question 3.
Diffrentiate the following w.r.t. x
(i) (x2 + 4x + 1)3 + (x3 – 5x – 2)4
Solution:
Let y = (x2 + 4x + 1)3 + (x3 – 5x – 2)4
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\)[(x2 + 4x + 1)3 + (x3 – 5x – 2)4]
= \(\frac{d}{d x}\) = (x2 + 4x + 1)3 + \(\frac{d}{d x}\)(x3 – 5x – 2)4
= 3(x2 + 4x + 1)2∙\(\frac{d}{d x}\)(x2 + 4x + 1) + 4(x3 – 5x – 2)4∙\(\frac{d}{d x}\)(x3 – 5x – 2)
= 3(x2 + 4x + 1)3∙(2x + 4 × 1 + 0) + 4(x3 – 5x – 2)3∙(3x2 – 5 × 1 – 0)
= 6 (x + 2)(x2 + 4x + 1)2 + 4 (3x2 – 5)(x3 – 5x – 2)3.
(ii) (1 + 4x)5(3 + x − x2)8
Solution:
Let y = (1 + 4x)5(3 + x − x2)8
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 29
= 8 (1 + 4x)5 (3 + x – x2)7∙(0 + 1 – 2x) + 5 (1 + 4x)4 (3 + x – x2)8∙(0 + 4 × 1)
= 8 (1 – 2x)(1 + 4x)5(3 + x – x2)7 + 20(1 + 4x)4(3 + x – x2)8.

(iii) \(\frac{x}{\sqrt{7-3 x}}\)
Solution:
Let y = \(\frac{x}{\sqrt{7-3 x}}\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 30

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) \(\frac{\left(x^{3}-5\right)^{5}}{\left(x^{3}+3\right)^{3}}\)
Solution:
Let y = \(\frac{\left(x^{3}-5\right)^{5}}{\left(x^{3}+3\right)^{3}}\)
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\left[\frac{\left(x^{3}-5\right)^{5}}{\left(x^{3}+3\right)^{3}}\right]\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 31

(v) (1 + sin2x)2(1 + cos2x)3
Solution:
Let y = (1 + sin2x)2(1 + cos2x)3
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 32
= 3(1 + sin2x)2 (1 + cos2x)2∙[2cosx(-sinx)] + 2 (1 + sin2x)(1 + cos2x)3∙[2sinx-cosx]
= 3 (1 + sin2x)2 (1 + cos2x)2 (-sin 2x) + 2(1 + sin2x)(1 + cos2x)3(sin 2x)
= sin2x (1 + sin2x) (1 + cos2x)2 [-3(1 + sin2x) + 2(1 + cos2x)]
= sin2x (1 + sin2x)(1 + cos2x)2(-3 – 3sin2x + 2 + 2cos2x)
= sin2x (1 + sin2x)(1 + cos2x)2 [-1 – 3 sin2x + 2 (1 – sin2x)]
= sin 2x(1 + sin2x)(1 + cos2x)2 (-1 – 3 sin2x + 2 – 2 sin2x)
= sin2x (1 + sin2x)(1 + cos2x)2(1 – 5 sin2x).

(vi) \(\sqrt{\cos x}+\sqrt{\cos \sqrt{x}}\)
Solution:
Let y = \(\sqrt{\cos x}+\sqrt{\cos \sqrt{x}}\)
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}[\sqrt{\cos x}+\sqrt{\cos \sqrt{x}}]\)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 33

(vii) log(sec 3x+ tan 3x)
Solution:
Let y = log(sec 3x+ tan 3x)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 34

(viii) \(\frac{1+\sin x^{\circ}}{1-\sin x^{\circ}}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 35
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 36

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ix) cot\(\left(\frac{\log x}{2}\right)\) – log\(\left(\frac{\cot x}{2}\right)\)
Solution:
Let y = cot\(\left(\frac{\log x}{2}\right)\) – log\(\left(\frac{\cot x}{2}\right)\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 37

(x) \(\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 38
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 39

(xi) \(\frac{e^{\sqrt{x}}+1}{e^{\sqrt{x}}-1}\)
Solution:
let y = \(\frac{e^{\sqrt{x}}+1}{e^{\sqrt{x}}-1}\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 40

(xii) log[tan3x·sin4x·(x2 + 7)7]
Solution:
Let y = log [tan3x·sin4x·(x2 + 7)7]
= log tan3x + log sin4x + log (x2 + 7)7
= 3 log tan x + 4 log sin x + 7 log (x2 + 7)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 41
= 6cosec2x + 4 cotx + \(\frac{14 x}{x^{2}+7}\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(xiii) log\(\left(\sqrt{\frac{1-\cos 3 x}{1+\cos 3 x}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 42
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 43

(xiv) log\(\left(\sqrt{\left.\frac{1+\cos \left(\frac{5 x}{2}\right)}{1-\cos \left(\frac{5 x}{2}\right)}\right)}\right.\)
Solution:
Using log\(\left(\frac{a}{b}\right)\) = log a – log b
log ab = b log a
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 44
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 45
\(-\frac{5}{2}\)cosec\(\left(\frac{5 x}{2}\right)\)

(xv) log\(\left(\sqrt{\frac{1-\sin x}{1+\sin x}}\right)\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 46
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 47
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 48

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(xvi) log\(\left[4^{2 x}\left(\frac{x^{2}+5}{\sqrt{2 x^{3}-4}}\right)^{\frac{3}{2}}\right]\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 49
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 50

(xvii) log\(\left[\frac{e^{x^{2}}(5-4 x)^{\frac{3}{2}}}{\sqrt[3]{7-6 x}}\right]\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 51
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 52

(xviii) log\(\left[\frac{a^{\cos x}}{\left(x^{2}-3\right)^{3} \log x}\right]\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 53

(xix) y= (25)log5(secx) − (16)log4(tanx)
Solution:
y = (25)log5(secx) − (16)log4(tanx)
= 52log5(secx) – 42log4(tanx)
= 5log5(sec5x) – 4log4(tan2x)
= sec2x – tan2x … [∵ = x]
∴ y = 1
Differentiating w.r.t. x, we get
\(\frac{d y}{d x}\) = \(\frac{d}{d x}\)(1) = 0

(xx) \(\frac{\left(x^{2}+2\right)^{4}}{\sqrt{x^{2}+5}}\)
Solution:
Let y = \(\frac{\left(x^{2}+2\right)^{4}}{\sqrt{x^{2}+5}}\)
Differentiating w.r.t. x, we get
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 54
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 55

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 4.
A table of values of f, g, f ‘ and g’ is given
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 56
(i) If r(x) = f [g(x)] find r’ (2).
Solution:
r(x) = f[g(x)]
∴ r'(x) = \(\frac{d}{d x}\)f[g(x)]
= f'[g(x)]∙\(\frac{d}{d x}\)[g(x)]
= f'[g(x)∙[g'(x)]
∴ r'(2) = f'[g(2)]∙g'(2)
= f'(6)∙g'(2) … [∵ g(x) = 6, when x = 2]
= -4 × 4 … [From the table]
= -16.

(ii) If R(x) = g[3 + f(x)] find R’ (4).
Solution:
R(x) = g[3 + f(x)]
∴ R'(x) = \(\frac{d}{d x}\){g[3+f(x)]}
= g'[3 + f(x)]∙\(\frac{d}{d x}\)[3 + f(x)]
= g'[3 +f(x)]∙[0 + f'(x)]
= g'[3 + f(x)]∙f'(x)
∴ R'(4) = g'[3 + f(4)]∙f'(4)
= g'[3 + 3]∙f'(4) … [∵ f(x) = 3, when x = 4]
= g'(6)∙f'(4)
= 7 × 5 … [From the table]
= 35.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) If s(x) = f[9− f(x)] find s’ (4).
Solution:
s(x) = f[9− f(x)]
∴ s'(x) = \(\frac{d}{d x}\){f[9 – f(x)]}
= f'[9 – f(x)]∙\(\frac{d}{d x}\)[0 – f(x)]
= f'[9 – f(x)]∙[0 – f'(x)]
= -f'[9 – f(x)] – f'(x)
∴ s'(4) = -f'[9 – f(4)] – f'(4)
= -f'[9 – 3] – f'(4) … [∵ f(x) = 3, when x = 4]
= -f'(6) – f'(4)
= -(-4)(5) … [From the table]
= 20.

