11th Commerce Maths 1 Chapter 5 Miscellaneous Exercise 5 Answers Maharashtra Board

Locus and Straight Line Class 11 Commerce Maths 1 Chapter 5 Miscellaneous Exercise 5 Answers Maharashtra Board

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 5 Locus and Straight Line Miscellaneous Exercise 5 Questions and Answers.

Std 11 Maths 1 Miscellaneous Exercise 5 Solutions Commerce Maths

Question 1.
Find the slopes of the lines passing through the following points:
(i) (1, 2), (3, -5)
(ii) (1, 3), (5, 2)
(iii) (-1, 3), (3, -1)
(iv) (2, -5), (3, -1)
Solution:
(i) Let A = (1, 2) = (x1, y1) and B = (3, -5) = (x2, y2) say.
Slope of line AB = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-5-2}{3-1}=\frac{-7}{2}\)

(ii) Let C = (1, 3) = (x1, y1) and D = (5, 2) = (x2, y2) say.
Slope of line CD = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-3}{5-1}=\frac{-1}{4}\)

(iii) Let E = (-1, 3) = (x1, y1) and F = (3, -1) = (x2, y2) say.
Slope of line EF = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-1-3}{3-(-1)}=\frac{-4}{4}\) = -1

(iv) Let P = (2, -5) = (x1, y1) and Q = (3, -1) = (x2, y2) say.
Slope of line PQ = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-1-(-5)}{3-2}\) = \(\frac{-1+5}{1}\) = 4

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5

Question 2.
Find the slope of the line which
(i) makes an angle of 120° with the positive X-axis.
(ii) makes intercepts 3 and -4 on the axes.
(iii) passes through the points A(-2, 1) and the origin.
Solution:
(i) θ = 120°
Slope of the line = tan 120°
= tan (180° – 60°)
= -tan 60° …..[tan(180° – θ) = -tan θ]
= -√3

(ii) Given, x-intercept of line is 3 and y-intercept of line is -4
∴ The line intersects X-axis at (3, 0) and Y-axis at (0, -4).
∴ The line passes through (3, 0) = (x1, y1) and (0, -4) = (x2, y2) say.
∴ Slope of line = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-4-0}{0-3}=\frac{-4}{-3}=\frac{4}{3}\)

(iii) Required line passes through O(0, 0) = (x1, y1) and A(-2, 1) = (x2, y2) say.
Slope of line OA = \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-0}{-2-0}=\frac{1}{-2}\) = \(\frac{-1}{2}\)

Question 3.
Find the value of k:
(i) if the slope of the line passing through the points (3, 4), (5, k) is 9.
(ii) the points (1, 3), (4, 1), (3, k) are collinear.
(iii) the point P(1, k) lies on the line passing through the points A(2, 2) and B(3, 3).
Solution:
(i) Let P(3, 4), Q(5, k).
Slope of PQ = 9 …….[Given]
∴ \(\frac{\mathrm{k}-4}{5-3}\) = 9
∴ \(\frac{\mathrm{k}-4}{2}\) = 9
∴ k – 4 = 18
∴ k = 22

(ii) The points A(1, 3), B(4, 1) and C(3, k) are collinear.
∴ Slope of AB = Slope of BC
∴ \(\frac{1-3}{4-1}=\frac{k-1}{3-4}\)
∴ \(\frac{-2}{3}=\frac{\mathrm{k}-1}{-1}\)
∴ 2 = 3k – 3
∴ k = \(\frac{5}{3}\)

(iii) Given, point P(1, k) lies on the line joining A(2, 2) and B(3, 3).
∴ Slope of AB = Slope of BP
∴ \(\frac{3-2}{3-2}=\frac{3-k}{3-1}\)
∴ 1 = \(\frac{3-k}{2}\)
∴ 2 = 3 – k
∴ k = 1

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5

Question 4.
Reduce the equation 6x + 3y + 8 = 0 into slope-intercept form. Hence, find its slope.
Solution:
Given equation is 6x + 3y + 8 = 0, which can be written as
3y = -6x – 8
∴ y = \(\frac{-6 x}{3}-\frac{8}{3}\)
∴ y = -2x – \(\frac{8}{3}\)
This is of the form y = mx + c with m = -2
∴ y = -2x – \(\frac{8}{3}\) is in slope-intercept form with slope = -2

Question 5.
Verify that A(2, 7) is not a point on the line x + 2y + 2 = 0.
Solution:
Given equation is x + 2y + 2 = 0.
Substituting x = 2 and y = 7 in L.H.S. of given equation, we get
L.H.S. = x + 2y + 2
= 2 + 2(7) + 2
= 2 + 14 + 2
= 18
≠ R.H.S.
∴ Point A does not lie on the given line.

Question 6.
Find the X-intercept of the line x + 2y – 1 = 0.
Solution:
Given equation of the line is x + 2y – 1 = 0
To find the x-intercept, put y = 0 in given equation of the line
∴ x + 2(0) – 1 = 0
∴ x + 0 – 1 = 0
∴ x = 1
∴ X-intercept of the given line is 1.
Alternate method:
Given equation of the line is x + 2y – 1 = 0
i.e. x + 2y = 1
∴ \(\frac{x}{1}+\frac{y}{\frac{1}{2}}=1\)
Comparing with \(\frac{x}{\mathrm{a}}+\frac{y}{\mathrm{~b}}=1\), we get a = 1
X-intercept of the line is 1.

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5

Question 7.
Find the slope of the line y – x + 3 = 0.
Solution:
Equation of given line is y – x + 3 = 0
i.e. y = x – 3
Comparing with y = mx + c, we get
m = Slope = 1

Question 8.
Does point A(2, 3) lie on the line 3x + 2y – 6 = 0? Give reason.
Solution:
Given equation is 3x + 2y – 6 = 0.
Substituting x = 2 and y = 3 in L.H.S. of given equation, we get
L.H.S. = 3x + 2y – 6
= 3(2)+ 2(3) – 6
= 6
≠ R.H.S.
∴ Point A does not lie on the given line.

