Practice Set 1.2 Algebra 10th Standard Maths Part 1 Chapter 1 Linear Equations in Two Variables Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 1.2 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 1 Linear Equations in Two Variables.

10th Standard Maths 1 Practice Set 1.2 Chapter 1 Linear Equations in Two Variables Textbook Answers Maharashtra Board

Class 10 Maths Part 1 Practice Set 1.2 Chapter 1 Linear Equations in Two Variables Questions With Answers Maharashtra Board

10th Maths 2 Practice Set 1.2 Question 1.
Complete the following table to draw graph of the equations.
i. x + y = 3
ii. x – y = 4
Answer:
i. x + y = 3
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 1
ii. x – y = 4
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 2

Linear Equations In Two Variables Practice Set 1.2  Question 2.
Solve the following simultaneous equations graphically.
i. x + y = 6 ; x – y = 4
ii. x + y = 5 ; x – y = 3
iii. x + y = 0 ; 2x – y = 9
iv. 3x – y = 2 ; 2x – y = 3
v. 3x – 4y = -7 ; 5x – 2y = 0
vi. 2x – 3y = 4 ; 3y – x = 4
Solution:
i. The given simultaneous equations are
x + y = 6                                                                                                        x – y = 4
∴ y = 6 – x                                                                                                     ∴ y = x – 4Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 3
The two lines intersect at point (5, 1).
∴ x = 5 and y = 1 is the solution of the simultaneous equations x + y = 6 and x – y = 4.

ii. The given simultaneous equations are
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 6
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 7
The two lines intersect at point (4, 1).
∴ x = 4 and y = 1 is the solution of the simultaneous equations x+y = 5 and x – y = 3.

iii. The given simultaneous equations are
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 4
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 5
The two lines intersect at point (3, -3).
∴ x = 3 and y = -3 is the solution of the simultaneous equations x + y = 0 and 2x – y = 9.

iv. The given simultaneous equations are
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 8
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 9
The two lines intersect at point (-1, -5).
∴ x = -1 and y = -5 is the solution of the simultaneous equations 3x- y = 2 and 2x- y = 3.

v. The given simultaneous equations are
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 10
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 11
The two lines intersect at point (1, 2.5).
∴ x = 1 and y = 2.5 is the solution of the simultaneous equations 3x – 4y = -7 and 5x – 2y = 0.

vi. The given simultaneous equations are
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 12
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 13
The two lines intersect at point (8, 4).
∴ x = 8 and y = 4 is the solution of the simultaneous equations 2x – 3y = 4 and 3y – x = 4.

10th Math Part 2 Practice Set 1.2  Question 1.
Solve the following simultaneous equations by graphical method. Complete the following tables to get ordered pairs.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 14
i. Plot the above ordered pairs on the same co-ordinate plane.
ii. Draw graphs of the equations.
iii. Note the co-ordinates of the point of intersection of the two graphs. Write solution of these equations. (Textbook pg. no. 8)
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 15 Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 16
The two lines intersect at point (-1, -2).
∴ (x , y) = (-1, -2) is the solution of the given simultaneous equations.

Mathematics Part 1 Standard 9 Practice Set 1.2 Answer  Question 1.
Solve the above equations by method of elimination. Check your solution with the solution obtained by graphical method. (Textbook pg. no. 8)
Solution:
The given simultaneous equations are
x – y = 1 …(i)
5x – 3y = 1 …(ii)
Multiplying equation (i) by 3, we get
3x – 3y = 3 …(iii)
Subtracting equation (iii) from (ii), we get
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 17
Substituting x = -1 in equation (i), we get
-1 -y= 1
∴ -y = 1 + 1
∴ -y = 2
∴ y = -2
∴ (x,y) = (-1, -2) is the solution of the given simultaneous equations.
∴ The solution obtained by elimination method and by graphical method is the same.

1.2 Maths Class 10 Question 2.
The following table contains the values of x and y co-ordinates for ordered pairs to draw the graph of 5x – 3y = 1.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 18
i. Is it easy to plot these points?
ii. Which precaution is to be taken to find ordered pairs so that plotting of points becomes easy? (Textbook pg. no. 8)
Solution:
i. No
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 19
The above numbers are non-terminating and recurring decimals.
∴ It is not easy to plot the given points.

ii. While finding ordered pairs, numbers should be selected in such a way that the co-ordinates obtained will be integers.

Linear Equations ¡n Two Variables Class 10 Maths Question 3.
To solve simultaneous equations x + 2y = 4; 3x + 6y = 12 graphically, following are the ordered pairs.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 20
Plotting the above ordered pairs, graph is drawn. Observe it and find answers of the following questions.
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 21
i. Are the graphs of both the equations different or same?
ii. What are the solutions of the two equations x + 2y = 4 and 3x + 6y = 12? How many solutions are possible?
iii. What are the relations between coefficients of x, coefficients of y and constant terms in both the equations?
iv. What conclusion can you draw when two equations are given but the graph is only one line? (Textbook pg. no. 9)
Solution:
i. The graphs of both the equations are same.
ii. The solutions of the given equations are (-2, 3), (0, 2), (1, 1.5), etc.
∴ Infinite solutions are possible.
iii. Ratio of coefficients of x = \(\frac { 1 }{ 3 } \)
Ratio of coefficients of y = \(\frac { 2 }{ 6 } \) = \(\frac { 1 }{ 3 } \)
Ratio of constant terms = \(\frac { 4 }{ 12 } \) = \(\frac { 1 }{ 3 } \)
∴ Ratios of coefficients of x = ratio of coefficients of y = ratio of the constant terms
iv. When two equations are given but the graph is only one line, the equations will have infinite solutions.

Class 10 Maths Part 1 Practice Set 1.2 Question 4.
Draw graphs of x- 2y = 4, 2x – 4y = 12 on the same co-ordinate plane. Observe it. Think of the relation between the coefficients of x, coefficients ofy and the constant terms and draw the inference. (Textbook pg. no. 10)
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 22 Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 23
ii. Ratio of coefficients of x =\(\frac { 1 }{ 2 } \)
Ratio of coefficients of y = \(\frac { -2 }{ -4 } \) = \(\frac { 1 }{ 2 } \)
Ratio of constant terms = \(\frac { 4 }{ 12 } \) = \(\frac { 1 }{ 3 } \)
∴ Ratio of coefficients of x = ratio of coefficients of y ratio of constant terms
iii. If ratio of coefficients of x = ratio of coefficients of y ≠ ratio of constant terms, then the graphs of the two equations will be parallel to each other.

Condition of consistency in Equations:
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.2 24

Class 10 Maths Digest

Practice Set 1.1 Algebra 10th Standard Maths Part 1 Chapter 1 Linear Equations in Two Variables Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 1.1 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 1 Linear Equations in Two Variables.

10th Standard Maths 1 Practice Set 1.1 Chapter 1 Linear Equations in Two Variables Textbook Answers Maharashtra Board

Class 10 Maths Part 1 Practice Set 1.1 Chapter 1 Linear Equations in Two Variables Questions With Answers Maharashtra Board

Question 1.
Complete the following activity to solve the simultaneous equations.
5x + 3y = 9 …(i)
2x-3y=12 …(ii)
Solution:
5x + 3y = 9 …(i)
2x-3y=12 …(ii)
Add equations (i) and (ii).
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.1 1

Question 2.
Solve the following simultaneous equations.
i. 3a + 5b = 26; a + 5b = 22
ii. x + 7y = 10; 3x – 2y = 7
iii. 2x – 3y = 9; 2x + y = 13
iv. 5m – 3n = 19; m – 6n = -7
v. 5x + 2y = -3;x + 5y = 4
vi. \(\frac { 1 }{ 3 } \) x+ y = \(\frac { 10 }{ 3 } \) ; 2x + \(\frac { 1 }{ 4 } \) y = \(\frac { 11 }{ 4 } \)
vii. 99x + 101y = 499 ; 101x + 99y = 501
viii. 49x – 57y = 172; 57x – 49y = 252
Solution:
i. 3a + 5b = 26 …(i)
a + 5b = 22 …(ii)
Subtracting equation (ii) from (i), we get
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.1 2
Substituting a = 2 in equation (ii), we get
2 + 5b = 22
∴ 5b = 22 – 2
∴ 5b = 20
∴ b = \(\frac { 20 }{ 5 } \) =4
∴ (a, b) = (2, 4) is the solution of the given simultaneous equations.

ii. x + 7y = 10
∴ x = 10 – 7y …(i)
3x – 2y = 7 …1(ii)
Substituting x = 10 – ly in equation (ii), we get
3 (10 – 7y) – 2y = 7
∴ 30 – 21y – 2y = 7
∴ -23y = 7 – 30
∴ -23y = -23
∴ y = \(\frac { -23 }{ -23 } \)
Substituting y = 1 in equation (i), we get
x = 10 – 7 (1)
= 10 – 7 = 3
∴ (x, y) = (3, 1) is the solution of the given simultaneous equations.

iii. 2x – 3y = 9 …(i)
2x + y = 13 …(ii)
Subtracting equation (ii) from (i), we get
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.1 3
∴ (x, y) = (6, 1) is the solution of the given simultaneous equations.

iv. 5m – 3n = 19 …(i)
m – 6n = -7
∴ m = 6n – 7 …(ii)
Substituting m = 6n – 7 in equation (i), we get
5(6n – 7) – 3n = 19
∴ 30n – 35 – 3n = 19
∴ 27n = 19 + 35
∴ 27n = 54
∴ n = \(\frac { 54 }{ 27 } \) = 2
Substituting n = 2 in equation (ii), we get
m = 6(2) – 7
= 12 – 7 = 5
∴ (m, n) = (5, 2) is the solution of the given simultaneous equations.

v. 5x + 2y = -3 …(i)
x + 5y = 4
∴ x = 4 – 5y …(ii)
Substituting x = 4 – 5y in equation (i), we get
5(4 – 5y) + 2y = -3
∴ 20 – 25y + 2y = -3
∴ -23y = -3 – 20
∴ -23y = -23
∴ y = \(\frac { -23 }{ -23 } \) = 1
Substituting y = 1 in equation (ii), we get
x = 4 – 5(1)
= 4 – 5 = -1
∴ (x, y) = (-1, 1) is the solution of the given simultaneous equations.

Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.1 4
Substituting y = 3 in equation (i), we get
x = 10 – 3(3)
= 10 – 9 = 1
∴ (x, y) = (1, 3) is the solution of the given simultaneous equations.

vii. 99x + 101 y = 499 …(i)
101 x + 99y = 501 …(ii)
Adding equations (i) and (ii), we get
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.1 5
Substituting x = 3 in equation (iii), we get
3 + y = 5
∴ y = 5 – 3 = 2
∴ (x, y) = (3, 2) is the solution of the given simultaneous equations.

viii. 49x – 57y = 172 …(i)
57x – 49y = 252 …(ii)
Adding equations (i) and (ii), we get
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.1 6
Substituting x = 7 in equation (iv), we get
7 + y = 10
∴ y = 10 – 7 = 3
∴ (x, y) = (7, 3) is the solution of the given simultaneous equations.

Complete the following table. (Textbook pg. no. 1)
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.1 7

Question 1.
Solve: 3x+ 2y = 29; 5x – y = 18 (Textbook pg. no. 3)
Solution:
3x + 2y = 29 …(i)
and 5x- y = 18 …(ii)
Let’s solve the equations by eliminating ‘y’.
Fill suitably the boxes below.
Multiplying equation (ii) by 2, we get
Maharashtra Board Class 10 Maths Solutions Chapter 1 Linear Equations in Two Variables Ex 1.1 8

Class 10 Maths Digest

Practice Set 7.4 Geometry 10th Standard Maths Part 2 Chapter 7 Mensuration Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 7.4 Geometry 10th Class Maths Part 2 Answers Solutions Chapter 7 Mensuration.

10th Standard Maths 2 Practice Set 7.4 Chapter 7 Mensuration Textbook Answers Maharashtra Board

Class 10 Maths Part 2 Practice Set 7.4 Chapter 7 Mensuration Questions With Answers Maharashtra Board

Practice Set 7.4 Geometry Class 10 Question 1. In the adjoining figure, A is the centre of the circle. ∠ABC = 45° and AC = 7\(\sqrt { 2 }\) cm. Find the area of segment BXC, (π = 3.14)
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.4 1
Solution:
In ∆ABC,
AC = AB … [Radii of same circle]
∴ ∠ABC = ∠ACB …[Isosceles triangle theorem]
∴ ∠ABC = ∠ACB = 45°
In ∆ABC,
∠ABC + ∠ACB + ∠BAC = 180° … [Sum of the measures of angles of a triangle is 180° ]
∴ 45° + 45° + ∠BAC = 180°
∴ 90° + ∠BAC = 180°
∴ ∠BAC = 90°
Let ∠BAC = θ = 90°
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.4 2
∴ The area of segment BXC is 27.93 cm2.

10th Class Geometry Practice Set 7.4 Question 2. In the adjoining figure, O is the centre of the circle.
m(arc PQR) = 60°, OP = 10 cm. Find the area of the shaded region.
(π = 3.14, \(\sqrt { 3 }\) = 1.73)
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.4 3
Given: m(arc PQR) = 60°, radius (r) = OP = 10 cm
To find: Area of shaded region.
Solution:
∠POR = m (arc PQR) …[Measure of central angle]
∴ ∠POR = θ = 60°
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.4 4
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.4 5
∴ The area of the shaded region is 9.08 cm2.

7.4 Class 10 Question 3. In the adjoining figure, if A is the centre of the circle, ∠PAR = 30°, AP = 7.5, find the area of the segment PQR. (π = 3.14)
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.4 6
Given: Central angle (θ) = ∠PAR = 30°,
radius (r) = AP = 7.5
To find: Area of segment PQR.
Solution:
Let ∠PAR = θ = 30°
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.4 7
∴ The area of segment PQR is 0.65625 sq. units.

Chapter 7 Maths Class 10 Question 4. In the adjoining figure, if O is the centre of the circle, PQ is a chord, ∠POQ = 90°, area of shaded region is 114 cm2, find the radius of the circle, (π = 3.14)
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.4 8
Given: Central angle (θ) = ∠POQ= 90°,
A (segment PRQ) = 114 cm2
To find: Radius (r).
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.4 9
…[Taking square root of both sides]
∴ r = 20 cm
∴ The radius of the circle is 20 cm.

Mensuration Questions for Class 10 Question 5. A chord PQ of a circle with radius 15 cm subtends an angle of 60° with the centre of the circle. Find the area of the minor as well as the major segment. (π = 3.14, \(\sqrt { 3 }\) = 1.73)
Given: Radius (r) =15 cm, central angle (θ) = 60°
To find: Areas of major and minor segments.
Solution:
Let chord PQ subtend ∠POQ = 60° at centre.
∴ θ = 60°
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.4 10
= 225 [0.0908]
= 20.43 cm2
∴ area of minor segment = 20.43 cm2
Area of circle = πr2
= 3.14 × 15 × 15
= 3.14 × 225
= 706.5 cm2
Area of major segment
= Area of circle – area of minor segment
= 706.5 – 20.43
= 686.07 cm2
Area of major segment 686.07 cm2
∴ The area of minor segment Is 20.43 cm2 and the area of major segment is 686.07 cm2.

Class 10 Maths Digest

Practice Set 7.3 Geometry 10th Standard Maths Part 2 Chapter 7 Mensuration Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 7.3 Geometry 10th Class Maths Part 2 Answers Solutions Chapter 7 Mensuration.

10th Standard Maths 2 Practice Set 7.3 Chapter 7 Mensuration Textbook Answers Maharashtra Board

Class 10 Maths Part 2 Practice Set 7.3 Chapter 7 Mensuration Questions With Answers Maharashtra Board

Practice Set 7.3 Geometry Class 10 Question 1.
Radius of a circle is 10 cm. Measure of an arc of the circle is 54°. Find the area of the sector associated with the arc. (π = 3.14)
Given : Radius (r) = 10 cm,
Measure of the arc (θ) = 54°
To find : Area of the sector.
Solution:
Area of sector = \(\frac{\theta}{360} \times \pi r^{2}\)
= \(\frac { 54 }{ 360 } \) × 3.14 × (10)2
= \(\frac { 3 }{ 20 } \) × 3.14 × 100
= 3 × 3.14 × 5
= 15 × 3.14
= 47.1 cm2
∴ The area of the sector is 47.1 cm2.

Mensuration Practice Set 7.3 Question 2.
Measure of an arc of a circle is 80° and its radius is 18 cm. Find the length of the arc. (π = 3.14)
Given: Radius (r) = 18 cm,
Measure of the arc (θ) = 80°
To find: Length of the arc.
Solution:
Length of arc = \(\frac{\theta}{360} \times 2 \pi r\) × 2πr
= \(\frac { 8 }{ 360 } \) × 2 × 3.14 × 18
= \(\frac { 2 }{ 9 } \) × 2 × 3.14 × 18
= 2 × 2 × 3.14 × 2 = 25.12 cm
∴ The length of the arc is 25.12 cm.

Practice Set 7.3 Geometry Question 3.
Radius of a sector of a circle is 3.5 cm and length of its arc is 2.2 cm. Find the area of the sector.
Solution:
Given: Radius (r) = 3.5 cm,
length of arc (l) = 2.2 cm
To find: Area of the sector.
Solution:
Area of sector = \(\frac{l \times \mathrm{r}}{2}\)
= \(\frac{2.2 \times 3.5}{2}\)
= 1.1 × 3.5 = 3.85 cm2
∴ The area of the sector is 3.85 cm2.

Question 4.
Radius of a circle is 10 cm. Area of a sector of the circle is 100 cm2. Find the area of its corresponding major sector, (π = 3.14)
Given: Radius (r) = 10 cm,
area of minor sector =100 cm2
To find: Area of maj or sector.
Solution:
Area of circle = πr2
= 3.14 × (10)2
= 3.14 × 100 = 314 cm2
Now, area of major sector
= area of circle – area of minor sector
= 314 – 100
= 214 cm2
∴ The area of the corresponding major sector is 214 cm2.