(iv) If S(x) = g[g(x)] find S’ (6)
Solution:
S(x) = g[g(x)]
∴ S'(x) = \(\frac{d}{d x}\)g[g(x)]
= g'[g(x)]∙\(\frac{d}{d x}\)[g(x)]
= g'[g(x)]∙g'(x)
∴ S ‘(6) = g'[g'(6)]∙g'(6)
= g'(2)∙g'(6) … [∵ g (x) = 2, when x = 6]
= 4 × 7 … [From the table]
= 28.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
Assume that f ‘(3) = -1, g'(2) = 5, g(2) = 3 and y = f[g(x)] then \(\left[\frac{d y}{d x}\right]_{x=2}\) = ?
Solution:
y = f[g(x)]
∴ \(\frac{d y}{d x}\) = \(\frac{d}{d x}\){[g(x)]}
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 57

Question 6.
If h(x) = \(\sqrt{4 f(x)+3 g(x)}\), f(1) = 4, g(1) = 3, f ‘(1) = 3, g'(1) = 4 find h'(1).
Solution:
Given f(1) = 4, g(1) = 3, f ‘(1) = 3, g'(1) = 4 …..(1)
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 58

Question 7.
Find the x co-ordinates of all the points on the curve y = sin 2x – 2 sin x, 0 ≤ x < 2π where \(\frac{d y}{d x}\) = 0.
Solution:
y = sin 2x – 2 sin x, 0 ≤ x < 2π
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 59
= cos2x × 2 – 2cosx
= 2 (2 cos2x – 1) – 2 cosx
= 4 cos2x – 2 – 2 cos x
= 4 cos2x – 2 cos x – 2
If \(\frac{d y}{d x}\) = 0, then 4 cos2x – 2 cos x – 2 = 0
∴ 4cos2x – 4cosx + 2cosx – 2 = 0
∴ 4 cosx (cosx – 1) + 2 (cosx – 1) = 0
∴ (cosx – 1)(4cosx + 2) = 0
∴ cosx – 1 = 0 or 4cosx + 2 = 0
∴ cos x = 1 or cos x = \(-\frac{1}{2}\)
∴ cos x = cos 0
Maharashtra Board 12th Maths Solutions Chapter 1 Differentiation Ex 1.1 60

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
Select the appropriate hint from the hint basket and fill up the blank spaces in the following paragraph. [Activity]
“Let f (x) = x2 + 5 and g(x) = ex + 3 then
f [g(x)] = _ _ _ _ _ _ _ _ and g [f(x)] =_ _ _ _ _ _ _ _.
Now f ‘(x) = _ _ _ _ _ _ _ _ and g'(x) = _ _ _ _ _ _ _ _.
The derivative off [g (x)] w. r. t. x in terms of f and g is _ _ _ _ _ _ _ _.
Therefore \(\frac{d}{d x}\)[f[g(x)]] = _ _ _ _ _ _ _ _ _ and [\(\frac{d}{d x}\)[f[g(x)]]]x = 0 = _ _ _ _ _ _ _ _ _ _ _.
The derivative of g[f(x)] w. r. t. x in terms of f and g is _ _ _ _ _ _ __ _ _ _ _.
Therefore \(\frac{d}{d x}\)[g[f(x)]] = _ _ _ _ _ _ _ _ _ and [\(\frac{d}{d x}\)[g[f(x)]]]x = 1 = _ _ _ _ _ _ _ _ _ _ _.”
Hint basket : { f ‘[g(x)]·g'(x), 2e2x + 6ex, 8, g'[f(x)]·f ‘(x), 2xex2 + 5, -2e6, e2x + 6ex + 14, ex2 + 5 + 3, 2x, ex}
Solution:
f[g(x)] = e2x + 6ex + 14
g[f(x)] = ex2 + 5 + 3
f'(x) = 2x, g’f(x) = ex
The derivative of f[g(x)] w.r.t. x in terms of and g is f'[g(x)]∙g'(x).
∴ \(\frac{d}{d x}\){f[g(x)]} = 2e2x + 6ex and \(\frac{d}{d x}\){f[g(x)]}x = 0 = 8
The derivative of g[f(x)] w.r.t. x in terms of f and g is g’f(x)]∙f'(x).
∴ \(\frac{d}{d x}\){g[(f(x)]} = 2xex2 + 5 and
\(\frac{d}{d x}\){g[(f(x)]}x = -1 = -2e6.

Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 7 Linear Programming Miscellaneous Exercise 7 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7

I) Select the appropriate alternatives for each of the following :
Question 1.
The value of objective function is maximum under linear constraints _______.
(A) at the centre of the feasible region
(B) at (0, 0)
(C) at a vertex of the feasible region
(D) the vertex which is of maximum distance from (0, 0)
Solution:
(C) at a vertex of the feasible region

Question 2.
Which of the following is correct _______.
(A) every L.P.P. has an optimal solution
(B) a L.P.P. has unique optimal solution
(C) if L.P.P. has two optimal solutions then it has an infinite number of optimal solutions
(D) the set of all feasible solutions of L.P.P. may not be a convex set
Solution:
(C) if L.P.P. has two optimal solutions then it has an infinite number of optimal solutions

Question 3.
Objective function of L.P.P. is _______.
(A) a constraint
(B) a function to be maximized or minimized
(C) a relation between the decision variables
(D) equation of a straight line
Solution:
(B) a function to be maximized or minimized

Question 4.
The maximum value of z = 5x + 3y subjected to the constraints 3x + 5y ≤ 15, 5x + 2y ≤ 10, x, y≥ 0 is _______.
(A) 235
(B) \(\frac{235}{9}\)
(C) \(\frac{235}{19}\)
(D) \(\frac{235}{3}\)
Solution:
(C) \(\frac{235}{19}\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
The maximum value of z = 10x + 6y subjected to the constraints 3x + y ≤ 12, 2x + 5y ≤ 34, x ≥ 0, y≥ 0. _______.
(A) 56
(B) 65
(C) 55
(D) 66
Solution:
(A) 56

Question 6.
The point at which the maximum value of x + y subject to the constraints x + 2y ≤ 70, 2x + y ≤ 95, x ≥ 0, y ≥ 0 is obtained at _______.
(A) (30, 25)
(B) (20, 35)
(C) (35, 20)
(D) (40, 15)
Solution:
(D) (40, 15)

Question 7.
Of all the points of the feasible region, the optimal value of obtained at the point lies _______.
(A) inside the feasible region
(B) at the boundary of the feasible region
(C) at the vertex of the feasible region
(D) outside the feasible region
Solution:
(C) at the vertex of the feasible region

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
The feasible region is the set of points that satisfy _______.
(A) the objective function
(B) all of the given constraints
(C) some of the given constraints
(D) only one constraint
Solution:
(B) all of the given constraints

Question 9.
Solution of L.P.P. to minimize z = 2x + 3y such that x ≥ 0, y ≥ 0, 1 ≤ x + 2y ≤ 10 is _______.
(A) x = 0, y = \(\frac{1}{2}\)
(B) x = \(\frac{1}{2}\), y = 0
(C) x = 1, y = 2
(D) x = \(\frac{1}{2}\), y = \(\frac{1}{2}\)
Solution:
(A) x = 0, y = \(\frac{1}{2}\)

Question 10.
The corner points of the feasible solution given by the inequation x + y ≤ 4, 2x + y ≤ 7, x ≥ 0, y ≥ 0 are _______.
(A) (0, 0), (4, 0), (7, 1), (0, 4)
(B) (0, 0), (\(\frac{7}{2}\), 0), (3, 1), (0, 4)
(C) (0, 0), (\(\frac{7}{2}\), 0), (3, 1), (0, 7)
(D) (0, 0), (4, 0), (3, 1), (0, 7)
Solution:
(B) (0, 0), (\(\frac{7}{2}\), 0), (3, 1), (0, 4)

Question 11.
The corner points of the feasible solution are (0, 0), (2, 0), (\(\frac{12}{7}\), \(\frac{3}{7}\)), (0, 1). Then z = 7x + y is maximum at _______.
(A) (0, 0)
(B) (2, 0)
(C) (\(\frac{12}{7}\), \(\frac{3}{7}\))
(D) (0, 1)
Solution:
(B) (2, 0)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 12.
If the corner points of the feasible solution are (0, 0), (3, 0), (2, 1) and (0, \(\frac{7}{3}\) ), the maximum value of z = 4x + 5y is _______.
(A) 12
(B) 13
(C) 35
(D) 0
Solution:
(B) 13

Question 13.
If the corner points of the feasible solution are (0, 10), (2, 2) and (4, 0) then the point of minimum z = 3x + 2y is _______.
(A) (2, 2)
(B) (0, 10)
(C) (4, 0)
(D) (3 ,4)
Solution:
(A) (2, 2)

Question 14.
The half plane represented by 3x + 2y < 8 contains the point _______.
(A) (1, \(\frac{5}{2}\))
(B) (2, 1)
(C) (0, 0)
(D) (5, 1)
Solution:
(C) (0, 0)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 15.
The half plane represented by 4x + 3y > 14 contains the point _______.
(A) (0, 0)
(B) (2, 2)
(C) (3, 4)
(D) (1, 1)
Solution:
(C) (3, 4)

II) Solve the following :
Question 1.
Solve each of the following inequations graphically using X Y plane.
(i) 4x – 18 ≥ 0
Solution:
Consider the line whose equation is 4x – 18 ≥ 0 i.e. x = \(\frac{18}{4}=\frac{9}{2}\) = 4.5
This represents a line parallel to Y-axis passing3through the point (4.5, 0)
Draw the line x = 4.5
To find the solution set we have to check the position of the origin (0, 0).
When x = 0, 4x – 18 = 4 × 0 – 18 = -18 > 0
∴ the coordinates of the origin does not satisfy thegiven inequality.
∴ the solution set consists of the line x = 4.5 and the non-origin side of the line which is shaded in the graph.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 1