Question 9.
Which of the following lines passes through the origin?
(a) x = 2
(b) y = 3
(c) y = x + 2
(d) 2x – y = 0
Solution:
Any line passing through origin is of the form y = mx or ax + by = 0.
Here in the given option, 2x – y = 0 is in the form ax + by = 0.

Question 10.
Obtain the equation of the line which is:
(i) parallel to the X-axis and 3 units below it.
(ii) parallel to the Y-axis and 2 units to the left of it.
(iii) parallel to the X-axis and making an intercept of 5 on the Y-axis.
(iv) parallel to the Y-axis and making an intercept of 3 on the X-axis.
Solution:
(i) Equation of a line parallel to X-axis is y = k.
Since, the line is at a distance of 3 units below X-axis.
∴ k = -3
∴ the equation of the required line is y = -3
i.e., y + 3 = 0.

(ii) Equation of a line parallel to Y-axis is x = h.
Since, the line is at a distance of 2 units to the left of Y-axis.
∴ h = -2
∴ the equation of the required line is x = -2
i.e., x + 2 = 0.

(iii) Equation of a line parallel to X-axis with y-intercept ‘k’ is y = k.
Here, y-intercept = 5
∴ the equation of the required line is y = 5.

(iv) Equation of a line parallel to Y-axis with x-intercept ‘h’ is x = h.
Here, x-intercept = 3
∴ the equation of the required line is x = 3.

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5

Question 11.
Obtain the equation of the line containing the point:
(i) (2, 3) and parallel to the X-axis.
(ii) (2, 4) and perpendicular to the Y-axis.
(iii) (2, 5) and perpendicular to the X-axis.
Solution:
(i) Equation of a line parallel to X-axis is of the form y = k.
Since, the line passes through (2, 3).
∴ k = 3
∴ the equation of the required line is y = 3.

(ii) Equation of a line perpendicular to Y-axis
i.e., parallel to X-axis, is of the form y = k.
Since, the line passes through (2, 4).
∴ k = 4
∴ the equation of the required line is y = 4.

(iii) Equation of a line perpendicular to X-axis
i.e., parallel to Y-axis, is of the form x = h.
Since, the line passes through (2, 5).
∴ h = 2
∴ the equation of the required line is x = 2.

Question 12.
Find the equation of the line:
(i) having slope 5 and containing point A(-1, 2).
(ii) containing the point (2, 1) and having slope 13.
(iii) containing the point T(7, 3) and having inclination 90°.
(iv) containing the origin and having inclination 90°.
(v) through the origin which bisects the portion of the line 3x + 2y = 2 intercepted between the co-ordinate axes.
Solution:
(i) Given, slope (m) = 5 and the line passes through A(-1, 2).
Equation of the line in slope point form is y – y1 = m(x – x1)
∴ the equation of the required line is y – 2 = 5(x + 1)
∴ y – 2 = 5x + 5
∴ 5x – y + 7 = 0

(ii) Given, slope (m) = 13 and the line passes through (2, 1).
Equation of the line in slope point form is y – y1 = m(x – x1)
∴ the equation of the required line is y – 1 = 13(x – 2)
∴ y – 1 = 13x – 26
∴ 13x – y = 25.

(iii) Given, Inclination of line = θ = 90°
∴ the required line is parallel to Y-axis (or lies on the Y-axis.)
Equation of a line parallel to Y-axis is of the form x = h.
Since, the line passes through (7, 3).
∴ h = 7
∴ the equation of the required line is x = 7.

(iv) Given, Inclination of line = θ = 90°
∴ the required line is parallel to Y-axis (or lies on the Y-axis.)
Equation of a line parallel to Y-axis is of the form x = h.
Since, the line passes through origin (0, 0).
∴ h = 0
∴ the equation of the required line is x = 0.

(v) Given equation of the line is 3x + 2y = 2.
∴ \(\frac{3 x}{2}+\frac{2 y}{2}=1\)
∴ \(\frac{x}{\frac{2}{3}}+\frac{y}{1}=1\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5 Q12(v)
This equation is of the form \(\frac{x}{\mathrm{a}}+\frac{y}{\mathrm{~b}}=1\), with
a = \(\frac{2}{3}\), b = 1
∴ the line 3x + 2y = 2 intersects the X-axis at A(\(\frac{2}{3}\), 0) and Y-axis at B(0, 1).
Required line is passing through the midpoint of AB.
∴ Midpoint of AB = \(\left(\frac{\frac{2}{3}+0}{2}, \frac{0+1}{2}\right)=\left(\frac{1}{3}, \frac{1}{2}\right)\)
∴ Required line passes through (0, 0) and \(\left(\frac{1}{3}, \frac{1}{2}\right)\).
Equation of the line in two point form is
\(\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}\)
∴ the equation of the required line is
\(\frac{y-0}{\frac{1}{2}-0}=\frac{x-0}{\frac{1}{3}-0}\)
∴ 2y = 3x
∴ 3x – 2y = 0

Question 13.
Find the equation of the line passing through the points A(-3, 0) and B(0, 4).
Solution:
Since, the required line passes through the points A(-3, 0) and B(0, 4).
Equation of the line in two point form is
\(\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}\)
Here, (x1, y1) = (-3, 0) and (x2, y2) = (0, 4)
∴ the equation of the required line is
∴ \(\frac{y-0}{4-0}=\frac{x-(-3)}{0-(-3)}\)
∴ \(\frac{y}{4}=\frac{x+3}{3}\)
∴ 4x + 12 = 3y
∴ 4x – 3y + 12 = 0

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5

Question 14.
Find the equation of the line:
(i) having slope 5 and making intercept 5 on the X-axis.
(ii) having an inclination 60° and making intercept 4 on the Y-axis.
Solution:
(i) Since, the x-intercept of the required line is 5.
∴ it passes through (5, 0).
Also, slope(m) of the line is 5
Equation of the line in slope point form is y – y1 = m(x – x1)
∴ the equation of the required line is y – 0 = 5(x – 5)
∴ y = 5x – 25
∴ 5x – y – 25 = 0

(ii) Given, Inclination of line = θ = 60°
∴ Slope of the line (m) = tan θ
= tan 60°
= √3
and the y-intercept of the required line is 4.
∴ it passes through (0, 4).
Equation of the line in slope point form is y – y1 = m(x – x1)
∴ the equation of the required line is y – 4 = √3(x – 0)
∴ y – 4 = √3x
∴ √3x – y + 4 = 0

Question 15.
The vertices of a triangle are A(1, 4), B(2, 3), and C(1, 6). Find equations of
(i) the sides
(ii) the medians
(iii) Perpendicular bisectors of sides
(iv) altitudes of ∆ABC
Solution:
Vertices of ∆ABC are A(1, 4), B(2, 3), and C(1, 6)
(i) Equation of the line in two-point form is
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5 Q15(i)
Since, both the points A and C have same x co-ordinates i.e. 1
∴ the points A and C lie on a line parallel to Y-axis.
∴ the equation of side AC is x = 1.