Question 5.
Area of a sector of a circle of radius 15 cm is 30 cm2. Find the length of the arc of the sector.
Given: Radius (r) =15 cm,
area of sector = 30 cm2
To find: Length of the arc (l).
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 1
∴ The length of the arc is 4 cm.

Practice Set 7.3 Question 6.
In the adjoining figure, radius of the circle is 7 cm and m (arc MBN) = 60°, find
i. Area of the circle.
ii. A(O-MBN).
iii. A(O-MCN).
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 2
Given: radius (r) = 7 cm,
m(arc MBN) = θ = 60°
Solution:
i. Area of circle = πr2
= \(\frac { 22 }{ 7 } \) × (7)2
= 22 × 7
= 154 cm2
∴ The area of the circle is 154 cm2

ii. Central angle (θ) = ∠MON = 60°
Area of sector = \(\frac{\theta}{360} \times \pi r^{2}\)
∴ A(O – MBN) = \(\frac { 60 }{ 360 } \) × \(\frac { 22 }{ 7 } \) × (7)2
\(\frac { 1 }{ 6 } \) × 22 × 7
= 25.67 cm2
= 25.7 cm2
∴ A(O-MBN) = 25.7 cm2

iii. Area of major sector = area of circle – area of minor sector
∴ A(O-MCN) = Area of circle – A(O-MBN)
= 154 – 25.7
∴ A(O-MCN) = 128.3 cm2

Question 7.
In the adjoining figure, radius of circle is 3.4 cm and perimeter of sector P-ABC is 12.8 cm. Find A(P-ABC).
Given: Radius (r) = 3.4 cm,
perimeter of sector 12.8 cm
To find: A(P-ABC)
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 3
Solution:
Perimeter of sector
= Iength of arc ABC + AP + CP
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3
∴ 12.8 = l + 3.4 + 3.4
∴ 12.8 = l + 6.8
∴ l = 12.8 – 6.8 = 6cm
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 4
∴ A(P-ABC) = 10.2 cm2

7.3 Class 10 Question 8.
In the adjoining figure, O is the centre of the sector. ∠ROQ = ∠MON = 60°. OR = 7 cm, and OM = 21 cm. Find the lengths of arc RXQ and (π = \(\frac { 22 }{ 7 } \))

Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3
Given: ∠ROQ = ∠MON = 60°,
radius (r) = OR = 7 cm, radius (R) = OM = 21 cm
To find: Lengths of arc RXQ and arc MYN.
Solution:
i. Length of arc RXQ = \(\frac{\theta}{360} \times 2 \pi r\)
= \(\frac { 60 }{ 2 } \) × 2 × \(\frac { 22 }{ 7 } \) × 7
= \(\frac { 1 }{ 6 } \) × 2 × 22
= 7.33 cm
ii. Length of arc MYN = \(\frac{\theta}{360} \times 2 \pi R\)
= \(\frac { 60 }{ 2 } \) × 2 × \(\frac { 22 }{ 7 } \) × 21
= \(\frac { 1 }{ 6 } \) × 2 × 22 × 3
= 22 cm
∴ The lengths of arc RXQ and arc MYN are 7.33 cm and 22 cm respectively.

Question 9.
In the adjoining figure, if A(P-ABC) = 154 cm2, radius of the circle is 14 cm, find
i. ∠APC,
ii. l(arc ABC).
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 5
Given: A(P – ABC) = 154 cm2,
radius (r) = 14 cm
Solution:
i. Let ∠APC = θ
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 6
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 7

Std 10 Geometry Mensuration Question 10.
Radius of a sector of a circle is 7 cm. If measure of arc of the sector is
i. 30°
ii. 210°
iii. three right angles, find the area of the sector in each case.
Given: Radius (r) = 7 cm
To find: Area of the sector.
Solution:
i. Measure of the arc (θ) = 30°
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 8
∴ Area of the sector is 12.83 cm2.
ii. Measure of the arc (θ) = 210°
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 9
∴ Area of the sector is 89.83 cm2.
iii. Measure of the arc (θ) = 3 right angle
= 3 × 90° = 270°
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 10
∴ Area of the sector is 115.50 cm2.

Mensuration Practice Question 11.
The area of a minor sector of a circle is 3.85 cm2 and the measure of its central angle is 36°. Find the radius of the circle.
Given: Area of minor sector = 3.85 cm2,
central angle (θ) = 36°
To find: Radius of the circle (r).
Solution:
Area of minor sector = \(\frac{\theta}{360} \times \pi r^{2}\)
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 11
∴ The radius of the circle ¡s 3.5 cm.

10th Geometry Practice Set 7.3 Question 12.
In the given figure, ꠸PQRS is a rectangle. If PQ = 14 cm, QR = 21 cm, find the areas of the parts x, y and z.
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 12
Given: In rectangle PQRS,
PQ = 14 cm, QR = 21 cm
To find: Areas of the parts x, y and z.
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 13
∠Q = ∠R = θ = 90° …[Angles of a rectangle]
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 14
For the sector (Q – PA),
PQ = QA …[Radii of the same circle]
∴ QA = 14 cm
Now, QR = QA + AR … [Q – A – R]
∴ 21 = 14 + AR
∴ AR = 7 cm
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 15
Area of rectangle = length × breadth
area of ꠸PQRS = PQ × QR
= 14 × 21
= 294 cm2
Area of part z = area of ꠸PQRS
– area of part x – area of part y
= 294 – 154 – 38.5
= 101.5 cm2
∴ The area of part x is 154 cm2, the area of part y is 38,5 cm2 and the area of part z is 101.5 cm2.

Question 13.
∆ALMN is an equilat triangle. LM = 14 cm. As shown in figure, three sectors are drawn with vertices as centres and radius 7 cm. Find,
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 16
i. A (∆ LMN).
ii. Area of any one of the sectors.
iii. Total area of all the three sectors.
iv. Area of the shaded region. (\(\sqrt { 3 }\) = 1.732 )
Given: In equilateral triangle LMN, LM =14 cm,
radius of sectors (r) = 7 cm
Solution:
i. ∆LMN is an equilateral triangle.
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 17
ii. Central angle (θ) = 60° …[Angle of an equilateral triangle]
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 18
∴ Area of one sector = 25.67 cm2
iii. Total area of all three sectors
= 3 × Area of one sector
= 3 × 25.67
= 77.01 cm2
∴ Total area of all three sectors = 77.01 cm2
iv. Area of shaded region
= A(∆LMN) – total area of all three sectors
= 84.87 – 77.01
= 7.86 cm2
∴ Area of shaded region = 7.86 cm

Maharashtra Board Class 10 Maths Chapter 7 Mensuration Intext Questions and Activities

Mensuration Practice Set 7.3 Question 1.
Complete the following table with the help of given figure. (Textbook pg. no. 149)
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 19
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 20
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 21

Question 2.
Observe the figures below. Radii of all circles are equal. Observe the areas of the shaded regions and complete the following table. (Textbook pg. no. 150)
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 22
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 23
Thus, if measure of an arc of a circle is θ, then
Area of sector (A) = \(\frac{\theta}{360}\) × Area of circle
∴ Area of sector (A) = \(\frac{\theta}{360}\) × πr2
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 24

Mensuration In Maths Question 3.
In the following figures, radii of all circles are equal. Observe the length of arc in each figure and complete the table. (Textbook pg. no. 151)
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 25
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 26
Thus, if the measure of an arc of a circle is 0, then
Length of arc (l) = \(\frac{\theta}{360}\) × circumference of circle
∴ Length of arc (l) = \(\frac{\theta}{360}\) × 2πr
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.3 27

Class 10 Maths Digest

Practice Set 7.2 Geometry 10th Standard Maths Part 2 Chapter 7 Mensuration Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 7.2 Geometry 10th Class Maths Part 2 Answers Solutions Chapter 7 Mensuration.

10th Standard Maths 2 Practice Set 7.2 Chapter 7 Mensuration Textbook Answers Maharashtra Board

Class 10 Maths Part 2 Practice Set 7.2 Chapter 7 Mensuration Questions With Answers Maharashtra Board

Question 1.
The radii of two circular ends of frustum shaped bucket are 14 cm and 7 cm. Height of the bucket is 30 cm. How many litres of water it can hold? (1 litre = 1000 cm3)
Given: Radii (r1) = 14 cm, and (r2) = 7 cm,
height (h) = 30 cm
To find: Amount of water the bucket can hold.
Solution:
Volume of frustum = \(\frac { 1 }{ 3 } \) πh (r12 + r22 + r1 × r2)
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.2 1
∴ The bucket can hold 10.78 litres of water.