(ii) -11x – 55 ≤ 0
Solution:
Consider the line whose equation is -11x – 55 ≤ 0 i.e. x = -5
This represents a line parallel to Y-axis passing3through the point (-5, 0)
Draw the line x = – 5
To find the solution set we have to check the position of the origin (0, 0).
When x = 0, -11x – 55 = – 11(0) – 55 = -55 > 0
∴ the coordinates of the origin does not satisfy thegiven inequality.
∴ the solution set consists of the line x = -5 and the non-origin side of the line which is shaded in the graph.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 2

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) 5y – 12 ≥ 0
Solution:
Consider the line whose equation is 5y – 12 ≥ 0 i.e. y = \(\frac{12}{5}\)
This represents a line parallel to X-axis passing through the point (o, \(\frac{12}{5}\))
Draw the line y = \(\frac{12}{5}\)
To find the solution set, we have to check the position of the origin (0, 0).
When y = 0, 5y – 12 = 5(0) – 12 = -12 > 0
∴ the coordinates of the origin does not satisfy the given inequality.
∴ the solution set consists of the line y = \(\frac{12}{5}\) and the non-origin side of the line which is shaded in the graph.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 3

(iv) y ≤ -3.5
Solution:
Consider the line whose equation is y ≤ – 3.5 i.e. y = – 3.5
This represents a line parallel to X-axis passing3through the point (0, -3.5)
Draw the line y = – 3.5
To find the solution set, we have to check the position of the origin (0, 0).
∴ the coordinates of the origin does not satisfy the given inequality.
∴ the solution set consists of the line y = – 3.5 and the non-origin side of the line which is shaded in the graph.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 4

Question 2.
Sketch the graph of each of following inequations in XOY co-ordinate system.
(i) x ≥ 5y
Solution:
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 5

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) x + y≤ 0
Solution:
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 6

(iii) 2y – 5x ≥ 0
Solution:
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 7

(iv) |x + 5| ≤ y
Solution:
|x + 5| ≤ y
∴ -y ≤ x + 5 ≤ y
∴ -y ≤ x + 5 and x + 5 ≤ y
∴ x + y ≥ -5 and x – y ≤ -5
First we draw the lines AB and AC whose equations are
x + y= -5 and x – y = -5 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 8
The graph of |x + 5| ≤ y is as below:
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 9

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 3.
Find graphical solution for each of the following system of linear inequation.
(i) 2x + y ≥ 2, x – y ≤ 1
Solution:
First we draw the lines AB and AC whose equations are 2x + y = 2 and x – y = 1 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 10
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 11
The solution set of the given system of inequalities is shaded in the graph.

(ii) x + 2y ≥ 4, 2x – y ≤ 6
Solution:
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 52

(iii) 3x + 4y ≤ 12, x – 2y ≥ 2, y ≥ -1
Solution:
First we draw the lines AB, CD and ED whose equations are 3x + 4y = 12, x – 2y = 2 and y = -1 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 12
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 13
The solution set of given system of inequation is shaded in the graph.

Question 4.
Find feasible solution for each of the following system of linear inequations graphically.
(i) 2x + 3y ≤ 12, 2x + y ≤ 8, x ≥ 0, y ≥ 0
Solution:
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 53
The feasible solution is OCPBO.

(ii) 3x + 4y ≥ 12, 4x + 7y ≤ 28, x ≥ 0, y ≥ 0
Solution:
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 54
The feasible solution is ACDBA.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
Solve each of the following L.P.P.
(i) Maximize z = 5x1 + 6x2 subject to 2x1 + 3x2 ≤ 18, 2x1 + x2 ≤ 12, x1 ≥ 0, x2 ≥ 0
Solution:
First we draw the lines AB and CD whose equations are 2x1 + 3x2 = 18 and 2x1 + x2 = 12 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 14
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 15
The feasible region is OCPBO which is shaded in the graph. The vertices of the feasible region are O(0, 0), C(6, 0), P and B (0,6).
P is the point of intersection of the lines
2x1 + 3x2 = 18 ….(1)
and 2x1 + x2 = 12
On subtracting, we get
2x2 = 6 ∴ x2 = 3
Substituting x2 = 3 in (2), we get
2x1 + 3 = 12 ∴ x2 = 9
∴ P is (\(\frac{9}{2}\), 3)
The values of objective function z = 5x1 + 6x2 at these vertices are
z(O) = 5(0) + 6(0) = 0 + 0 = 0
z(C) = 5(6) + 6(0) = 30 + 0 = 30
z(P) = 5(\(\frac{9}{2}\)) + 6(3) = \(\frac{45}{2}\) + 18 = \(\frac{45+36}{2}=\frac{81}{2}\) = 40.5
z(B) = 5(0) + 6(3) = 0 + 18 = 18
Maximum value of z is 40.5 when x1 = 9/2, y = 3.

(ii) Maximize z = 4x + 2y subject to 3x + y ≥ 27, x + y ≥ 21
Question is modified.
Maximize z = 4x + 2y subject to 3x + y ≤ 27, x + y ≤ 21, x ≥ 0, y ≥ 0
Solution:
First we draw the lines AB and CD whose equations are 3x + y = 27 and x + y = 21 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 16
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 17
The feasible region is OAPDO which is shaded region in the graph. The vertices of the feasible region are 0(0, 0), A (9, 0), P and D(0, 21). P is the point of intersection of lines
3x + y = 27 … (1)
and x + y = 21 … (2)
On substracting, we get 2x = 6 ∴ x = 3
Substituting x = 3 in equation (1), we get
9 + y = 27 ∴ y = 18
∴ P = (3, 18)
The values of the objective function z = 4x + 2y at these vertices are
z(O) = 4(0) + 2(0) = 0 + 0 = 0
z(a) = 4(9) + 2(0) = 36 + 0 = 36
z(P) = 4(3) + 2(18) = 12 + 36 = 48
z (D) = 4(0) + 2(21) = 0 + 42 = 42
∴ 2 has minimum value 48 when x = 3, y = 18.

(iii) Maximize z = 6x + 10y subject to 3x + 5y ≤ 10, 5x + 3y ≤ 15, x ≥ 0, y ≥ 0
Solution:
First we draw the lines AB and CD whose equations are 3x + 5y = 10 and 5x + 3y = 15 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 18
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 19
The feasible region is OCPBD which is shaded in the graph.
The vertices of the feasible region are 0(0, 0), C(3, 0), P and B (0, 2).
P is the point of intersection of the lines
3x + 5y = 10 … (1)
and 5x + 3y = 15 … (2)
Multiplying equation (1) by 5 and equation (2) by 3, we get
15x + 25y = 50
15x + 9y = 45
On subtracting, we get
16y = 5 ∴ y = \(\frac{5}{16}\)
Substituting y = \(\frac{5}{16}\) in equation (1), we get
3x + \(\frac{25}{16}\) = 10 ∴ 3x = 10 – \(\frac{25}{16}=\frac{135}{16}\)
∴ x = \(\frac{45}{16}\) ∴ P ≡ \(\left(\frac{45}{16}, \frac{5}{16}\right)\)
The values of objective function z = 6x + 10y at these vertices are
z(O) = 6(0) + 10(0) = 0 + 0 = 0
z(C) = 6(3) + 10(0) = 18 + 0 = 18
z(P) = 6\(\left(\frac{45}{16}\right)\) + 10\(\left(\frac{5}{10}\right)\) = \(\frac{270}{16}+\frac{50}{16}=\frac{320}{16}\) = 20
z(B) = 6(0) + 10(2) = 0 + 20 = 20
The maximum value of z is 20 at P\(\left(\frac{45}{16}, \frac{5}{16}\right)\) and B (0, 2) two consecutive vertices.
∴ z has maximum value 20 at each point of line segment PB where B is (0, 2) and P is \(\left(\frac{45}{16}, \frac{5}{16}\right)\).
Hence, there are infinite number of optimum solutions.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) Maximize z = 2x + 3y subject to x – y ≥ 3, x ≥ 0, y ≥ 0
Solution:
First we draw the lines AB whose equation is x – y = 3.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 20
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 21
The feasible region is shaded which is unbounded.
Therefore, the value of objective function can be in- j creased indefinitely. Hence, this LPP has unbounded solution.

Question 6.
Solve each of the following L.P.P.
(i) Maximize z = 4x1 + 3x2 subject to 3x1 + x2 ≤ 15, 3x1 + 4x2 ≤ 24, x1 ≥ 0, x2 ≥ 0
Solution:
We first draw the lines AB and CD whose equations are 3x1 + x2 = 15 and 3x1 + 4x2 = 24 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 22
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 23
The feasible region is OAPDO which is shaded in the graph.
The Vertices of the feasible region are 0(0, 0), A(5, 0), P and D(0, 6).
P is the point of intersection of lines.
3x1 + 4x2 = 24 … (1)
and 3x1 + x2 = 15 … (2)
On subtracting, we get
3x2 = 9 ∴ x2 = 3
Substituting x2 = 3 in (2), we get
3x1 + 3 = 15
∴ 3x1 = 12 ∴ x1 = 4 ∴ P is (4, 3)
The values of objective function z = 4x1 + 3x2 at these vertices are
z(O) = 4(0) + 3(0) = 0 + 0 = 0
z(a) = 4(5) + 3(0) = 20 + 0 = 20
z(P) = 4(4) + 3(3) = 16 + 9 = 25
z(D) = 4(0) + 3(6) = 0 + 18 = 18
∴ z has maximum value 25 when x = 4 and y = 3.