(ii) Let D, E, and F be the midpoints of sides BC, AC, and AB respectively of ∆ABC.
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5 Q15(ii)
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5 Q15(ii).1

(iii) Slope of side BC = \(\left(\frac{6-3}{1-2}\right)=\left(\frac{3}{-1}\right)\) = -3
∴ Slope of perpendicular bisector of BC is \(\frac{1}{3}\) and the line passes through \(\left(\frac{3}{2}, \frac{9}{2}\right)\)
∴ Equation of the perpendicular bisector of side BC is \(\left(y-\frac{9}{2}\right)=\frac{1}{3}\left(x-\frac{3}{2}\right)\)
∴ \(\frac{2 y-9}{2}=\frac{1}{3}\left(\frac{2 x-3}{2}\right)\)
∴ 3(2y – 9) = (2x – 3)
∴ 2x – 6y + 24 = 0
∴ x – 3y + 12 = 0
Since, both the points A and C have the same x co-ordinates i.e. 1
∴ the points A and C lie on the line x = 1.
AC is parallel to Y-axis and therefore, the perpendicular bisector of side AC is parallel to X-axis.
Since, the perpendicular bisector of side AC passes through E(1, 5).
∴ the equation of the perpendicular bisector of side AC is y = 5.
Slope of side AB = \(\left(\frac{3-4}{2-1}\right)\) = -1
∴ Slope of perpendicular bisector of AB is 1 and the line passes through \(\left(\frac{3}{2}, \frac{7}{2}\right)\).
∴ Equation of the perpendicular bisector of side AB is \(\left(y-\frac{7}{2}\right)=1\left(x-\frac{3}{2}\right)\)
∴ \(\frac{2 y-7}{2}=\frac{2 x-3}{2}\)
∴ 2y – 7 = 2x – 3
∴ 2x – 2y + 4 = 0
∴ x – y + 2 = 0

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5

(iv) Let AX, BY and CZ be the altitudes through the vertices A, B, and C respectively of ∆ABC.
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Miscellaneous Exercise 5 Q15(iv)
Slope of BC = -3
∴ Slope of AX = \(\frac{1}{3}\) …..[∵ AX ⊥ BC]
Since, altitude AX passes through (1, 4) and has slope \(\frac{1}{3}\)
∴ equation of altitude AX is y – 4 = \(\frac{1}{3}\)(x – 1)
∴ 3y – 12 = x – 1
∴ x – 3y + 11 = 0
Since, both the points A and C have the same x co-ordinates i.e. 1
∴ the points A and C lie on the line x = 1.
AC is parallel to Y-axis and therefore, altitude BY is parallel to X-axis.
Since, the altitude BY passes through B(2, 3).
∴ the equation of altitude BY is y = 3.
Also, slope of AB = -1
∴ Slope of CZ = 1 …..[∵ CZ ⊥ AB]
Since, altitude CZ passes through (1, 6) and has slope 1
∴ equation of altitude CZ is y – 6 = 1(x – 1)
∴ y – 6 = x – 1
∴ x – y + 5 = 0

11th Commerce Maths Digest Pdf

11th Commerce Maths 1 Chapter 8 Exercise 8.1 Answers Maharashtra Board

Continuity Class 11 Commerce Maths 1 Chapter 8 Exercise 8.1 Answers Maharashtra Board

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 8 Continuity Ex 8.1 Questions and Answers.

Std 11 Maths 1 Exercise 8.1 Solutions Commerce Maths

Question 1.
Examine the continuity of
(i) f(x) = x3 + 2x2 – x – 2 at x = -2
Solution:
f(x) = x3 + 2x2 – x – 2
Here f(x) is a polynomial function and hence it is continuous for all x ∈ R.
∴ f(x) is continuous at x = -2

(ii) f(x) = \(\frac{x^{2}-9}{x-3}\) on R
Solution:
f(x) = \(\frac{x^{2}-9}{x-3}\); x ∈ R
f(x) is a rational function and is continuous for all x ∈ R, except at the points where denominator becomes zero.
Here, denominator x – 3 = 0 when x = 3.
∴ Function f is continuous for all x ∈ R, except at x = 3, where it is not defined.

Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Ex 8.1

Question 2.
Examine whether the function is continuous at the points indicated against them.
(i) f(x) = x3 – 2x + 1, for x ≤ 2
= 3x – 2, for x > 2, at x = 2
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Ex 8.1 Q2(i)
∴ Function f is discontinuous at x = 2

(ii) f(x) = \(\frac{x^{2}+18 x-19}{x-1}\) for x ≠ 1
= 20, for x = 1, at x = 1
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Ex 8.1 Q2(ii)
∴ f(x) is continuous at x = 1

Question 3.
Test the continuity of the following functions at the points indicated against them.
(i) f(x) = \(\frac{\sqrt{x-1}-(x-1)^{\frac{1}{3}}}{x-2}\) for x ≠ 2
= \(\frac{1}{5}\) for x = 2, at x = 2
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Ex 8.1 Q3(i)
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Ex 8.1 Q3(i).1

(ii) f(x) = \(\frac{x^{3}-8}{\sqrt{x+2}-\sqrt{3 x-2}}\) for x ≠ 2
= -24 for x = 2, at x = 2
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Ex 8.1 Q3(ii)
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Ex 8.1 Q3(ii).1