Question 2.
The radii of ends of a frustum are 14 cm and 6 cm respectively and its height is 6 cm. Find its
i. curved surface area,
ii. total surface area,
iii. volume, (π = 3.14)
Given: Radii (r1) = 14 cm, and (r2) = 6 cm,
height (h) = 6 cm
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.2 2
i. Curved surface area of frustum
= πl (r1 + r2)
= 3.14 × 10(14 + 6)
= 3.14 × 10 × 20 = 628 cm2
∴ The curved surface area of the frustum is 628 cm2.

ii. Total surface area of frustum
= πl (r1+ r2) + πr12 + πr22
= 628 + 3.14 × (14)2 + 3.14 × (6)2
= 628 + 3.14 × 196 + 3.14 × 36
= 628 + 3.14(196 + 36)
= 628 + 3.14 × 232
= 628 + 728.48
= 1356.48 cm2
∴ The total surface area of the frustum is 1356.48 cm2.

iii. Volume of frustum
= \(\frac { 1 }{ 3 } \) πth(r12 +r22 + r1 × r2)
= \(\frac { 1 }{ 3 } \) × 3.14 × 6(142 + 62 + 14 × 6)
= 3.14 × 2(196 + 36 + 84)
= 3.14 × 2 × 316
= 1984.48 cm3
∴ The volume of the frustum is 1984.48 cm3.

Question 3.
The circumferences of circular faces of a frustum are 132 cm and 88 cm and its height is 24 cm. To find the curved surface area of frustum, complete the following activity. (π = \(\frac { 22 }{ 7 } \))
Solution:
Circumference1 = 27πr1 = 132 cm
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.2 3
Curved surface area of frustum = π (r1 + r2) l
= π (21 + 14) × 25
=π × 35 × 35
= \(\frac { 22 }{ 7 } \) × 35 × 25
= 2750 cm2

Class 10 Maths Digest

Practice Set 7.1 Geometry 10th Standard Maths Part 2 Chapter 7 Mensuration Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 7.1  Geometry 10th Class Maths Part 2 Answers Solutions Chapter 7 Mensuration.

10th Standard Maths 2 Practice Set 7.1 Chapter 7 Mensuration Textbook Answers Maharashtra Board

Class 10 Maths Part 2 Practice Set 7.1 Chapter 7  Mensuration Questions With Answers Maharashtra Board

Practice Set 7.1 Geometry 10th Question 1. Find the volume of a cone if the radius of its base is 1.5 cm and its perpendicular height is 5 cm.
Given: For the cone,
radius (r) = 1.5 cm,
perpendicular height (h) = 5 cm
To find: Volume of the cone.
Solution:
Volume of cone = \(\frac { 1 }{ 3 } \) πr2h
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.1 1
∴ The volume of the cone is 11.79 cm3.

Mensuration Practice Set 7.1 Question 2. Find the volume of a sphere of diameter 6 cm. [π = 3.14]
Given: For the sphere, diameter (d) = 6 cm
To find: Volume of the sphere.
Solution:
Radius (r) = \(\frac { d }{ 2 } \) = \(\frac { 6 }{ 2 } \) = 3 cm
Volume of sphere = \(\frac { 4 }{ 3 } \) πr2
= \(\frac { 4 }{ 3 } \) × 3.14 × (3)3
= 4 × 3.14 × 3 × 3
= 113.04 cm3
∴ The volume of the sphere is 113.04 cm3.

Practice Set 7.1 Geometry Class 10 Question 3. Find the total surface area of a cylinder if the radius of its base is 5 cm and height is 40 cm. [π = 3.14]
Given: For the cylinder,
radius (r) = 5 cm,
height (h) = 40 cm
To find: Total surface area of the cylinder.
Solution:
Total surface area of cylinder = 2πr (r + h)
= 2 × 3.14 × 5 (5 + 40)
= 2 × 3.14 × 5 × 45
= 1413 cm2
The total surface area of the cylinder is 1413 cm2.

Practice Set 7.1 Geometry Question 4. Find the surface area of a sphere of radius 7 cm.
Given: For the sphere, radius (r) = 7 cm
To find: Surface area of the sphere.
Solution:
Surface area of sphere = Aπr2
= 4 × \(\frac { 22 }{ 7 } \) × (7)2
= 88 × 7
= 616 cm2
∴ The surface area of the sphere is 616 cm2.

Practice Set 7.1 Question 5. The dimensions of a cuboid are 44 cm, 21 cm, 12 cm. It is melted and a cone of height 24 cm is made. Find the radius of its base.
Given: For the cuboid,
length (l) = 44 cm, breadth (b) = 21 cm,
height (h) = 12 cm
For the cone, height (H) = 24 cm
To find: Radius of base of the cone (r).
Solution:
Volume of cuboid = l × b × h
= 44 × 21 × 12 cm3
Volume of cone = \(\frac { 1 }{ 3 } \) πr2H
= \(\frac { 1 }{ 3 } \) × \(\frac { 22 }{ 7 } \) × r2 × 24 cm3
Since the cuboid is melted to form a cone,
∴ volume of cuboid = volume of cone
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.1 2
∴ r2 = 21 × 21
∴ r = 21 cm …[Taking square root of both sides]
∴ The radius of the base of the cone is 21 cm.

10th Class Geometry Practice Set 7.1 Question 6. Observe the measures of pots in the given figures. How many jugs of water can the cylindrical pot hold?
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.1 3
Given: For the conical water jug,
radius (r) = 3.5 cm, height (h) = 10 cm
For the cylindrical water pot,
radius (R) = 7 cm, height (H) = 10 cm
To find: Number of jugs of water the cylindrical pot can hold.
Solution:
Volume of conical jug = \(\frac { 1 }{ 3 } \) πr2h
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.1 4
∴ The cylindrical pot can hold 12 jugs of water.

Mensuration Class 10 Practice Set 7.1 Question 7. A cylinder and a cone have equal bases. The height of the cylinder is 3 cm and the area of its base is 100 cm2. The cone is placed up on the cylinder. Volume of the solid figure so formed is 500 cm3. Find the total height of the figure
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.1 5
Given: For the cylindrical part,
height (h) = 3 cm,
area of the base (πr2)= 100 cm2
Volume of the entire figure = 500 cm3
To find: Total height of the figure.
Solution:
A cylinder and a cone have equal bases.
∴ they have equal radii.
radius of cylinder = radius of cone = r
Area of base = 100 cm2
∴ πr2 =100 …(i)
Let the height of the conical part be H.
Volume of the entire figure
= Volume of the entire + Volume of cone
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.1 6
∴ Height of conical part (H) =6 cm
Total height of the figure = h + H
= 3 + 6
= 9 cm
∴ The total height of the figure is 9 cm.

10th Geometry Practice Set 7.1 Question 8. In the given figure, a toy made from a hemisphere, a cylinder and a cone is shown. Find the total area of the toy.
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.1
Given: For the conical Part,
height (h) = 4 cm, radius (r) = 3 cm
For the cylindrical part,
height (H) = 40 cm, radius (r) = 3 cm
For the hemispherical part,
radius (r) = 3 cm
To find: Total area of the toy.
Solution:
Slant height of cone (l) = \(\sqrt{\mathrm{h}^{2}+\mathrm{r}^{2}}\)
= \(\sqrt{\mathrm{4}^{2}+\mathrm{3}^{2}}\)
= \(\sqrt { 16+9 }\)
= \(\sqrt { 25 }\) = 5 cm
Curved surface area of cone = πrl
= π × 3 × 5
= 15π cm2
Curved surface area of cylinder = 2πrH
= 2 × π × 3 × 40
= 240π cm2
Curved surface area of hemisphere = 2πr2
= 2 × π × 32
= 18π cm2
Total area of the toy
= Curved surface area of cone + Curved surface area of cylinder + Curved surface area of hemisphere
= 15π + 240π + 18π
= 2737 π cm2
∴ The total area of the toy is 273π cm2.

7.1.8 Practice Question 9. In the given figure, a cylindrical wrapper of flat tablets is shown. The radius of a tablet is 7 mm and its thickness is 5 mm. How many such tablets are wrapped in the wrapper?
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.1 7
Given: For the cylindrical tablets,
radius (r) = 7 mm,
thickness = height(h) = 5 mm
For the cylindrical wrapper,
diameter (D) = 14 mm, height (H) = 10 cm
To find: Number of tablets that can be wrapped.
Solution:
Radius of wrapper (R) = \(\frac { Diameter }{ 2 } \)
= \(\frac { 14 }{ 2 } \) = 7 mm
Height of wrapper (H) = 10 cm
= 10 × 10 mm
= 100 mm
Volume of a cylindrical wrapper = πR2H
= π(7)2 × 100
= 4900π mm3
Volume of a cylindrical tablet = πr2h
= π(7)2 × 5
= 245 π mm3
No. of tablets that can be wrapped
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.1 8
∴ 20 tables can be wrapped in the wrapper

Class 10 Maths 7.1 Question 10. The given figure shows a toy. Its lower part is a hemisphere and the upper part is a cone. Find the volume and the surface area of the toy from the measures shown in the figure.
(π = 3.14)
Given: For the conical part,
height (h) = 4 cm, radius (r) = 3 cm
For the hemispherical part,
radius (r) = 3 cm
To find: Volume and surface area of the toy.
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.1 9
Now, volume of the toy
= Volume of cone + volume of hemisphere
= 12π + 18π
= 30π
= 30 × 3.14
= 94.20 cm3
Also, surface area of the toy
= Curved surface area of cone + Curved surface area of hemisphere
= 15π + 18π
= 33π
= 33 × 3.14
= 103.62 cm2
∴ The volume and surface area of the toy are 94.20 cm3 and 103.62 cm2 respectively.