(ii) Maximize z = 60x + 50y subject to x + 2y ≤ 40, 3x + 2y ≤ 60, x ≥ 0, y ≥ 0
Solution:
We first draw the lines AB and CD whose equations are x + 2y = 40 and 3x + 2y = 60 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 24
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 25
The feasible region is OCPBO which is shaded in the graph.
The vertices of the feasible region are O (0, 0), C (20, 0), P and B (0, 20).
P is the point of intersection of the lines.
3x + 2y = 60 … (1)
and x + 2y = 40 … (2)
On subtracting, we get
2x = 20 ∴ x = 10
Substituting x = 10 in (2), we get
10 + 2y = 40
∴ 2y = 30 ∴ y = 15 ∴ P is (10, 15)
The values of the objective function z = 60x + 50y at these vertices are
z(O) = 60(0) + 50(0) = 0 + 0 = 0
z(C) = 60(20) + 50(0) = 1200 + 0 = 1200
z(P) = 60(10) + 50(15) = 600 + 750 = 1350
z(B) = 60(0) + 50(20) = 0 + 1000 = 1000 .
∴ z has maximum value 1350 at x = 10, y = 15.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) Maximize z = 4x + 2y subject to 3x + y ≥ 27, x + y ≥ 21, x + 2y ≥ 30; x ≥ 0, y ≥ 0
Solution:
We first draw the lines AB, CD and EF whose equations are 3x + y = 27, x + y = 21, x + 2y = 30 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 26
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 27
The feasible region is XEPQBY which is shaded in the graph.
The vertices of the feasible region are E (30,0), P, Q and B (0,27).
P is the point of intersection of the lines
x + 2y = 30 … (1)
and x + y = 21 … (2)
On subtracting, we get
y = 9
Substituting y = 9 in (2), we get
x + 9 = 21 ∴ x = 12
∴ P is (12, 9)
Q is the point of intersection of the lines
x + y = 21 … (2)
and 3x + y = 27 … (3)
On subtracting, we get
2x = 6 ∴ x = 3
Substituting x = 3 in (2), we get
3 + y = 21 ∴ y = 18
∴ Q is (3, 18).
The values of the objective function z = 4x + 2y at these vertices are
z(E) = 4(30) + 2(0) = 120 + 0 = 120
z(P) = 4(12) + 2(9) = 48 + 18 = 66
z(Q) = 4(3) + 2(18) = 12 + 36 = 48
z(B) = 4(0) + 2(27) = 0 + 54 = 54
∴ z has minimum value 48, when x = 3 and y = 18.

Question 7.
A carpenter makes chairs and tables. Profits are ₹140/- per chair and ₹ 210/- per table. Both products are processed on three machines : Assembling, Finishing and Polishing. The time required for each product in hours and availability of each machine is given by following table:
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 28
Formulate the above problem as L.P.P. Solve it graphically to get maximum profit.
Solution:
Let the number of chairs and tables made by the carpenter be x and y respectively.
The profits are ₹ 140 per chair and ₹ 210 per table.
∴ total profit z = ₹ (140x + 210y) This is the objective function which is to be maximized.
The constraints are as per the following table :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 29
From the table, the constraints are
3x + 3y ≤ 36, 5x + 2y ≤ 50, 2x + 6y ≤ 60.
The number of chairs and tables cannot be negative.
∴ x ≥ 0, y ≥ 0
Hence, the mathematical formulation of given LPP is :
Maximize z = 140x + 210y, subject to
3x + 3y ≤ 36, 5x + 2y ≤ 50, 2x + 6y ≤ 60, x ≥ 0, y ≥ 0.
We first draw the lines AB, CD and EF whose equations are 3x + 3y = 36, 5x + 2y = 50 and 2x + 6y = 60 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 30
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 31
The feasible region is OCPQFO which is shaded in the graph.
The vertices of the feasible region are O (0, 0), C (10, 0), P, Q and F (0, 10).
P is the point of intersection of the lines
5x + 2y = 50 … (1)
and 3x + 3y = 36 … (2)
Multiplying equation (1) by 3 and equation (2) by 2, we get
15x + 6y = 150
6x + 6y = 72
On subtracting, we get 26
9x = 78 ∴ x = \(\frac{26}{3}\)
Substituting x = \(\frac{26}{3}\) in (2), we get
3\(\left(\frac{26}{3}\right)\) + 3y = 36
3y = 1o y = \(\frac{10}{3}\)
Q is the point of intersection of the lines
3x + 3y = 36 … (2)
and 2x + 6y = 60 … (3)
Multiplying equation (2) by 2, we get
6x + 6 y = 72
Subtracting equation (3) from this equation, we get
4x = 12 ∴ x = 3
Substituting x = 3 in (2), we get
3(3) + 3y = 36
∴ 3y = 27 ∴ y = 9
∴ Q is (3, 9).
Hence, the vertices of the feasible region are O (0, 0),
C(10, 0), P\(\left(\frac{26}{3}, \frac{10}{3}\right)\), Q(3, 9) and F(0, 10).
The values of the objective function z = 140x + 210y at these vertices are
z(O) = 140(0) + 210(0) = 0 + 0 = 0
z(C) = 140 (10) + 210(0) = 1400 + 0 = 1400
z(P) = 140\(\left(\frac{26}{3}\right)\) + 210\(\left(\frac{10}{3}\right)\) = \(\frac{3640+2100}{3}=\frac{5740}{3}\) = 1913.33
z(Q) = 140(3) + 210(9) = 420 + 1890 = 2310
z(F) = 140(0) + 210(10) = 0 + 2100 = 2100
∴ z has maximum value 2310 when x = 3 and y = 9 Hence, the carpenter should make 3 chairs and 9 tables to get the maximum profit of ₹ 2310.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
A company manufactures bicycles and tricycles, each of which must be processed through two machines A and B. Maximum availability of Machine A and B is respectively 120 and 180 hours. Manufacturing a bicycle requires 6 hours on Machine A and 3 hours on Machine B. Manufacturing a tricycles requires 4 hours on Machine A and 10 hours on Machine B. If profits are ₹180/- for a bicycle and ₹220/- for a tricycle. Determine the number of bicycles and tricycles that should be manufactured in order to maximize the profit.
Solution:
Let x bicycles and y tricycles are to be manu¬factured. Then the total profit is z = ₹ (180x + 220y)
This is a linear function which is to be maximized. Hence, it is the objective function. The constraints are as per the following table :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 32
From the table, the constraints are
6x + 4y ≤ 120, 3x +10y ≤ 180
Also, the number of bicycles and tricycles cannot be i negative.
∴ x ≥ 0, y ≥ 0.
Hence, the mathematical formulation of given LPP is :
Maximize z = 180x + 220y, subject to
6x + 4y ≤ 120, 3x + 10y ≤ 180, x ≥ 0, y ≥ 0.
First we draw the lines AB and CD whose equations are 6x + 4y = 120 and 3x + 10y = 180 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 33
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 34
The feasible region is OAPDO which is shaded in the graph.
The vertices of the feasible region are O(0, 0), A(20, 0) P and D(0, 18).
P is the point of intersection of the lines
3x + 10y = 180 … (1)
and 6x + 4y = 120 … (2)
Multiplying equation (1) by 2, we get
6x + 20y = 360
Subtracting equation (2) from this equation, we get
16y = 240 ∴ y = 15
∴ from (1), 3x + 10(15) = 180
∴ 3x = 30 ∴ x = 10
∴ P = (10, 15)
The values of the objective function z = 180x + 220y at these vertices are
z(O) = 180(0) + 220(0) = 0 + 0 = 0
z(a) = 180(20) + 220(0) = 3600 + 0 = 3600
z(P) = 180(10) + 220(15) = 1800 + 3300 = 5100
z(D) = 180(0) +220(18) = 3960
∴ the maximum value of z is 5100 at the point (10, 15).
Hence, 10 bicycles and 15 tricycles should be manufactured in order to have the maximum profit of ₹ 5100.