(iii) f(x) = 4x + 1 for x ≤ \(\frac{8}{3}\)
= \(\frac{59-9 x}{3}\), for x > \(\frac{8}{3}\), at x = \(\frac{8}{3}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Ex 8.1 Q3(iii)
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Ex 8.1 Q3(iii).1

Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Ex 8.1

(iv) f(x) = \(\frac{x^{3}-27}{x^{2}-9}\) for 0 ≤ x < 3
= \(\frac{9}{2}\), for 3 ≤ x ≤ 6, at x = 3
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Ex 8.1 Q3(iv)

Question 4.
(i) If f(x) = \(\frac{24^{x}-8^{x}-3^{x}+1}{12^{x}-4^{x}-3^{x}+1}\), for x ≠ 0
= k, for x = 0
is continuous at x = 0, find k.
Solution:
Function f is continuous at x = 0
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Ex 8.1 Q4(i)

(ii) If f(x) = \(\frac{5^{x}+5^{-x}-2}{x^{2}}\), for x ≠ 0
= k for x = 0
is continuous at x = 0, find k.
Solution:
Function f is continuous at x = 0
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Ex 8.1 Q4(ii)

(iii) For what values of a and b is the function
f(x) = ax + 2b + 18 for x ≤ 0
= x2 + 3a – b for 0 < x ≤ 2 = 8x – 2 for x > 2,
continuous for every x?
Solution:
Function f is continuous for every x.
∴ Function f is continuous at x = 0 and x = 2
As f is continuous at x = 0.
∴ \(\lim _{x \rightarrow 0^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 0^{+}} \mathrm{f}(x)\)
∴ \(\lim _{x \rightarrow 0^{-}}(a x+2 b+18)=\lim _{x \rightarrow 0^{+}}\left(x^{2}+3 a-b\right)\)
∴ a(0) + 2b + 18 = (0)2 + 3a – b
∴ 3a – 3b = 18
∴ a – b = 6 …..(i)
Also, Function f is continous at x = 2
∴ \(\lim _{x \rightarrow 2^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 2^{-}} \mathrm{f}(x)\)
∴ \(\lim _{x \rightarrow 2^{-}}\left(x^{2}+3 a-b\right)=\lim _{x \rightarrow 2^{-}}(8 x-2)\)
∴ (2)2 + 3a – b = 8(2) – 2
∴ 4 + 3a – b = 14
∴ 3a – b = 10 …..(ii)
Subtracting (i) from (ii), we get
2a = 4
∴ a = 2
Substituting a = 2 in (i), we get
2 – b = 6
∴ b = -4
∴ a = 2 and b = -4

Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Ex 8.1

(iv) For what values of a and b is the function
f(x) = \(\frac{x^{2}-4}{x-2}\) for x < 2
= ax2 – bx + 3 for 2 ≤ x < 3
= 2x – a + b for x ≥ 3
continuous in its domain.
Solution:
Function f is continuous for every x on R.
∴ Function f is continuous at x = 2 and x = 3.
As f is continuous at x = 2.
∴ \(\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 8 Continuity Ex 8.1 Q4(iv)
∴ 2 + 2 = a(2)2 – b(2) + 3
∴ 4 = 4a – 2b + 3
∴ 4a – 2b = 1 …..(i)
Also function f is continuous at x = 3
∴ \(\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)\)
∴ \(\lim _{x \rightarrow 3^{-}}\left(a x^{2}-b x+3\right)=\lim _{x \rightarrow 3^{+}}(2 x-a+b)\)
∴ a(3)2 – b(3) + 3 = 2(3) – a + b
∴ 9a – 3b + 3 = 6 – a + b
∴ 10a – 4b = 3 …..(ii)
Multiplying (i) by 2, we get
8a – 4b = 2 …..(iii)
Subtracting (iii) from (ii), we get
2a = 1
∴ a = \(\frac{1}{2}\)
Substituting a = \(\frac{1}{2}\) in (i), we get
4(\(\frac{1}{2}\)) – 2b = 1
∴ 2 – 2b = 1
∴ 1 = 2b
∴ b = \(\frac{1}{2}\)
∴ a = \(\frac{1}{2}\) and b = \(\frac{1}{2}\)

Read More

11th Commerce Maths 1 Chapter 5 Exercise 5.1 Answers Maharashtra Board

Locus and Straight Line Class 11 Commerce Maths 1 Chapter 5 Exercise 5.1 Answers Maharashtra Board

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 5 Locus and Straight Line Ex 5.1 Questions and Answers.

Std 11 Maths 1 Exercise 5.1 Solutions Commerce Maths

Question 1.
If A(1, 3) and B(2, 1) are points, find the equation of the locus of point P such that PA = PB.
Solution:
Let P(x, y) be any point on the required locus.
Given, A(1, 3) and B(2, 1).
PA = PB
∴ PA2 = PB2
∴ (x – 1)2 + (y – 3)2 = (x – 2)2 + (y – 1)2
∴ x2 – 2x + 1 + y2 – 6y + 9 = x2 – 4x + 4 + y2 – 2y + 1
∴ -2x – 6y + 10 = -4x – 2y + 5
∴ 2x – 4y + 5 = 0
∴ The required equation of locus is 2x – 4y + 5 = 0.

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Ex 5.1

Question 2.
A(-5, 2) and B(4, 1). Find the equation of the locus of point P, which is equidistant from A and B.
Solution:
Let P(x, y) be any point on the required locus.
P is equidistant from A(-5, 2) and B(4, 1).
∴ PA = PB
∴ PA2 = PB2
∴ (x + 5)2 + (y – 2)2 = (x – 4)2 + (y – 1)2
∴ x2 + 10x + 25 + y2 – 4y + 4 = x2 – 8x + 16 + y2 – 2y + 1
∴ 10x – 4y + 29 = -8x – 2y + 17
∴ 18x – 2y + 12 = 0
∴ 9x – y + 6 = 0
∴ The required equation of locus is 9x – y – 6 = 0