Question 11.
Find the surface area and the volume of a beach ball shown in the figure.
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.1 10
Given: For the spherical ball,
diameter (d) = 42 cm
To find: Surface area and volume of the beach ball.
Solution:
Radius (r) = \(\frac { d }{ 2 } \) = \(\frac { 42 }{ 2 } \) = 21 cm
Surface area of sphere= 4πr2
= 4 × 3.14 × (21)2
= 4 × 3.14 × 21 × 21
= 5538.96 cm2
Volume of sphere = \(\frac { 4 }{ 3 } \) πr3
= \(\frac { 4 }{ 3 } \) × 3.14 × (21)3
= 4 × 3.14 × 7 × 21 × 21
= 38772.72 cm3
∴ The surface area and the volume of the beach ball are 5538.96 cm2 and 38772.72 cm3 respectively.

Question 12.
As shown in the figure, a cylindrical glass contains water. A metal sphere of diameter 2 cm is immersed in it. Find the volume of the water.
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.1 11
Given: For the metal sphere,
diameter (d) = 2 cm
For the cylindrical glass, diameter (D) =14 cm,
height of water in the glass (H) = 30 cm
To find: Volume of water in the glass.
Solution:
Let the radii of the sphere and glass be r and R respectively.
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.1 12
Volume of water with sphere in it = πR2H
= π × (7)2 × 30
= 1470π cm3
Volume of water in the glass
= Volume of water with sphere in it – Volume of sphere
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.1 13
∴ The volume of the water in the glass is 1468.67 π cm3 (i.e. 4615.80 cm3).

Maharashtra Board Class 10 Maths Chapter 7 Mensuration Intext Questions and Activities

Question 1.
The length, breadth and height of an oil can are 20 cm, 20 cm and 30 cm respectively as shown in the adjacent figure. How much oil will it contain? (1 litre = 1000 cm3) (Textbook pg. no.141)

Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.1
Given: For the cuboidal can,
length (l) = 20 cm,
breadth (b) = 20 cm,
height (h) = 30 cm
To find: Oil that can be contained in the can.
Solution:
Volume of cuboid = l × b × h
= 20 × 20 × 30
= 12000 cm3
= \(\frac { 12000 }{ 1000 } \) litres
= 12 litres
∴ The oil can will contain 12 litres of oil.

Question 2.
The adjoining figure shows the measures of a Joker’s dap. How much cloth is needed to make such a cap? (Textbook pg. no. 141)
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.1
Given: For the conical cap,
radius (r) = 10 cm,
slant height (l) = 21 cm
To find: Cloth required to make the cap.
Solution:
Cloth required to make the cap
= Curved surface area of the conical cap
= πrl = \(\frac { 22 }{ 7 } \) × 10 × 21
=22 × 10 × 3
= 660 cm2
∴ 660 cm2 of cloth will be required to make the cap.

Question 3.
As shown in the adjacent figure, a sphere is placed in a cylinder. It touches the top, bottom and the curved surface of the cylinder. If radius of the base of the cylinder is ‘r’,
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.1
i. what is the ratio of the radii of the sphere and the cylinder ?
ii. what is the ratio of the curved surface area of the cylinder and the surface area of the sphere?
iii. what is the ratio of the volumes of the cylinder and the sphere? (Textbook pg. no. 141)
Solution:
Radius of base of cylinder = radius of sphere
∴ Radius of sphere = r
Also, height of cylinder = diameter of sphere
∴ h = d
∴ h = 2r …(i)
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.1
∴ radius of sphere : radius of cylinder = 1 : 1.
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.1
∴ curved surface area of cylinder : surface area of sphere = 1:1.
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.1
∴ volume of cylinder : volume of sphere = 3 : 2.

Question 4.
Finding volume of a sphere using cylindrical beaker and water. (Textbook, pg. no. 142)
Maharashtra Board Class 10 Maths Solutions Chapter 7 Mensuration Practice Set 7.1
i. Take a ball and a beaker of the same radius.
ii. Cut a strip of paper of length equal to the diameter of the beaker.
iii. Draw two lines on the strip dividing it into three equal parts.
iv. Stick this strip on the beaker straight up from the bottom.
v. Fill the water in the beaker upto the first mark of the strip from bottom.
vi. Push the ball in the beaker so that it touches the bottom.
Observe how much water level rises.
You will notice that the water level has risen exactly upto the total height of the strip. Try to obtain the formula for volume of sphere using the volume of the cylindrical beaker.
Solution:
Suppose volume of beaker upto height 2r is V.
V = πr2 h
∴ V = πr2(2r) …[∵ h = 2r]
∴ V = 2πr3
But, V = volume of the ball + volume of water in the beaker
∴ 2πr3 = Volume of the ball + \(\frac { 1 }{ 3 } \) × 2πr3
∴ Volume of the ball = 2πr3 – \(\frac { 2 }{ 3 } \) πr3
= \(\frac{6 \pi r^{3}-2 \pi r^{3}}{3}\)
∴ Volume of the ball = \(\frac { 4 }{ 3 } \) πr3
∴ Volume of a sphere = \(\frac { 4 }{ 3 } \) πr3

Class 10 Maths Digest

Problem Set 6 Geometry 10th Standard Maths Part 2 Chapter 6 Trigonometry Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Problem Set 6 Geometry 10th Class Maths Part 2 Answers Solutions Chapter 6 Trigonometry.

10th Standard Maths 2 Problem Set 6 Chapter 6 Trigonometry Textbook Answers Maharashtra Board

Class 10 Maths Part 2 Problem Set 6 Chapter 6 Trigonometry Questions With Answers Maharashtra Board

Question 1.
Choose the correct alternative answer for the following questions.

i. sin θ.cosec θ = ?
(A) 1
(B) 0
(C) \(\frac { 1 }{ 2 } \)
(D) \(\sqrt { 2 }\)
Answer:
(A)

ii. cosec 45° = ?
(A) \(\frac{1}{\sqrt{2}}\)
(B) \(\sqrt { 2 }\)
(C) \(\frac{\sqrt{3}}{2}\)
(D) \(\frac{1}{\sqrt{3}}\)
Answer:
(B)

iii. 1 + tan2 θ = ?
(A) cot2 θ
(B) cosec2 θ
(C) sec2 θ
(D) tan2 θ
Answer:
(C)

iv. When we see at a higher level, from the horizontal line, angle formed is ______
(A) angle of elevation.
(B) angle of depression.
(C) 0
(D) straight angle.
Answer:
(A)

Question 2.
If sin θ = \(\frac { 11 }{ 61 } \), find the value of cos θ using trigonometric identity.
Solution:
sin θ = \(\frac { 11 }{ 61 } \) … [Given]
We know that,
sin2 θ + cos2 θ = 1
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Problem Set 6 1
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Problem Set 6 2
…[Taking square root of both sides]

Question 3.
If tan θ = 2, find the values of other trigonometric ratios.
Solution:
tan θ = 2 …[Given]
We know that,
1 + tan2 θ = sec7 θ
∴ 1 + (2)7 = sec7 θ
∴ 1 + 4 = sec7 θ
∴ sec7 θ = 5
∴ sec θ = \(\sqrt { 5 }\) …[Taking square root of both sides]
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Problem Set 6 3

Question 4.
If sec θ = \(\frac { 13 }{ 12 } \), find the values of other trigonometric ratios.
Solution:
sec θ = \(\frac { 13 }{ 12 } \) … [Given]
We know that,
1 + tan2 θ = sec2 θ
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Problem Set 6 4
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Problem Set 6 5
∴ sin θ = \(\frac { 5 }{ 13 } \), cos θ = \(\frac { 12 }{ 13 } \), tan θ = \(\frac { 5 }{ 12 } \), cot θ = \(\frac { 12 }{ 5 } \), cosec θ = \(\frac { 13 }{ 5 } \)