Question 9.
A factory produced two types of chemicals A and B. The following table gives the units of ingredients P and Q (per kg) of chemicals A and B as well as minimum requirements of P and Q and also cost per kg. chemicals A and B :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 35
Find the number of units of chemicals A and B should be produced so as to minimize the cost.
Solution:
Let the factory produce x units of chemical A and y units of chemical B. Then the total cost is z = ₹ (4x + 6y). This is the objective function which is to be minimized.
From the given table, the constraints are
x + 2y ≥ 80, 3x + y ≥ 75.
Also, the number of units x and y of chemicals A and B cannot be negative.
∴ x ≥ 0, y ≥ 0.
∴ the mathematical formulation of given LPP is
Minimize z = 4x + 6y, subject to
x + 2y ≥ 80, 3x + y ≥ 75, x ≥ 0, y ≥ 0.
First we draw the lines AB and CD whose equations are x + 2y = 80 and 3x + y = 75 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 36
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 37
The feasible region is shaded in the graph.
The vertices of the feasible region are A (80, 0), P and D (0, 75).
P is the point of intersection of the lines
x + 2y = 80 … (1)
and 3x + y = 75 … (2)
Multiplying equation (2) by 2, we get
6x + 2 y = 150
Subtracting equation (1) from this equation, we get
5x = 70 ∴ x = 14
∴ from (2), 3(14) + y = 75
∴ 42 + y = 75 ∴ y = 33
∴ P = (14, 33)
The values of the objective function z = 4x + 6y at these vertices are
z(a) = 4(80)+ 6(0) =320 + 0 = 320
z(P) = 4(14)+ 6(33) = 56+ 198 = 254
z(D) = 4(0) + 6(75) = 0 + 450 = 450
∴ the minimum value of z is 254 at the point (14, 33).
Hence, 14 units of chemical A and 33 units of chemical B are to be produced in order to have the j minimum cost of ₹ 254.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 10.
A company produces mixers and food processors. Profit on selling one mixer and one food processor is ₹ 2,000/- and ₹ 3,000/- respectively. Both the products are processed through three Machines A, B, C. The time required in hours by each product and total time available in hours per week on each machine are as follows :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 38
How many mixers and food processors should be produced to maximize the profit?
Solution:
Let the company produce x mixers and y food processors.
Then the total profit is z = ₹ (2000x + 3000y)
This is the objective function which is to be maximized. From the given table in the problem, the constraints are 3x + 3y ≤ 36, 5x + 2y ≤ 50, 2x + 6y ≤ 60
Also, the number of mixers and food processors cannot be negative,
∴ x ≥ 0, y ≥ 0.
∴ the mathematical formulation of given LPP is
Maximize z = 2000x + 3000y, subject to 3x + 3y ≤ 36, 5x + 2y ≤ 50, 2x + 6y ≤60, x ≥ 0, y ≥ 0.
First we draw the lines AB, CD and EF whose equations are 3x + 3y = 36, 5x + 2y = 50 and 2x + 6y = 60 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 39
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 40
The feasible region is OCPQFO which is shaded in the graph.
The vertices of the feasible region are O(0, 0), C(10, 0), P, Q and F(0,10).
P is the point of intersection of the lines
3x + 3y = 36 … (1)
and 5x + 2y = 50 … (2)
Multiplying equation (1) by 2 and equation (2) by 3, we get
6x + 6y = 72
15x + 6y = 150
On subtracting, we get
9x = 78
∴ x = \(\frac{26}{3}\)
∴ from (1), 3\(\left(\frac{26}{3}\right)\) + 3y = 36
∴ 3y = 10
∴ y = \(\frac{10}{3}\)
∴ P = \(\left(\frac{26}{3}, \frac{10}{3}\right)\)
Q is the point of intersection of the lines
3x + 3y = 36 … (1)
and 2x + 6y = 60 … (3)
Multiplying equation (1) by 2, we get
6x + 6y = 72
Subtracting equation (3), from this equation, we get
4x = 12
∴ x = 3
∴ from (1), 3(3) + 3y = 36
∴ 3y = 27
∴ y = 9
∴ Q = (3, 9)
The values of the objective function z = 2000x + 3000y at these vertices are
z(O) = 2000(0) + 3000(0) = 0 + 0 = 0
z(C) = 2000(10) + 3000(0) = 20000 + 0 = 20000
z(P) = 2000\(\left(\frac{26}{3}\right)\) + 3000\(\left(\frac{10}{3}\right)\) = \(\frac{52000}{3}+\frac{30000}{3}=\frac{82000}{3}\)
z(Q) = 2000(3) + 3000(9) = 6000 + 27000 = 33000
z(F) = 2000(0) + 3000(10) = 30000 + 0 = 30000
∴ the maximum value of z is 33000 at the point (3, 9).
Hence, 3 mixers and 9 food processors should be produced in order to get the maximum profit of ₹ 33,000.

Question 11.
A chemical company produces a chemical containing three basic elements A, B, C so that it has at least 16 liters of A, 24 liters of B and 18 liters of C. This chemical is made by mixing two compounds I and II. Each unit of compound I has 4 liters of A, 12 liters of B, 2 liters of C. Each unit of compound II has 2 liters of A, 2 liters of B and 6 liters of C. The cost per unit of compound I is ₹ 800/- and that of compound II is ₹ 640/-. Formulate the problem as L.P.P. and solve it to minimize the cost.
Solution:
Let the company buy x units of compound I and y units of compound II.
Then the total cost is z = ₹(800x + 640y).
This is the objective function which is to be minimized.
The constraints are as per the following table :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 41
From the table, the constraints are
4x + 2y ≥ 16, 12x + 2y ≥ 24, 2x + 6y ≥ 18.
Also, the number of units of compound I and compound II cannot be negative.
∴ x ≥ 0, y ≥ 0.
∴ the mathematical formulation of given LPP is
Minimize z = 800x + 640y, subject to 4x + 2y ≥ 16, 12x + 2y ≥ 24, 2x + 6y ≥ 18, x ≥ 0, y ≥ 0.
First we draw the lines AB, CD and EF whose equations are 4x + 2y = 16, 12x + 2y = 24 and 2x + 6y = 18
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 42
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 43
The feasible region is shaded in the graph.
The vertices of the feasible region are E(9, 0), P, Q, and D(0, 12).
P is the point of intersection of the lines
2x + 6y = 18 … (1)
and 4x + 2y = 16 … (2)
Multiplying equation (1) by 2, we get 4x + 12y = 36
Subtracting equation (2) from this equation, we get
10y = 20
∴ y = 2
∴ from (1), 2x + 6(2) = 18
∴ 2x = 6
∴ x = 3
∴ P = (3, 2)
Q is the point of intersection of the lines
12x + 2y = 24 … (3)
and 4x + 2y = 16 … (2)
On subtracting, we get
8x = 8 ∴ x = 1
∴ from (2), 4(1) + 2y = 16
∴ 2y = 12 ∴ y = 6
∴ Q = (1, 6)
The values of the objective function z = 800x + 640y at these vertices are
z(E) = 800(9)+ 640(0) =7200 + 0 = 7200
z(P) = 800(3) + 640(2) = 2400 + 1280 = 3680
z(Q) = 800(1) + 640(6) =800 + 3840 =4640
z(D) = 800(0) + 640(12) = 0 + 7680 = 7680
∴ the minimum value of z is 3680 at the point (3, 2).
Hence, the company should buy 3 units of compound I and 2 units of compound II to have the minimum cost of ₹ 3680.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 12.
A person makes two types of gift items A and B requires the services of a cutter and a finisher. Gift item A requires 4 hours of cutter’s time and 2 hours of finisher’s time. B requires 2 hours of cutter’s time and 4 hours of finisher’s time. The cutter and finisher have 208 hours and 152 hours available times respectively every month. The profit of one gift item of type A is ₹ 75/- and on gift item B is ₹ 125/-. Assuming that the person can sell all the gift items produced, determine how many gift items of each type should he make every month to obtain the best returns?
Solution:
Let x: number of gift item A
y: number of gift item B
As numbers of the items are never negative
x ≥ 0; y ≥ 0
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 44
Total time required for the cutter = 4x + 2y
Maximum available time 208 hours
∴ 4x+ 2y ≤ 208
Total time required for the finisher 2x +4y
Maximum available time 152 hours
2x + 4y ≤ 152
Total Profit is 75x + 125y
∴ L.P.P. of the above problem is
Minimize z = 75x + 125y
Subject to 4x+ 2y ≤ 208
2x + 4y ≤ 152
x ≥ 0; y ≥ 0
Graphical solution
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 45
Corner points
Now, Z at
x = (75x + 125y)
O(0, 0) = 75 × 0 + 125 × 0 = 0
A(52,0) = 75 × 52 + 125 × 0 = 3900
B(44, 16) = 75 × 44 + 125 × 16 = 5300
C(0, 38) = 75 × 0 + 125 × 38 = 4750
A person should make 44 items of type A and 16 Uems of type Band his returns are ₹ 5,300.