Question 3.
If A(2, 0) and B(0, 3) are two points, find the equation of the locus of point P such that AP = 2BP.
Solution:
Let P(x, y) be any point on the required locus.
Given, A(2, 0), B(0, 3) and AP = 2BP
∴ AP2 = 4BP2
∴ (x – 2)2 + (y – 0)2 = 4[(x – 0)2 + (y – 3)2]
∴ x2 – 4x + 4 + y2 = 4(x2 + y2 – 6y + 9)
∴ x2 – 4x + 4 + y2 = 4x2 + 4y2 – 24y + 36
∴ 3x2 + 3y2 + 4x – 24y + 32 = 0
∴ The required equation of locus is 3x2 + 3y2 + 4x – 24y + 32 = 0

Question 4.
If A(4, 1) and B(5, 4), find the equation of the locus of point P if PA2 = 3PB2.
Solution:
Let P(x, y) be any point on the required locus.
Given, A(4, 1), B(5, 4) and PA2 = 3PB2
∴ (x – 4)2 + (y – 1)2 = 3[(x – 5)2 + (y – 4)2]
∴ x2 – 8x + 16 + y2 – 2y + 1 = 3(x2 – 10x + 25 + y2 – 8y + 16)
∴ x2 – 8x + y2 – 2y + 17 = 3x2 – 30x + 75 + 3y2 – 24y + 48
∴ 2x2 + 2y2 – 22x – 22y + 106 = 0
∴ x2 + y2 – 11x – 11y + 53 = 0
∴ The required equation of locus is x2 + y2 – 11x – 11y + 53 = 0.

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Ex 5.1

Question 5.
A(2, 4) and B(5, 8), find the equation of the locus of point P such that PA2 – PB2 = 13.
Solution:
Let P(x, y) be any point on the required locus.
Given, A(2, 4), B(5, 8) and PA2 – PB2 = 13
∴ [(x – 2)2 + (y – 4)2] – [(x – 5)2 + (y – 8)2] = 13
∴ (x2 – 4x + 4 + y2 – 8y + 16) – (x2 – 10x + 25 + y2 – 16y + 64) = 13
∴ 6x + 8y – 69 = 13
∴ 6x + 8y – 82 = 0
∴ 3x + 4y – 41 = 0
∴ The required equation of locus is 3x + 4y – 41 = 0

Question 6.
A(1, 6) and B(3, 5), find the equation of the locus of point P such that segment AB subtends a right angle at P. (∠APB = 90°)
Solution:
Let P(x. y) be any point on the required locus.
Given, A(1, 6) and B(3, 5), ∠APB = 90°
∴ ΔAPB is a right-angled triangle.
Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Ex 5.1 Q6
By Pythagoras theorem,
AP2 + PB2 = AB2
∴ [(x – 1)2 + (y – 6)2] + [(x – 3)2 + (y – 5)2] = (1 – 3)2 + (6 – 5)2
∴ x2 – 2x + 1 + y2 – 12y + 36 + x2 – 6x + 9 + y2 – 10y + 25 = 4 + 1
∴ 2x2 + 2y2 – 8x – 22y + 66 = 0
∴ x2 + y2 – 4x – 11y + 33 = 0
∴ The required equation of locus is x2 + y2 – 4x – 11y + 33 = 0

Question 7.
If the origin is shifted to the point O'(2, 3), the axes remaining parallel to the original axes, find the new co-ordinates of the points (a) A(1, 3) (b) B(2, 5)
Solution:
Origin is shifted to (2, 3) = (h, k)
Let the new co-ordinates be (X, Y).
∴ x = X + h and y = Y + k
∴ x = X + 2 and y = Y + 3 …..(i)
(a) Given, A(x, y) = A(1, 3)
x = X + 2 and y = Y + 3 …..[From (i)]
∴ 1 = X + 2 and 3 = Y + 3
∴ X = -1 and Y = 0
∴ the new co-ordinates of point A are (-1, 0).

(b) Given, B(x, y) = B(2, 5)
x = X + 2 andy = Y + 3 ……[From (i)]
∴ 2 = X + 2 and 5 = Y + 3
∴ X = 0 and Y = 2
∴ the new co-ordinates of point B are (0, 2).

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Ex 5.1

Question 8.
If the origin is shifted to the point O'(1, 3), the axes remaining parallel to the original axes, find the old co-ordinates of the points (a) C(5, 4) (b) D(3, 3)
Solution:
Origin is shifted to (1, 3) = (h, k)
Let the new co-ordinates be (X, Y)
x = X + h and y = Y + k
∴ x = X + 1 and 7 = Y + 3 …..(i)
(a) Given, C(X, Y) = C(5, 4)
∴ x = X + 1 andy = Y + 3 …..[From(i)]
∴ x = 5 + 1 = 6 and y = 4 + 3 = 7
∴ the old co-ordinates of point C are (6, 7).

(b) Given, D(X, Y) = D(3, 3)
∴ x = X + 1 and y = Y + 3 …..[From (i)]
∴ x = 3 + 1 = 4 and y = 3 + 3 = 6
∴ the old co-ordinates of point D are (4, 6).

Question 9.
If the co-ordinates (5, 14) change to (8, 3) by the shift of origin, find the co-ordinates of the point, where the origin is shifted.
Solution:
Let the origin be shifted to (h, k).
Given, (x,y) = (5, 14), (X, Y) = (8, 3)
Since, x = X + h and y = Y + k
∴ 5 = 8 + h and 14 = 3 + k
∴ h = -3 and k = 11
∴ the co-ordinates of the point, where the origin is shifted are (-3, 11).

Question 10.
Obtain the new equations of the following loci if the origin is shifted to the point O'(2, 2), the direction of axes remaining the same:
(a) 3x – y + 2 = 0
(b) x2 + y2 – 3x = 7
(c) xy – 2x – 2y + 4 = 0
Solution:
Given, (h, k) = (2, 2)
Let (X, Y) be the new co-ordinates of the point (x, y).
∴ x = X + h and y = Y + k
∴ x = X + 2 and y = Y + 2
(a) Substituting the values of x and y in the equation 3x – y + 2 = 0, we get
3(X + 2) – (Y + 2) + 2 = 0
∴ 3X + 6 – Y – 2 + 2 = 0
∴ 3X – Y + 6 = 0, which is the new equation of locus.