Question 5.
Prove the following:
i. sec θ (1 – sin θ) (sec θ + tan θ) = 1
ii. (sec θ + tan θ) (1 – sin θ) = cos θ
iii. sec2 θ + cosec2 θ = sec2 θ × cosec2 θ
iv. cot2 θ – tan2 θ = cosec2 θ – sec2 θ
v. tan4 θ + tan2 θ = sec4 θ – sec2 θ
vi. \(\frac{1}{1-\sin \theta}+\frac{1}{1+\sin \theta}\) = 2 sec2 θ
vii. sec6 x – tan6 x = 1 + 3 sec2 x × tan2 x
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Problem Set 6 6
Proof:
i. L.H.S. = sec θ (1 – sin θ) (sec θ + tan θ)
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Problem Set 6 7
∴ sec θ (1 – sin θ) (sec θ + tan θ) = 1

ii. L.H.S. = (sec θ + tan θ) (1 – sin θ)
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Problem Set 6 8
∴ (sec θ + tan θ) (1 – sin θ) = cos θ

iii. L.H.S. = sec2 θ + cosec2 θ
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Problem Set 6 9
∴ sec2 θ + cosec2 θ = sec2 θ × cosec2 θ

iv. L.H.S. = cot2 θ – tan2 θ
= (cosec2 θ – 1) – (sec2 θ – 1)
[∵ tan2 θ = sec2 θ – 1,
cot2 θ = cosec2 θ – 1]
= cosec2 θ – 1 – sec2 θ + 1
cosec2 θ – sec2 θ
= R.H.S.
∴ cot2 θ – tan2 θ = cosec2 θ – sec2 θ

v. L.H.S. = tan4 θ + tan2 θ
= tan2 θ (tan2 θ + 1)
= tan2 θ. sec2 θ
…[∵ 1 + tan2 θ = sec2 θ]
= (sec2 θ – 1) sec2 θ
…[∵ tan2 θ = sec2 θ – 1]
= sec4 θ – sec2 θ
= R.H.S.
∴ tan4 θ + tan2 θ = sec4 θ – sec2 θ

Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Problem Set 6 10

vii. L.H.S. = sec6 x – tan6 x
= (sec2 x)3 – tan6 x
= (1 + tan2 x)3 – tan6 x …[∵ 1 + tan2 θ = sec2 θ]
= 1 + 3tan2 x + 3(tan2 x)2 + (tan2 x)3 – tan6 x …[∵ (a + b)3 = a3 + 3a2b + 3ab2 + b3]
= 1 + 3 tan2 x (1 + tan2 x) + tan6 x – tan6 x
= 1 + 3 tan2 x sec2 x …[∵ 1 + tan2 θ = sec2 θ]
= R.H.S.
∴ sec3x – tan6x = 1 + 3sec2x.tan2x
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Problem Set 6 11
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Problem Set 6 12
x. We know that,
sin2 θ + cos2 θ = 1
∴ 1 – sin2 θ = cos2 θ
∴ (1 – sin θ) (1 + sin θ) = cos θ. cos θ
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Problem Set 6 13
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Problem Set 6 14
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Problem Set 6 15

Question 6.
A boy standing at a distance of 48 metres from a building observes the top of the building and makes an angle of elevation of 30°. Find the height of the building.
Solution:
Let AB represent the height of the building and point C represent the position of the boy.
Angle of elevation = ∠ACB = 30°
BC = 48 m
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Problem Set 6 16
In right angled ∆ABC,
tan 30° = \(\frac { AB }{ BC } \) … [By definition]
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Problem Set 6 17
∴ The height of the building is 16\(\sqrt { 3 }\) m.

Question 7.
From the top of the lighthouse, an observer looks at a ship and finds the angle of depression to be 30°. If the height of the lighthouse is 100 metres, then find how far the ship is from the lighthouse.
Solution:
Let AB represent the height of lighthouse and point C represent the position of the ship.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Problem Set 6 18
Angle of depression ∠PAC 30°
AB = 100m.
Now, ray AP || seg BC
∴ ∠ACB = ∠PAC … [Alternate angles]
∴ ∠ACB = 30°
AB = 100m
In right angled ∆ABC,
tan 30° = \(\frac { AB }{ BC } \) …[By definition]
∴ \(\frac{1}{\sqrt{3}}=\frac{100}{\mathrm{BC}}\)
∴ BC = 100\(\sqrt { 3 }\)m
∴ The ship is 1oo\(\sqrt { 3 }\)m far from the lighthouse.

Question 8.
Two buildings are in front of each other on a road of width 15 metres. From the top of the first building, having a height of 12 metre, the angle of elevation of the top of the second building is 30°. What is the height of the second building?
Solution:
Let AB and CD represent the heights of the two buildings, and BD represent the width of the road.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Problem Set 6 19
Draw seg AM ⊥ seg CD
Angle of elevation = ∠CAM = 30°
AB = 12m
BD = 15m
In ꠸ ABDM,
∠B = ∠D = 90°
∠M 90° …[segAM ⊥ segCD]
∠A 90° …[Remaining angle of ꠸ABDM]
꠸ABDM is a rectangle …[Each angle is 90°]
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Problem Set 6 20
∴ The height of the second building is 20.65 m.

Question 9.
A ladder on the platform of a fire brigade van can be elevated at an angle of 70° to the maximum. The length of the ladder can be extended upto 20 m. If the platform is 2 m above the ground, find the maximum height from the ground upto which the ladder can reach. (sin 70° = 0.94)
Solution:
Let AB represent the length of the ladder and AE represent the height of the platform.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Problem Set 6 21
Draw seg AC ⊥ seg BD.
Angle of elevation = ∠BAC = 70°
AB = 20 m
AE = 2m
In right angled ∆ABC,
sin 70° = \(\frac { BC }{ AB } \) …..[By definition]
∴ 0.94 = \(\frac { BC }{ 20 } \)
∴ BC = 0.94 × 20
= 18.80 m
In ꠸ACDE,
∠E = ∠D = 90°
∠C = 90° … [seg AC ⊥ seg BD]
∴ ∠A = 90° … [Remaining angle of ꠸ACDE]
∴ ꠸ACDE is a rectangle. … [Each angle is 90°]
∴ CD = AE = 2 m … [Opposite sides of a rectangle]
Now, BD = BC + CD … [B – C – D]
= 18.80 + 2
= 20.80 m
∴ The maximum height from the ground upto which the ladder can reach is 20.80 metres.

Question 10.
While landing at an airport, a pilot made an angle of depression of 20°. Average speed of the plane was 200 km/hr. The plane reached the ground after 54 seconds. Find the height at which the plane was when it started landing, (sin 20° = 0.342)
Solution:
Let AC represent the initial height and point A represent the initial position of the plane.
Let point B represent the position where plane lands.
Angle of depression = ∠EAB = 20°
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Problem Set 6 22
Now, seg AE || seg BC
∴ ∠ABC = ∠EAB … [Alternate angles]
∴ ∠ABC = 20°
Speed of the plane = 200 km/hr
= 200 × \(\frac { 1000 }{ 3600 } \) m/sec
= \(\frac { 500 }{ 9 } \) m/sec
∴ Distance travelled in 54 sec = speed × time
= \(\frac { 500 }{ 9 } \) × 54
= 3000 m
∴ AB = 3000 m
In right angled ∆ABC,
sin 20° = \(\frac { AC }{ AB } \) ….[By definition]
∴ 0.342 = \(\frac { AC }{ 3000 } \)
∴ AC = 0.342 × 3000
= 1026 m
∴ The plane was at a height of 1026 m when it started landing.

Class 10 Maths Digest

Practice Set 6.2 Geometry 10th Standard Maths Part 2 Chapter 6 Trigonometry Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 6.2 Geometry 10th Class Maths Part 2 Answers Solutions Chapter 6 Trigonometry.

10th Standard Maths 2 Practice Set 6.2 Chapter 6 Trigonometry Textbook Answers Maharashtra Board

Class 10 Maths Part 2 Practice Set 6.2 Chapter 6 Trigonometry Questions With Answers Maharashtra Board

Question 1.
A person is standing at a distance of 80 m from a church looking at its top. The angle of elevation is of 45°. Find the height of the church.
Solution:
Let AB represent the height of the church and point C represent the position of the person.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Practice Set 6.2 1
BC = 80 m
Angle of elevation = ∠ACB = 45°
In right angled ∆ABC,
tan 45° = \(\frac { AB }{ BC } \) … [By definition]
∴ 1 = \(\frac { AB }{ 80 } \)
∴ AB = 80m
∴ The height of the church is 80 m.

Question 2.
From the top of a lighthouse, an observer looking at a ship makes angle of depression of 60°. If the height of the lighthouse is 90 metre, then find how far the ship is from the lighthouse. ( \(\sqrt { 3 }\) = 1.73)
Solution:
Let AB represent the height of lighthouse and point C represent the position of the ship.
AB = 90 m
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Practice Set 6.2 2
Angle of depression = ∠PAC = 60°
Now, ray AP || seg BC
∴ ∠ACB = ∠PAC … [Alternate angles]
∴ ∠ACB = 60°
In right angled ∆ABC,
tan 60° = \(\frac { AB }{ BC } \) … [By definition]
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Practice Set 6.2 3
∴ The ship is 51.90 m away from the lighthouse.