Question 13.
A firm manufactures two products A and B on which profit earned per unit ₹3/- and ₹4/- respectively. Each product is processed on two machines M1 and M2. The product A requires one minute of processing time on M1 and two minute of processing time on M2, B requires one minute of processing time on M1 and one minute of processing time on M2. Machine M1 is available for use for 450 minutes while M2 is available for 600 minutes during any working day. Find the number of units of product A and B to be manufactured to get the maximum profit.
Solution:
Let the firm manufactures x units of product
A and y units of product B.
The profit earned per unit of A is ₹3 and B is ₹ 4.
Hence, the total profit is z = ₹ (3x + 4y).
This is the linear function which is to be maximized.
Hence, it is the objective function.
The constraints are as per the following table :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 46
From the table, the constraints are
x + y ≤ 450, 2x + y ≤ 600
Since, the number of gift items cannot be negative, x ≥ 0, y ≥ o.
∴ the mathematical formulation of LPP is,
Maximize z = 3x + 4y, subject to x + y ≤ 450, 2x + y ≤ 600, x ≥ 0, y ≥ 0.
Now, we draw the lines AB and CD whose equations are x + y = 450 and 2x + y — 600 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 47
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 48
The feasible region is OCPBO which is shaded in the graph.
The vertices of the feasible region are O(0, 0), C(300, 0), P and B (0, 450).
P is the point of intersection of the lines
2x + y = 600 … (1)
and x + y = 450 … (2)
On subtracting, we get
∴ x = 150
Substituting x = 150 in equation (2), we get
150 + y = 450
∴ y = 300
∴ P = (150, 300)
The values of the objective function z = 3x + 4y at these vertices are
z(O) = 3(0) + 4(0) = 0 + 0 = 0
z(C) = 3(300) + 4(0) = 900 + 0 = 900
z(P) = 3(150) + 4(300) = 450 + 1200 = 1650
z(B) = 3(0) + 4(450) = 0 + 1800 = 1800
∴ z has the maximum value 1800 when x = 0 and y = 450 Hence, the firm gets maximum profit of ₹ 1800 if it manufactures 450 units of product B and no unit product A.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 14.
A firm manufacturing two types of electrical items A and B, can make a profit of ₹ 20/- per unit of A and ₹ 30/- per unit of B. Both A and B make use of two essential components a motor and a transformer. Each unit of A requires 3 motors and 2 transformers and each units of B requires 2 motors and 4 transformers. The total supply of components per month is restricted to 210 motors and 300 transformers. How many units of A and B should the manufacture per month to maximize profit? How much is the maximum profit?
Solution:
Let the firm manufactures x units of item A and y units of item B.
Firm can make profit of ₹ 20 per unit of A and ₹ 30 per unit of B.
Hence, the total profit is z = ₹ (20x + 30y).
This is the objective function which is to be maximized. The constraints are as per the following table :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 49
From the table, the constraints are
3x + 2y ≤ 210, 2x + 4y ≤ 300
Since, number of items cannot be negative, x ≥ 0, y ≥ 0.
Hence, the mathematical formulation of given LPP is :
Maximize z = 20x + 30y, subject to 3x + 2y ≤ 210, 2x + 4y ≤ 300, x ≥ 0, y ≥ 0.
We draw the lines AB and CD whose equations are 3x + 2y = 210 and 2x + 4y = 300 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Miscellaneous Exercise 7 50
The feasible region is OAPDO which is shaded in the graph.
The vertices of the feasible region are O (0, 0), A (70, 0), P and D (0, 75).
P is the point of intersection of the lines
2x + 4y = 300 … (1)
and 3x + 2y = 210 … (2)
Multiplying equation (2) by 2, we get
6x + 4y = 420
Subtracting equation (1) from this equation, we get
∴ 4x = 120 ∴ x = 30
Substituting x = 30 in (1), we get
2(30) + 4y = 300
∴ 4y = 240 ∴ y = 60
∴ P is (30, 60)
The values of the objective function z = 20x + 30y at these vertices are
z(O) = 20(0) + 30(0) = 0 + 0 = 0
z(A) = 20(70) + 30(0) = 1400 + 0 = 1400
z(P) = 20(30) + 30(60) = 600 + 1800 = 2400
z(D) = 20(0) + 30(75) = 0 + 2250 = 2250
∴ z has the maximum value 2400 when x = 30 and y = 60. Hence, the firm should manufactured 30 units of item A and 60 units of item B to get the maximum profit of ₹ 2400.

Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 7 Linear Programming Ex 7.4 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4

Question 1.
Maximize : z = 11x + 8y subject to x ≤ 4, y ≤ 6,
x + y ≤ 6, x ≥ 0, y ≥ 0.
Solution:
First we draw the lines AB, CD and ED whose equations are x = 4, y = 6 and x + y = 6 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 1
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 2
The feasible region is shaded portion OAPDO in the graph.
The vertices of the feasible region are O (0, 0), A (4, 0), P and D (0, 6)
P is point of intersection of lines x + y = 6 and x = 4.
Substituting x = 4 in x + y = 6, we get
4 + y = 6 ∴ y = 2 ∴ P is (4, 2).
∴ the corner points of feasible region are O (0, 0), A (4, 0), P(4, 2) and D(0 ,6).
The values of the objective function z = 11x + 8y at these vertices are
z (O) = 11(0) + 8(0) = 0 + 0 = 0
z(a) = 11(4) + 8(0) = 44 + 0 = 44
z (P) = 11(4) + 8(2) = 44 + 16 = 60
z (D) = 11(0) + 8(2) = 0 + 16 = 16
∴ z has maximum value 60, when x = 4 and y = 2.

Question 2.
Maximize : z = 4x + 6y subject to 3x + 2y ≤ 12,
x + y ≥ 4, x, y ≥ 0.
Solution:
First we draw the lines AB and AC whose equations are 3x + 2y = 12 and x + y = 4 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 3
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 4
The feasible region is the ∆ABC which is shaded in the graph.
The vertices of the feasible region (i.e. corner points) are A (4, 0), B (0, 6) and C (0, 4).
The values of the objective function z = 4x + 6y at these vertices are
z(a) = 4(4) + 6(0) = 16 + 0 = 16
z(B) = 4(0)+ 6(6) = 0 + 36 = 36
z(C) = 4(0) + 6(4) = 0 + 24 = 24
∴ has maximum value 36, when x = 0, y = 6.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 3.
Maximize : z = 7x + 11y subject to 3x + 5y ≤ 26
5x + 3y ≤ 30, x ≥ 0, y ≥ 0.
Solution:
First we draw the lines AB and CD whose equations are 3x + 5y = 26 and 5x + 3y = 30 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 5
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 6
The feasible region is OCPBO which is shaded in the graph.
The vertices of the feasible region are O (0, 0), C (6, 0), p and B(0, \(\frac{26}{5}\))
The vertex P is the point of intersection of the lines
3x + 5y = 26 … (1)
and 5x + 3y = 30 … (2)
Multiplying equation (1) by 3 and equation (2) by 5, we get
9x + 15y = 78
and 25x + 15y = 150
On subtracting, we get
16x = 72 ∴ x = \(\frac{72}{16}=\frac{9}{2}\) = 4.5
Substituting x = 4.5 in equation (2), we get
5(4.5) + 3y = 30
22.5 + 3y = 30
∴ 3y = 7.5 ∴ y = 2.5
∴ P is (4.5, 2.5)
The values of the objective function z = 7x + 11y at these corner points are
z (O) = 7(0) + 11(0) = 0 + 0 = 0
z (C) = 7(6) + 11(0) = 42 + 0 = 42
z (P) = 7(4.5) + 11 (2.5) = 31.5 + 27.5 = 59.0 = 59
z(B) = 7(0) + 11\(\left(\frac{26}{5}\right)=\frac{286}{5}\) = 57.2
∴ z has maximum value 59, when x = 4.5 and y = 2.5.

Question 4.
Maximize : z = 10x + 25y subject to 0 ≤ x ≤ 3,
0 ≤ y ≤ 3, x + y ≤ 5 also find maximum value of z.
Solution:
First we draw the lines AB, CD and EF whose equations are x = 3, y = 3 and x + y = 5 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 7
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 8
The feasible region is OAPQDO which is shaded in the i graph.
The vertices of the feasible region are O (0, 0), A (3, 0), P, Q and D(0, 3).
t P is the point of intersection of the lines x + y = 5 and x = 3.
Substituting x = 3 in x + y = 5, we get
3 + y = 5 ∴ y = 2
∴ P is (3, 2)
Q is the point of intersection of the lines x + y = 5 and y = 3
Substituting y = 3 in x + y = 5, we get
x + 3 = 5 ∴ x = 2
∴ Q is (2, 3)
The values of the objective function z = 10x + 25y at these vertices are
z(O) = 10(0) + 25(0) = 0 + 0 = 0
z(a) = 10(3) + 25(0) = 30 + 0 = 30
z(P) = 10(3) + 25(2) = 30 + 50 = 80
z(Q) = 10(2) + 25(3) = 20 + 75 = 95
z(D) = 10(0)+ 25(3) = 0 + 75 = 75
∴ z has maximum value 95, when x = 2 and y = 3.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
Maximize : z = 3x + 5y subject to x + 4y ≤ 24, 3x + y ≤ 21,
x + y ≤ 9, x ≥ 0, y ≥ 0 also find maximum value of z.
Solution:
First we draw the lines AB, CD and EF whose equations are x + 4y = 24, 3x + y = 21 and x + y = 9 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 9
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 10
The feasible region is OCPQBO which is shaded in the graph.
The vertices of the feasible region are O (0, 0), C (7, 0), P, Q and B (0, 6).
P is the point of intersection of the lines
3x + y = 21 … (1)
and x + y = 9 … (2)
On subtracting, we get 2x = 12 ∴ x = 6
Substituting x = 6 in equation (2), we get
6 + y = 9 ∴ y = 3
∴ P = (6, 3)
Q is the point of intersection of the lines
x + 4y = 24 … (3)
and x + y = 9 … (2)
On subtracting, we get
3y = 15 ∴ y = 5
Substituting y = 5 in equation (2), we get
x + 5= 9 ∴ x = 4
∴ Q = (4, 5)
∴ the corner points of the feasible region are 0(0,0), C(7, 0), P (6, 3), Q (4, 5) and B (0, 6).
The values of the objective function 2 = 3x + 5y at these corner points are
z(O) = 3(0)+ 5(0) = 0 + 0 = 0
z(C) = 3(7) + 5(0) = 21 + 0 = 21
z(P) = 3(6) + 5(3) = 18 + 15 = 33
z(Q) = 3(4) + 5(5) = 12 + 25 = 37
z(B) = 3(0)+ 5(6) = 0 + 30 = 30
∴ z has maximum value 37, when x = 4 and y = 5.