(b) Substituting the values of x and y in the equation x2 + y2 – 3x = 7, we get
(X + 2)2 + (Y + 2)2 – 3(X + 2) = 7
∴ X2 + 4X + 4 + Y2 + 4Y + 4 – 3X – 6 = 7
∴ X2 + Y2 + X + 4Y – 5 = 0, which is the new equation of locus.

Maharashtra Board 11th Commerce Maths Solutions Chapter 5 Locus and Straight Line Ex 5.1

(c) Substituting the values of x and y in the equation xy – 2x – 2y + 4 = 0, we get
(X + 2) (Y + 2) – 2(X + 2) – 2(Y + 2) + 4 = 0
∴ XY + 2X + 2Y + 4 – 2X – 4 – 2Y – 4 + 4 = 0
∴ XY = 0, which is the new equation of locus.

11th Commerce Maths Digest Pdf

11th Commerce Maths 1 Chapter 6 Exercise 6.3 Answers Maharashtra Board

Determinants Class 11 Commerce Maths 1 Chapter 6 Exercise 6.3 Answers Maharashtra Board

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 6 Determinants Ex 6.3 Questions and Answers.

Std 11 Maths 1 Exercise 6.3 Solutions Commerce Maths

Question 1.
Solve the following equations using Cramer’s Rule.
(i) x + 2y – z = 5, 2x – y + z = 1, 3x + 3y = 8
Solution:
Given equations are
x + 2y – z = 5
2x – y + z = 1
3x + 3y = 8 i.e. 3x + 3y + 0z = 8
∴ D = \(\left|\begin{array}{ccc}
1 & 2 & -1 \\
2 & -1 & 1 \\
3 & 3 & 0
\end{array}\right|\)
= 1(0 – 3) – 2(0 – 3) – 1(6 + 3)
= -3 + 6 – 9
= -6
Dx = \(\left|\begin{array}{ccc}
5 & 2 & -1 \\
1 & -1 & 1 \\
8 & 3 & 0
\end{array}\right|\)
= 5(0 – 3) – 2(0 – 8) + (-1)(3 + 8)
= -15 + 16 – 11
= -10
Dy = \(\left|\begin{array}{ccc}
1 & 5 & -1 \\
2 & 1 & 1 \\
3 & 8 & 0
\end{array}\right|\)
= 1(0 – 8) – 5(0 – 3) + 1(16 – 3)
= -8 + 15 – 13
= -6
Dz = \(\left|\begin{array}{ccc}
1 & 2 & 5 \\
2 & -1 & 1 \\
3 & 3 & 8
\end{array}\right|\)
= 1(-8 – 3) – 2(16 – 3) + 5(6 + 3)
= -11 – 26 + 45
= 8
By Cramer’s Rule,
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3 Q1(i)
x = \(\frac{5}{3}\), y = 1 and z = \(\frac{-4}{3}\) are the solutions of the given equations.

Check:
We can check if our answer is right or wrong.
In order to do so, substitute the values of x, y and z in the given equations.
x = \(\frac{5}{3}\), y = 1 and z = \(\frac{-4}{3}\) satisfy the given equations.
If either one of the equations is not satisfied, then our answer is wrong.
If x = \(\frac{5}{3}\), y = 1 and z = \(\frac{-4}{3}\) are the solutions of the given equations.
L.H.S. = x + 2y – z
= \(\frac{5}{3}+2-\frac{4}{3}\)
= \(\frac{7}{3}\)
≠ R.H.S.
L.H.S. = 2x – y + z
= \(\frac{10}{3}-1+\frac{4}{3}\)
= \(\frac{11}{3}\)
≠ R.H.S.
L.H.S. = 3x + 3y
= 5 + 3
= 8
= R.H.S.

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3

(ii) 2x – y + 6z = 10, 3x + 4y – 5z = 11, 8x – 7y – 9z = 12
Solution:
Given equations are
2x – y + 6z = 10
3x + 4y – 5z = 11
8x – 7y – 9z = 12
∴ D = \(\left|\begin{array}{ccc}
2 & -1 & 6 \\
3 & 4 & -5 \\
8 & -7 & -9
\end{array}\right|\)
= 2(-36 – 35) – (-1)(-27 + 40) + 6(-21 – 32)
= -142 + 13 – 318
= -447
Dx = \(\left|\begin{array}{ccc}
10 & -1 & 6 \\
11 & 4 & -5 \\
12 & -7 & -9
\end{array}\right|\)
= 10(-36 – 35) – (-1)(-99 + 60) + 6(-77 – 48)
= -710 – 39 – 750
= -1499
Dy = \(\left|\begin{array}{ccc}
2 & 10 & 6 \\
3 & 11 & -5 \\
8 & 12 & -9
\end{array}\right|\)
= 2(-99 + 60) – 10(-27 + 40) + 6(36 – 88)
= -78 – 130 – 312
= -520
Dz = \(\left|\begin{array}{ccc}
2 & -1 & 10 \\
3 & 4 & 11 \\
8 & -7 & 12
\end{array}\right|\)
= 2(48 + 77) – (-1)(36 – 88) + 10(-21 – 32)
= 250 – 52 – 530
= -332
By Cramer’s Rule,
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3 Q1(ii)
∴ x = \(\frac{1499}{447}\), y = \(\frac{520}{447}\) and z = \(\frac{332}{447}\) are the solutions of the given equations.

(iii) 11x – y – z = 31, x – 6y + 2z = -26, x + 2y – 7z = -24
Solution:
Given equations are
11x – y – z = 31
x – 6y + 2z = -26
x + 2y – 7z = -24
D = \(\left|\begin{array}{ccc}
11 & -1 & -1 \\
1 & -6 & 2 \\
1 & 2 & -7
\end{array}\right|\)
= 11(42 – 4) – (-1)(-7 – 2) + (-1)(2 + 6)
= 418 – 9 – 8
= 401
Dx = \(\left|\begin{array}{ccc}
31 & -1 & -1 \\
-26 & -6 & 2 \\
-24 & 2 & -7
\end{array}\right|\)
= 31(42 – 4) – (-1)(182 + 48) + (-1)(-52 – 144)
= 1178 + 230 + 196
= 1604
Dy = \(\left|\begin{array}{ccc}
11 & 31 & -1 \\
1 & -26 & 2 \\
1 & -24 & -7
\end{array}\right|\)
= 11(182 + 48) – 31(-7 – 2) + (-1)(-24 + 26)
= 2530 + 279 – 2
= 2807
Dz = \(\left|\begin{array}{ccc}
11 & -1 & 31 \\
1 & -6 & -26 \\
1 & 2 & -24
\end{array}\right|\)
= 11(144 + 52) – (-1)(-24 + 26) + 31(2 + 6)
= 2156 + 2 + 248
= 2406
By Cramer’s Rule,
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3 Q1(iii)
∴ x = 4, y = 7 and z = 6 are the solutions of the given equations.