Question 3.
Two buildings are facing each other on a road of width 12 metre. From the top of the first building, which is 10 metre high, the angle of elevation of the top of the second is found to be 60°. What is the height of the second building?
Solution:
Let AB and CD represent the heights of the two buildings, and BD represent the width of the road.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Practice Set 6.2 4
Draw seg AM ⊥ seg CD.
Angle of elevation = ∠CAM = 60°
AB = 10 m
BD= 12 m
In ꠸ABDM,
∠B = ∠D = 90°
∠M = 90° … [seg AM ⊥ seg CD]
∴ ∠A = 90° … [Remaining angle of ꠸ABDM]
∴ ꠸ABDM is a rectangle …. [Each angle is 90°]
∴ AM = BD = 12 m opposite sides
DM = AB = 10 m of a rectangle
In right angled ∆AMC,
tan 60° = \(\frac { CM }{ AM } \) …[By definition]
∴ \(\sqrt { 3 }\) = \(\frac { CM }{ 12 } \)
∴ CM = 12\(\sqrt { 3 }\) m
Now, CD = DM + CM … [C – M – D]
∴ CD = (10 + 12\(\sqrt { 3 }\))m
= 10 + 12 × 1.73
= 10 + 20.76 = 30.76
∴ The height of the second building is 30.76 m.

Question 4.
Two poles of heights 18 metre and 7 metre are erected on a ground. The length of the wire fastened at their tops is 22 metre. Find the angle made by the wire with the horizontal.
Solution:
Let AB and CD represent the heights of two poles, and AC represent the length of the wire.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Practice Set 6.2 5
Draw seg AM ⊥ seg CD.
Angle of elevation = ∠CAM = θ
AB = 7 m
CD = 18 m
AC = 22 m
In ꠸ABDM,
∠B = ∠D = 90°
∠M = 90° …[seg AM ⊥ seg CD]
∴ ∠A = 90° … [Remaining angle of ꠸ABDM]
∴ □ABDM is a rectangle. … [Each angle is 90°]
∴ DM = AB = 7 m … [Opposite sides of a rectangle]
Now, CD = CM + DM … [C – M – D]
∴ 18 = CM + 7
∴ CM = 18 – 7 = 11 m
In right angled ∆AMC,
sin θ = \(\frac { CM }{ AC } \) …..[By definition]
∴ sin θ = \(\frac { 11 }{ 22 } \) = \(\frac { 1 }{ 2 } \)
But, sin 30° = \(\frac { 1 }{ 2 } \)
∴ θ = 30°
∴ The angle made by the wire with the horizontal is 30°.

Question 5.
A storm broke a tree and the treetop rested 20 m from the base of the tree, making an angle of 60° with the horizontal. Find the height of the tree.
Solution:
Let AB represent the height of the tree.
Suppose the tree broke at point C and its top touches the ground at D.
AC is the broken part of the tree which takes position CD such that ∠CDB = 60°
∴ AC = CD …(i)
BD = 20 m
In right angled ∆CBD,
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Practice Set 6.2 6
tan 60° = \(\frac { BC }{ BD } \) … [By definition]
∴ \(\sqrt { 3 }\) = \(\frac { BC }{ 20 } \)
∴ BC = 20\(\sqrt { 3 }\) m
Also, cos 60° = \(\frac { BC }{ CD } \) … [By definition]
∴ \(\frac { 1 }{ 2 } \) = \(\frac { 20 }{ CD } \)
∴ CD = 20 × 2 = 40 m
∴ AC = 40 m …[From(i)]
Now, AB = AC + BC ….[A – C – B]
= 40 + 20\(\sqrt { 3 }\)
= 40 + 20 × 1.73
= 40 + 34.6
= 74.6
∴ The height of the tree is 74.6 m.

Question 6.
A kite is flying at a height of 60 m above the ground. The string attached to the kite is tied at the ground. It makes an angle of 60° with the ground. Assuming that the string is straight, find the length of the string. (\(\sqrt { 3 }\) = 1.73)
Solution:
Let AB represent the height at which kite is flying and point C represent the point where the string is tied at the ground.
∠ACB is the angle made by the string with the ground.
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Practice Set 6.2 7
∠ACB = 60°
AB = 60 m
In right angled ∆ABC,
sin 60° = \(\frac { AB }{ AC } \) … [By definition]
Maharashtra Board Class 10 Maths Solutions Chapter 6 Trigonometry Practice Set 6.2 8
∴ AC = 40 \(\sqrt { 3 }\) = 40 × 1.73 = 69.20 m
∴ The length of the string is 69.20 m.

Class 10 Maths Digest

Problem Set 4 Geometry 10th Standard Maths Part 2 Chapter 4 Geometric Constructions Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Problem Set 4 Geometry 10th Class Maths Part 2 Answers Solutions Chapter 4 Geometric Constructions.

10th Standard Maths 2 Problem Set 4 Chapter 4 Geometric Constructions Textbook Answers Maharashtra Board

Class 10 Maths Part 2 Problem Set 4 Chapter 1 Geometric Constructions Questions With Answers Maharashtra Board

Question 1.
Select the correct alternative for each of the following questions.

i. The number of tangents that can be drawn to a circle at a point on the circle is ______
(A) 3
(B) 2
(C) 1
(D) 0
Answer:
(C)

ii. The maximum number of tangents that can be drawn to a circle from a point outside it is ______
(A) 2
(B) 1
(C) one and only one
(D) 0
Answer:
(A)

iii. If ∆ABC ~ ∆PQR and \(\frac { AB }{ PQ } \) = \(\frac { 7 }{ 5 } \), then ______
(A) AABC is bigger.
(B) APQR is bigger.
(C) both triangles will be equal
(D) can not be decided
Answer:
(A)

Question 2.
Draw a circle with centre O and radius 3.5 cm. Take point P at a distance 5.7 cm from the centre. Draw tangents to the circle from point P.
Solution:
Analysis:
As shown in the figure, let P be a point in the exterior of circle at a distance of 5.7 cm.
Let PQ and PR be the tangents to the circle at points Q and R respectively.
∴ seg OQ ⊥ tangent PQ …[Tangent is perpendicular to radius]
∴ ∠OQP = 90°
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Problem Set 4 1
∴ point Q is on the circle having OP as diameter. …[Angle inscribed in a semicircle is a right angle]
Similarly, point R also lies on the circle having OP as diameter.
∴ Points Q and R lie on the circle with OP as diameter.
On drawing a circle with OP as diameter, the points where it intersects the circle with centre O, will be the positions of points Q and R respectively.
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Problem Set 4 2

Question 3.
Draw any circle. Take any point A on it and construct tangent at A without using the centre of the circle.
Solution:
Analysis:
As shown in the figure, line l is a tangent to the circle at point A.
seg BA is a chord of the circle and ∠BCA is an inscribed angle.
By tangent secant angle theorem,
∠BCA = ∠BAR
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Problem Set 4 3
By converse of tangent secant angle theorem,
If we draw ∠BAR such that ∠BAR = ∠BCA, then ray AR (i.e. line l) is a tangent at point A.
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Problem Set 4 4

Question 4.
Draw a circle of diameter 6.4 cm. Take a point R at a distance equal to its diameter from the centre. Draw tangents from point R.
Solution:
Diameter of circle = 6.4 cm 6.4
Radius of circle = \(\frac { 6.4 }{ 2 } \) = 3.2 cm
Analysis:
As shown in the figure, let R be a point in the exterior of circle at a distance of 6.4 cm.
Let RQ and RS be the tangents to the circle at points Q and S respectively.
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Problem Set 4 5
∴ seg PQ ⊥tangent RQ …[Tangent is perpendicular to radius]
∴ ∠PQR = 90°
∴ point Q is on the circle having PR as diameter. …[Angle inscribed in a semicircle is a right angle]
Similarly,
Point S also lies on the circle having PR as diameter.
∴ Points Q and S lie on the circle with PR as diameter.
On drawing a circle with PR as diameter, the points where it intersects the circle with centre P, will be the positions of points Q and S respectively.
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Problem Set 4 6

Question 5.
Draw a circle with centre P. Draw an arc AB of 100° measure. Draw tangents to the circle at point A and point B.
Solution:
m(arc AB) = ∠APB = 100°
Analysis:
seg PA ⊥ line l
seg PB ⊥line m … [Tangent is perpendicular to radius]
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Problem Set 4 7
The perpendicular to seg PA and seg PB at points A and B respectively will give the required tangents at A and B.
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Problem Set 4 8
Steps of construction:
i. With centre P, draw a circle of any radius and take any point A on it.
ii. Draw ray PA.
iii. Draw ray PB such that ∠APB = 100°.
iv. Draw line l ⊥ray PA at point A.
v. Draw line m ⊥ ray PB at point B.
Lines l and m are tangents at points A and B to the circle.