Question 6.
Minimize : z = 7x + y subject to 5x + y ≥ 5, x + y ≥ 3,
x ≥ 0, y ≥ 0.
Solution:
First we draw the lines AB and CD whose equations are 5x + y = 5 and x + y = 3 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 11
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 12
The feasible region is XCPBY which is shaded in the graph.
The vertices of the feasible region are C (3, 0), P and B (0, 5).
P is the point of the intersection of the lines
5x + y = 5
and x + y = 3
On subtracting, we get
4x = 2 ∴ x = \(\frac{1}{2}\)
Substituting x = \(\frac{1}{2}\) in x + y = 3, we get
\(\frac{1}{2}\) + y = 3
∴ y = \(\frac{5}{2}\) ∴ P = \(\left(\frac{1}{2}, \frac{5}{2}\right)\)
The values of the objective function z = 7x + y at these vertices are
z(C) = 7(3) + 0 = 21
z(B) = 7(0) + 5 = 5
∴ z has minimum value 5, when x = 0 and y = 5.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 7.
Minimize : z = 8x + 10y subject to 2x + y ≥ 7, 2x + 3y ≥ 15,
y ≥ 2, x ≥ 0, y ≥ 0.
Solution:
First we draw the lines AB, CD and EF whose equations are 2x + y = 7, 2x + 3y = 15 and y = 2 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 13
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 14
The feasible region is EPQBY which is shaded in the graph. The vertices of the feasible region are P, Q and B(0,7). P is the point of intersection of the lines 2x + 3y = 15 and y = 2.
Substituting y – 2 in 2x + 3y = 15, we get 2x + 3(2) = 15
∴ 2x = 9 ∴ x = 4.5 ∴ P = (4.5, 2)
Q is the point of intersection of the lines
2x + 3y = 15 … (1)
and 2x + y = 7 … (2)
On subtracting, we get
2y = 8 ∴ y = 4
∴ from (2), 2x + 4 = 7
∴ 2x = 3 ∴ x = 1.5
∴ Q = (1.5, 4)
The values of the objective function z = 8x + 10y at these vertices are
z(P) = 8(4.5) + 10(2) = 36 + 20 = 56
z(Q) = 8(1.5) + 10(4) = 12 + 40 = 52
z(B) = 8(0) +10(7) = 70
∴ z has minimum value 52, when x = 1.5 and y = 4

Question 8.
Minimize : z = 6x + 21y subject to x + 2y ≥ 3, x + 4y ≥ 4,
3x + y ≥ 3, x ≥ 0, y ≥ 0.
Solution:
First we draw the lines AB, CD and EF whose equations are x + 2y = 3, x + 4y = 4 and 3x + y = 3 respectively.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 15
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.4 16
The feasible region is XCPQFY which is shaded in the graph.
The vertices of the feasible region are C (4, 0), P, Q and F(0, 3).
P is the point of intersection of the lines x + 4y = 4 and x + 2y = 3
On subtracting, we get
2y = 1 ∴ y = \(\frac{1}{2}\)
Substituting y = \(\frac{1}{2}\) in x + 2y = 3, we get
x + 2\(\left(\frac{1}{2}\right)\) = 3
∴ x = 2
∴ P = (2, \(\frac{1}{2}\))
Q is the point of intersection of the lines
x + 2y = 3 … (1)
and 3x + y = 3 ….(2)
Multiplying equation (1) by 3, we get 3x + 6y = 9
Subtracting equation (2) from this equation, we get
5y = 6
∴ y = \(\frac{6}{5}\)
∴ from (1), x + 2\(\left(\frac{6}{5}\right)\) = 3
∴ x = 3 – \(\frac{12}{5}=\frac{3}{5}\)
Q ≡ \(\left(\frac{3}{5}, \frac{6}{5}\right)\)
The values of the objective function z = 6x + 21y at these vertices are
z(C) = 6(4) + 21(0) = 24
z(P) = 6(2) + 21\(\left(\frac{1}{2}\right)\)
= 12 + 10.5 = 22.5
z(Q)= 6\(\left(\frac{3}{5}\right)\) + 21\(\left(\frac{6}{5}\right)\)
= \(\frac{18}{5}+\frac{126}{5}=\frac{144}{5}\) = 28.8
2 (F) = 6(0) + 21(3) = 63
∴ z has minimum value 22.5, when x = 2 and y = \(\frac{1}{2}\).

Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 7 Linear Programming Ex 7.3 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3

Question 1.
A manufacturing firm produces two types of gadgets A and B, which are first processed in the foundry and then sent to a machine shop for finishing. The number of man-hours of labour required in each shop for production of A and B per unit and the number of man-hours available for the firm is as follows:
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3 1
Profit on the sale of A is ₹ 30 and B is ₹ 20 per units. Formulate the L.P.P. to have maximum profit.
Solution:
Let the number of gadgets A produced by the firm be x and the number of gadgets B produced by the firm be y.
The profit on the sale of A is ₹ 30 per unit and on the sale of B is ₹ 20 per unit.
∴ total profit is z = 30x + 20y.
This is a linear function which is to be maximized. Hence it is the objective function.
The constraints are as per the following table :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3 2
From the table total man hours of labour required for x units of gadget A and y units of gadget B in foundry is (10x + 6y) hours and total man hours of labour required in machine shop is (5x + 4y) hours.
Since, maximum time avilable in foundry and machine shops are 60 hours and 35 hours respectively.
Therefore, the constraints are 10x + 6y ≤ 60, 5x + 4y ≤ 35. Since, x and y cannot be negative, we have x ≥ 0, y ≥ 0. Hence, the given LPP can be formulated as :
Maximize z = 30x + 20y, subject to 10x + 6y ≤ 60, 5x + 4y ≤ 35, x ≥ 0, y ≥ 0.

Question 2.
In a cattle breading firm, it is prescribed that the food ration for one animal must contain 14, 22 and 1 units of nutrients A, B and C respectively. Two different kinds of fodder are available. Each unit of these two contains the following amounts of these three nutrients :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3 3
The cost of fodder 1 is ₹3 per unit and that of fodder ₹ 2, Formulate the L.P.P. to minimize the cost.
Solution:
Let x units of fodder 1 and y units of fodder 2 be prescribed.
The cost of fodder 1 is ₹ 3 per unit and cost of fodder 2 is ₹ 2 per unit.
∴ total cost is z = 3x + 2y
This is the linear function which is to be minimized. Hence it is the objective function. The constraints are as per the following table :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3 4
From table fodder contains (2x + y) units of nutrients A, (2x + 3y) units of nutrients B and (x + y) units of nutrients C. The minimum requirements of these nutrients are 14 units, 22 units and 1 unit respectively.
Therefore, the constraints are
2x + y ≥ 14, 2x + 3y ≥ 22, x + y ≥ 1
Since, number of units (i.e. x and y) cannot be negative, we have, x ≥ 0, y ≥ 0.
Hence, the given LPP can be formulated as
Minimize z = 3x + 2y, subject to
2x + y ≥ 14, 2x + 3y ≥ 22, x + y ≥ 1, x ≥ 0, y ≥ 0.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 3.
A company manufactures two types of chemicals A and B. Each chemical requires two types of raw material P and Q. The table below shows number of units of P and Q required to manufacture one unit of A and one unit of B and the total availability of P and Q.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3 5
The company gets profits of ₹350 and ₹400 by selling one unit of A and one unit of B respectively. (Assume that the entire production of A and B can be sold). How many units of the chemicals A and B should be manufactured so that the company get maximum profit? Formulate the problem as L.P.P. to maximize the profit.
Solution:
Let the company manufactures x units of chemical A and y units of chemical B. Then the total profit f to the company is p = ₹ (350x + 400y).
This is a linear function which is to be maximized.
Hence, it is the objective function.
The constraints are as per the following table:
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3 6
The raw material P required for x units of chemical A and y units of chemical B is 3x + 2y. Since, the maximum availability of P is 120, we have the first constraint as 3x + 2y ≤ 120.
Similarly, considering the raw material Q, we have : 2x + 5y ≤ 160.
Since, x and y cannot be negative, we have, x ≥ 0, y ≥ 0.
Hence, the given LPP can be formulated as :
Maximize p = 350x + 400y, subject to
3x + 2y ≤ 120, 2x + 5y ≤ 160, x ≥ 0, y ≥ 0.