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3

(iv) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=-2\), \(\frac{1}{x}-\frac{2}{y}+\frac{1}{z}=3\), \(\frac{2}{x}-\frac{1}{y}+\frac{3}{z}=-1\)
Solution:
Let \(\frac{1}{x}\) = p, \(\frac{1}{y}\) = q, \(\frac{1}{z}\) = r
The given equations become
p + q + r = -2
p – 2q + r = 3
2p – q + 3r = -1
D = \(\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & -2 & 1 \\
2 & -1 & 3
\end{array}\right|\)
= 1(-6 + 1) – 1(3 – 2) + 1(-1 + 4)
= -5 – 1 + 3
= -3
Dp = \(\left|\begin{array}{rrr}
-2 & 1 & 1 \\
3 & -2 & 1 \\
-1 & -1 & 3
\end{array}\right|\)
= -2(-6 + 1) – 1(9 + 1) + 1(-3 – 2)
= 10 – 10 – 5
= -5
Dq = \(\left|\begin{array}{ccc}
1 & -2 & 1 \\
1 & 3 & 1 \\
2 & -1 & 3
\end{array}\right|\)
= 1(9 + 1) + 2(3 – 2) + 1(-1 – 6)
= 10 + 2 – 7
= 5
Dr = \(\left|\begin{array}{rrr}
1 & 1 & -2 \\
1 & -2 & 3 \\
2 & -1 & -1
\end{array}\right|\)
= 1(2 + 3) – 1(-1 – 6) – 2(-1 + 4)
= 5 + 7 – 6
= 6
By Cramer’s Rule,
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3 Q1(iv)
∴ x = \(\frac{3}{5}\), y = \(\frac{-3}{5}\), z = \(\frac{-1}{2}\) are the solutions of the given equations.

(v) \(\frac{2}{x}-\frac{1}{y}+\frac{3}{z}=4, \frac{1}{x}-\frac{1}{y}+\frac{1}{z}=2, \frac{3}{x}+\frac{1}{y}-\frac{1}{z}=2\)
Solution:
Let \(\frac{1}{x}\) = p, \(\frac{1}{y}\) = q, \(\frac{1}{z}\) = r
The given equations become
2p – q – 3r = 4
p – q + r = 2
3p + q – r = 2
D = \(\left|\begin{array}{ccc}
2 & -1 & 3 \\
1 & -1 & 1 \\
3 & 1 & -1
\end{array}\right|\)
= 2(1 – 1) – (-1)(-1 – 3) + 3(1 + 3)
= 0 – 4 + 12
= 8
Dp = \(\left|\begin{array}{ccc}
4 & -1 & 3 \\
2 & -1 & 1 \\
2 & 1 & -1
\end{array}\right|\)
= 4(1 – 1) – (-1)(-2 – 2) + 3(2 + 2)
= 0 – 4 + 12
= 8
Dq = \(\left|\begin{array}{ccc}
2 & 4 & 3 \\
1 & 2 & 1 \\
3 & 2 & -1
\end{array}\right|\)
= 2(-2 – 2) – 4(-1 – 3) + 3(2 – 6)
= -8 + 16 – 12
= -4
Dr = \(\left|\begin{array}{ccc}
2 & -1 & 4 \\
1 & -1 & 2 \\
3 & 1 & 2
\end{array}\right|\)
= 2(-2 – 2) – (-1)(2 – 6) + 4(1 + 3)
= -8 – 4 + 16
= 4
By Cramer’s Rule,
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3 Q1(v)
∴ x = 1, y = -2 and z = 2 are the solutions of the given equations.

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3

Question 2.
An amount of ₹ 5,000 is invested in three plans at rates 6%, 7% and 8% per annum respectively. The total annual income from these investments is ₹ 350. If the total annual income from first two investments is ₹ 70 more than the income from the third, find the amount invested in each plan by using Cramer’s Rule.
Solution:
Let the amount of each investment be ₹ x, ₹ y and ₹ z.
According to the given conditions,
x + y + z = 5000
6%x + 7%y + 8%z = 350
∴ \(\frac{6}{100} x+\frac{7}{100} y-\frac{8}{100} z=350\)
∴ 6x + 7y + 8z = 35000
6%x + 7%y = 8%z + 70
∴ \(\frac{6}{100} x+\frac{7}{100} y=\frac{8}{100} z+70\)
∴ 6x + 7y = 8z + 7000
∴ 6x + 7y – 8z = 7000
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3 Q2
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3 Q2.1
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3 Q2.2
∴ Amounts of investments are ₹ 1750, ₹ 1500, and ₹ 1750.

Check:
First condition:
1750 + 1500 + 1750 = 5000
Second condition:
6% of 1750 + 7% of 1500 + 8% of 1750
= 105 + 105 + 140
= 350
Third condition:
Combined income = 105 + 105
= 210
= 140 + 70
Thus, all the conditions are satisfied.

Question 3.
Show that the following equations are consistent.
2x + 3y + 4 = 0, x + 2y + 3 = 0, 3x + 4y + 5 = 0
Solution:
Given equations are
2x + 3y + 4 = 0
x + 2y + 3 = 0
3x + 4y + 5 = 0
∴ \(\left|\begin{array}{lll}
2 & 3 & 4 \\
1 & 2 & 3 \\
3 & 4 & 5
\end{array}\right|\)
= 2(10 – 12) – 3(5 – 9) + 4(4 – 6)
= 2(-2) – 3(-4) + 4(-2)
= -4 + 12 – 8
= 0
∴ The given equations are consistent.