Question 6.
Draw a circle of radius 3.4 cm and centre E. Take a point F on the circle. Take another point A such that E – F – A and FA = 4.1 cm. Draw tangents to the circle from point A.
Solution:
Analysis:
Draw a circle of radius 3.4 cm
As shown in the figure, let A be a point in the exterior of circle at a distance of (3.4 + 4.1) = 7.5 cm.
Let AP and AQ be the tangents to the circle at points P and Q respectively.
∴ seg EP ⊥ tangent PA … [Tangent is perpendicular to radius]
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Problem Set 4 9
∴ ∠EPA = 90°
∴ point P is on the circle having EA as diameter. …[Angle inscribed in a semicircle is a right angle]
Similarly, point Q also lies on the circle having EA as diameter.
∴ Points P and Q lie on the circle with EA as diameter.
On drawing a circle with EA as diameter, the points where it intersects the circle with centre E, will be the positions of points P and Q respectively.
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Problem Set 4 10

Question 7.
∆ABC ~ ∆LBN. In ∆ABC, AB = 5.1 cm, ∠B = 40°, BC = 4.8 cm, \(\frac { AC }{ LN } \) = \(\frac { 4 }{ 7 } \). Construct ∆ABC and ∆LBN.
Solution:
Analysis:
As shown in the figure,
Let B – C – N and B – A – L.
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Problem Set 4 11
∆ABC ~ ∆LBN …[Given]
∴ ∠ABC ≅ ∠LBN …[Corresponding angles of similar triangles]
\(\frac { AB }{ LB } \) = \(\frac { BC }{ BN } \) = \(\frac { AC }{ LN } \) …(i)[Corresponding sides of similar triangles]
But. \(\frac { AC }{ LN } \) = \(\frac { 4 }{ 7 } \) …(ii)[Given]
∴ \(\frac { AB }{ LB } \) = \(\frac { BC }{ BN } \) = \(\frac { AC }{ LN } \) = \(\frac { 4 }{ 7 } \) …[From(i)and(ii)]
∴ sides of ∆LBN are longer than corresponding sides of ∆ABC.
∴ If seg BC is divided into 4 equal parts, then seg BN will be 7 times each part of seg BC.
So, if we construct ∆ABC, point N will be on side BC, at a distance equal to 7 parts from B.
Now, point L is the point of intersection of ray BA and a line through N, parallel to AC.
∆LBN is the required triangle similar to ∆ABC.
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Problem Set 4 12
Steps of construction:
i. Draw ∆ABC of given measure. Draw ray BD making an acute angle with side BC.
ii. Taking convenient distance on compass, mark 7 points B1, B2, B3, B4, B5, B6 and B7 such that
BB1 = B1B2 = B2B3 B3= B44 = B4B5 = B5B6 = B6B7.
iii. Join B4C. Draw line parallel to B4C through B7 to intersects ray BC at N.
iv. Draw a line parallel to side AC through N. Name the point of intersection of this line and ray BA as L.
∆LBN is the required triangle similar to ∆ABC.

Question 8.
Construct ∆PYQ such that, PY = 6.3 cm, YQ = 7.2 cm, PQ = 5.8 cm. If = \(\frac { YZ }{ YQ } \) = \(\frac { 6 }{ 5 } \) then construct ∆XYZ similar to ∆PYQ.
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Problem Set 4 13
Analysis:
As shown in the figure,
Let Y – Q – Z and Y – P – X.
∆XYZ ~ ∆PYQ …[Given]
∴ ∠XYZ ≅ ∠PYQ …[Corresponding angles of similar triangles]
\(\frac { XY }{ PY } \) = \(\frac { YZ }{ YQ } \) = \(\frac { XZ }{ PQ } \) …(i)[Corresponding sides of similar triangles]
But, \(\frac { YZ }{ YQ } \) = \(\frac { 6 }{ 5 } \) ,..(ii)[Given]
∴ \(\frac { XY }{ PY } \) = \(\frac { YZ }{ YQ } \) = \(\frac { XZ }{ PQ } \) = \(\frac { 6 }{ 5 } \) …[From (i) and (ii)]
∴ sides of ∆XYZ are longer than corresponding sides of ∆PYQ.
∴ If seg YQ is divided into 5 equal parts, then seg YZ will be 6 times each part of seg YQ.
So, if we construct ∆PYQ, point Z will be on side YQ, at a distance equal to 6 parts from Y.
Now, point X is the point of intersection of ray YP and a line through Z, parallel to PQ.
∆XYZ is the required triangle similar to ∆PYQ.
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Problem Set 4 14
Steps of construction:
i. Draw ∆ PYQ of given measure. Draw ray YT making an acute angle with side YQ.
ii. Taking convenient distance on compass, mark 6 points Y1, Y2, Y3, Y4, Y5 and Y6 such that
YY1 = Y1Y2 = Y2Y3 = Y3Y4 = Y4Y5 = Y5Y6.
iii. Join Y5Q. Draw line parallel to Y5Q through Y6 to intersects ray YQ at Z.
iv. Draw a line parallel to side PQ through Z. Name the point of intersection of this line and ray YP as X.
∆XYZ is the required triangle similar to ∆PYQ.

Class 10 Maths Digest

Practice Set 4.2 Geometry 10th Standard Maths Part 2 Chapter 4 Geometric Constructions Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 4.2 Geometry 10th Class Maths Part 2 Answers Solutions Chapter 4 Geometric Constructions.

10th Standard Maths 2 Practice Set 4.2 Chapter 4 Geometric Constructions Textbook Answers Maharashtra Board

Class 10 Maths Part 2 Practice Set 4.2 Chapter 1 Geometric Constructions Questions With Answers Maharashtra Board

Question 1.
Construct a tangent to a circle with centre P and radius 3.2 cm at any point M on it.
Solution:
Analysis:
seg PM ⊥ line l ….[Tangent is perpendicular to radius]
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Practice Set 4.2 1
The perpendicular to seg PM at point M will give the required tangent at M.
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Practice Set 4.2 2

Question 2.
Draw a circle of radius 2.7 cm. Draw a tangent to the circle at any point on it.
Solution:
Analysis:
seg OM ⊥ line l …[Tangent is perpendicular to radius]
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Practice Set 4.2 3
The perpendicular to seg OM at point M will give the required tangent at M.
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Practice Set 4.2

Question 3.
Draw a circle of radius 3.6 cm. Draw a tangent to the circle at any point on it without using the centre.
Solution:
Analysis:
As shown in the figure, line lis a tangent to the circle at point K.
seg BK is a chord of the circle and LBAK is an inscribed angle.
By tangent secant angle theorem,
∠BAK = ∠BKR
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Practice Set 4.2 4
By converse of tangent secant angle theorem,
If we draw ∠BKR such that ∠BKR = ∠BAK, then ray KR
i.e. (line l) is a tangent at point K.
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Practice Set 4.2

Question 4.
Draw a circle of radius 3.3 cm. Draw a chord PQ of length 6.6 cm. Draw tangents to the circle at points P and Q. Write your observation about the tangents.
Solution:
Analysis:
seg OP ⊥ line l …[Tangent is perpendicular to radius]
seg OQ ⊥ line m
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Practice Set 4.2 5
The perpendicular to seg OP and seg OQ at points P and Q
respectively will give the required tangents at P and Q.
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Practice Set 4.2 6
Radius = 3.3 cm
∴ Diameter = 2 × 3.3 = 6.6 cm
∴ Chord PQ is the diameter of the circle.
∴ The tangents through points P and Q (endpoints of diameter) are parallel to each other.

Question 5.
Draw a circle with radius 3.4 cm. Draw a chord MN of length 5.7 cm in it. Construct tangents at points M and N to the circle.
Solution:
Analysis:
seg ON ⊥ linel l
seg OM ⊥ Iine m …….[Tangent is perpendicular to radius]
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Practice Set 4.2 7
The perpendicular to seg ON and seg 0M at points N and M respectively will give the required tangents at N and M.
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Practice Set 4.2 8

Question 6.
Draw a circle with centre P and radius 3.4 cm. Take point Q at a distance 5.5 cm from the centre. Construct tangents to the circle from point Q.
Solution:
Analysis:
As shown in the figure, let Q be a point in the exterior of circle at a distance of 5.5 cm.
Let QR and QS be the tangents to the circle at points R and S respectively.
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Practice Set 4.2 9
∴ seg PR ⊥ tangent QR …[Tangent is perpendicular to radius]
∴ ∠PRQ = 90°
∴ point R is on the circle having PQ as diameter. …[Angle inscribed in a semicircle is a right angle]
Similarly, point S also lies on the circle having PQ as diameter.
∴ Points R and S lie on the circle with PQ as diameter.
On drawing a circle with PQ as diameter, the points where it intersects the circle with centre P, will be the positions of points R and S respectively.
Ray QR and QS are the required tangents to the circle from point Q.
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Practice Set 4.2 10

Question 7.
Draw a circle with radius 4.1 cm. Construct tangents to the circle from a point at a distance 7.3 cm from the centre.
Solution:
Analysis:
As shown in the figure, let Q be a point in the exterior of circle at a distance of 5.5 cm.
Let QR and QS be the tangents to the circle at points R and S respectively.
∴ seg PR ⊥ tangent QR …[Tangent is perpendicular to radius]
∴ ∠PRQ = 90°
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Practice Set 4.2 11
∴ point R is on the circle having PQ as diameter. …[Angle inscribed in a semicircle is a right angle]
Similarly, point S also lies on the circle having PQ as diameter.
∴ Points R and S lie on the circle with PQ as diameter.
On drawing a circle with PQ as diameter, the points where it intersects the circle with centre P, will be the positions of points R and S respectively.
Ray QR and QS are the required tangents to the circle from point Q.
Maharashtra Board Class 10 Maths Solutions Chapter 4 Geometric Constructions Practice Set 4.2 12

Class 10 Maths Digest