Question 4.
A printing company prints two types of magazines A and B. The company earns ₹ 10 and ₹ 15 on magazines A and B per copy. These are processed on three machines I, II, III. Magazine A requires 2 hours on Machine I, 5 hours on Machine II and 2 hours on Machine III. Magazine B requires 3 hours on Machine I, 2 hours on Machine II and 6 hours on Machine III. Machines I, II, III are available for 36, 50, 60 hours per week respectively. Formulate the L.P.P. to determine weekly production of A and B, so that the total profit is maximum.
Solution:
Let the company prints x magazine of type A and y magazine of type B.
Profit on sale of magazine A is ₹ 10 per copy and magazine B is ₹ 15 per copy.
Therefore, the total earning z of the company is
z = ₹ (10x + 15y).
This is a linear function which is to be maximized.
Hence, it is the objective function.
The constraints are as per the following table:
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3 7
From the table, the total time required for Machine I is (2x + 3y) hours, for Machine II is (5x + 2y) hours and for Machine III is (2x + 6y) hours. The machines I, II, III are available for 36,50 and 60 hours per week. Therefore, the constraints are 2x + 3y ≤ 36, 5x + 2y ≤ 50, 2x + 6y ≤ 60.
Since x and y cannot be negative. We have, x ≥ 0, y ≥ 0. Hence, the given LPP can be formulated as :
Maximize z = 10x + 15y, subject to
2x + 3y ≤ 36, 5x + 2y ≤ 50, 2x + 6y ≤ 60, x ≥ 0, y ≥ 0.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
A manufacture produces bulbs and tubes. Each of these must be processed through two machines M1 and M2. A package of bulbs require 1 hour of work on Machine M1 and 3 hours of work on M2. A package of tubes require 2 hours on Machine M1 and 4 hours on Machine M2. He earns a profit of ₹ 13.5 per package of bulbs and ₹ 55 per package of tubes. Formulate the LLP to maximize the profit, if he operates the machine M1, for atmost 10 hours a day and machine M2 for atmost 12 hours a day.
Solution:
Let the number of packages of bulbs produced by manufacturer be x and packages of tubes be y. The manufacturer earns a profit of ₹ 13.5 per package of bulbs and ₹ 55 per package of tubes.
Therefore, his total profit is p = ₹ (13.5x + 55y)
This is a linear function which is to be maximized.
Hence, it is the objective function.
The constraints are as per the following table :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3 8
From the table, the total time required for Machine M1 is (x + 2y) hours and for Machine M2 is (3x + 4y) hours.
Given Machine M1 and M2 are available for atmost 10 hours and 12 hours a day respectively.
Therefore, the constraints are x + 2y ≤ 10, 3x + 4y ≤ 12. Since, x and y cannot be negative, we have, x ≥ 0, y ≥ 0. Hence, the given LPP can be formulated as :
Maximize p = 13.5x + 55y, subject to x + 2y ≤ 10, 3x + 4y ≤ 12, x ≥ 0, y ≥ 0.

Question 6.
A company manufactures two types of fertilizers F1 and F2. Each type of fertilizer requires
two raw materials A and B. The number of units of A and B required to manufacture one unit of fertilizer F1 and F2 and availability of the raw materials A and B per day are given in the
table below :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3 9
By selling one unit of F1 and one unit of F2, company gets a profit of ₹ 500 and ₹ 750
respectively. Formulate the problem as L.P.P. to maximize the profit.
Solution:
Let the company manufactures x units of fertilizers F1 and y units of fertilizers F1. Then the total profit to the company is
z = ₹(500x + 750y).
This is a linear function that is to be maximized. Hence, it is an objective function.
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3 10
The raw material A required for x units of Fertilizers F1 and y units of Fertilizers F2 is 2x + Since the maximum availability of A is 40, we have the first constraint as 2x + 3y ≤ 40.
Similarly, considering the raw material B, we have x + 4y ≤ 70.
Since, x and y cannot be negative, we have, x ≥ 0, y ≥ 0.
Hence, the given LPP can be formulated as:
Maximize z = 500x + 750y, subject to
2x + 3y ≤ 40, x + 4y ≤ 70, x ≥ 0, y ≥ 0.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 7.
A doctor has prescribed two different units of foods A and B to form a weekly diet for a sick person. The minimum requirements of fats, carbohydrates and proteins are 18, 28, 14 units respectively. One unit of food A has 4 units of fats. 14 units of carbohydrates and 8 units of protein. One unit of food B has 6 units of fat, 12 units of carbohydrates and 8 units of protein. The price of food A is ₹ 4.5 per unit and that of food B is ₹ 3.5 per unit. Form the L.P.P. so that the sick person’s diet meets the requirements at a minimum cost.
Solution:
Let the diet of sick person include x units of food A and y units of food B.
Then x ≥ 0, y ≥ 0.
The prices of food A and B are ₹ 4.5 and ₹ 3.5 per unit respectively.
Therefore, the total cost is z = ₹ (4.5x + 3.5y)
This is the linear function which is to be minimized.
Hence, it is objective function.
The constraints are as per the following table :
Maharashtra Board 12th Maths Solutions Chapter 7 Linear Programming Ex 7.3 11
From the table, the sick person’s diet will include (4x + 6y) units of fats, (14x + 12y) units of carbohydrates and (8x + 8y) units of proteins. The minimum requirements of these ingredients are 18 units, 28 units and 14 units respectively.
Therefore, the constraints are
4x + 6y ≥ 18, 14x + 12y ≥ 28, 8x + 8y ≥ 14.
Hence, the given LPP can be formulated as
Minimize z = 4.5x + 3.5y, subject to
4x + 6y ≥ 18, 14x + 12y ≥ 28, 8x + 8y ≥ 14, x ≥ 0, y ≥ 0.

Question 8.
If John drives a car at a speed of 60 kms/hour he has to spend ₹ 5 per km on petrol. If he drives at a faster speed of 90 kms/hour, the cost of petrol increases to ₹ 8 per km. He has ₹ 600 to spend on petrol and wishes to travel the maximum distance within an hour. Formulate the above problem as L.P.P.
Solution:
Let John travel xl km at a speed of 60 km/ hour and x1 km at a speed of 90 km/hour.
Therefore, time required to travel a distance of x1 km is \(\frac{x_{1}}{60}\) hours and the time required to travel a distance of
x2 km is \(\frac{x_{2}}{90}\) hours.
∴ total time required to travel is \(\left(\frac{x_{1}}{60}+\frac{x_{2}}{90}\right)\) hours.
Since he wishes to travel the maximum distance within an hour,
\(\frac{x_{1}}{60}+\frac{x_{2}}{90}\) ≤ 1
He has to spend ₹ 5 per km on petrol at a speed of 60 km/hour and ₹ 8 per km at a speed of 90 km/hour.
∴ the total cost of travelling is ₹ (5x1 + 8x2)
Since he has ₹ 600 to spend on petrol,
5x1 + 8x2 ≤ 600
Since distance is never negative, x1 ≥ 0, x2 ≥ 0.
Total distance travelled by John is z. = (x1 + x2) km.
This is the linear function which is to be maximized.
Hence, it is objective function.
Hence, the given LPP can be formulated as :
Maximize z = x1 + x2, subject to
\(\frac{x_{1}}{60}+\frac{x_{2}}{90}\) ≤ 1, 5x1 + 8x2 ≤ 600, x1 ≥ 0, x2 ≥ 0.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 9.
The company makes concrete bricks made up of cement and sand. The weight of a concrete brick has to be least 5 kg. Cement costs ₹ 20 per kg. and sand costs of ₹ 6 per kg. strength consideration dictate that a concrete brick should contain minimum 4 kg. of cement and not more than 2 kg. of sand. Form the L.P.P. for the cost to be minimum.
Solution:
Let the company use x1 kg of cement and x2 kg of sand to make concrete bricks.
Cement costs ₹ 20 per kg and sand costs ₹ 6 per kg.
∴ the total cost c = ₹ (20x1 + 6x2)
This is a linear function which is to be minimized.
Hence, it is the objective function.
Total weight of brick = (x1 + x2) kg
Since the weight of concrete brick has to be at least 5 kg,
∴ x1 + x2 ≥ 5.
Since concrete brick should contain minimum 4 kg of cement and not more than 2 kg of sand,
x1 ≥ 4 and 0 ≤ x2 ≤ 2
Hence, the given LPP can be formulated as :
Minimize c = 20x1 + 6x2, subject to
x1 + x2 ≥ 5, x1 ≥ 4, 0 ≤ x2 ≤ 2.