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3

Question 4.
Find k, if the following equations are consistent.
(i) x + 3y + 2 = 0, 2x + 4y – k = 0, x – 2y – 3k = 0
Solution:
Given equations are
x + 3y + 2 = 0
2x + 4y – k = 0
x – 2y – 3k = 0
Since, these equations are consistent.
∴ \(\left|\begin{array}{ccc}
1 & 3 & 2 \\
2 & 4 & -k \\
1 & -2 & -3 k
\end{array}\right|=0\)
∴ 1(-12k – 2k) – 3(-6k + k) + 2(-4 – 4) = 0
∴ -14k + 15k – 16 = 0
∴ k – 16 = 0
∴ k = 16
Check:
If the value of k satisfies the condition for the given equations to be consistent, then our answer is correct.
Substitute k = 16 in the given equation.
\(\left|\begin{array}{ccc}
1 & 3 & 2 \\
2 & 4 & -16 \\
1 & -2 & -48
\end{array}\right|\)
= 1(-192 – 32) – 3(-96 + 16) + 2(-4 – 4)
= 0
Thus, our answer is correct.

(ii) (k – 2)x + (k – 1)y = 17, (k – 1)x + (k – 2)y = 18, x + y = 5
Solution:
Given equations are
(k – 2)x + (k – 1)y = 17
(k – 1)x + (k – 2)y = 18
x + y = 5
Since, these equations are consistent.
∴ \(\left|\begin{array}{ccc}
k-2 & k-1 & -17 \\
k-1 & k-2 & -18 \\
1 & 1 & -5
\end{array}\right|=0\)
Applying R1 → R1 – R2, we get
\(\left|\begin{array}{ccc}
-1 & 1 & 1 \\
k-1 & k-2 & -18 \\
1 & 1 & -5
\end{array}\right|=0\)
∴ -1(-5k + 10 + 18) – 1(-5k + 5 + 18) + 1(k – 1 – k + 2) = 0
∴ -1(-5k – 28) – 1(- 5k + 23) + 1(1) = 0
∴ 5k – 28 + 5k – 23 – 1 = 0
∴ 10k – 50 = 0
∴ k = 5

Question 5.
Find the area of the triangle whose vertices are:
(i) (4, 5), (0, 7), (-1, 1)
Solution:
Here, A(x1, y1) ≡ A(4, 5), B(x2, y2) ≡ B(0, 7), C(x3, y3) ≡ C(-1, 1)
Area of a triangle = \(\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|\)
∴ A(ΔABC) = \(\frac{1}{2}\left|\begin{array}{ccc}
4 & 5 & 1 \\
0 & 7 & 1 \\
-1 & 1 & 1
\end{array}\right|\)
= \(\frac{1}{2}\) [4(7 – 1) – 5(0 + 1) + 1(0 + 7)]
= \(\frac{1}{2}\) (24 – 5 + 7)
= 13 sq.units.

(ii) (3, 2), (-1, 5), (-2, -3)
Solution:
Here, A(x1, y1) ≡ A(3, 2), B(x2, y2) = B(-1, 5), C(x3, y3) ≡ C(-2, -3)
Area of a triangle = \(\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|\)
∴ A(ΔABC) = \(\frac{1}{2}\left|\begin{array}{ccc}
3 & 2 & 1 \\
-1 & 5 & 1 \\
-2 & -3 & 1
\end{array}\right|\)
= \(\frac{1}{2}\) [3(5 + 3) – 2(-1 + 2) + 1(3 + 10)]
= \(\frac{1}{2}\) (24 – 2 + 13)
= \(\frac{35}{2}\) sq. units

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3

(iii) (0, 5), (0, -5), (5, 0)
Solution:
Here, A(x1, y1) ≡ A(0, 5), B(x2, y2) ≡ B(0, -5), C(x3, y3) ≡ C(5,0)
Area of a triangle = \(\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|\)
∴ A(ΔABC) = \(\frac{1}{2}\left|\begin{array}{ccc}
0 & 5 & 1 \\
0 & -5 & 1 \\
5 & 0 & 1
\end{array}\right|\)
= \(\frac{1}{2}\) [0(-5 – 0) – 5(0 – 5) + 1(0 + 25)]
= \(\frac{1}{2}\) (0 + 25 + 25)
= \(\frac{50}{2}\)
= 25 sq.units

Question 6.
Find the value of k, if the area of the triangle with vertices at A(k, 3), B(-5, 7), C(-1, 4) is 4 square units.
Solution:
Here, A(x1, y1) ≡ A(k, 3), B(x2, y2) ≡ B(-5, 7), C(x3, y3) ≡ C(-1, 4)
A(ΔABC) = 4 sq.units
Area of a triangle = \(\frac{1}{2}\left|\begin{array}{lll}
x_{b} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|\)
∴ \(\frac{1}{2}\left|\begin{array}{ccc}
k & 3 & 1 \\
-5 & 7 & 1 \\
-1 & 4 & 1
\end{array}\right|\) = ±4
∴ k(7 – 4) – 3(-5 + 1) + 1(-20 + 7) = ±8
∴ 3k + 12 – 13 = ±8
∴ 3k – 1 = ±8
∴ 3k – 1 = 8 or 3k – 1 = -8
∴ 3k = 9 or 3k = -7
∴ k = 3 or k = \(\frac{-7}{3}\)

Check:
For k = 3,
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3 Q6
Thus, our answer is correct.

Question 7.
Find the area of the quadrilateral whose vertices are A(-3, 1), B(-2, -2), C(4, 1), D(2, 3).
Solution:
A(-3, 1), B(-2, -2), C(4, 1), D(2, 3)
Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3 Q7
A(ABCD) = A(ΔABC) + A(ΔACD)
= \(\frac{21}{2}\) + 7
= \(\frac{35}{2}\) sq.units.

Question 8.
By using determinant, show that the following points are collinear.
P(5, 0), Q(10, -3), R(-5, 6)
Solution:
Here, P(x1, y1) ≡ P(5, 0), Q(x2, y2) ≡ Q(10, -3), R(x3, y3) ≡ R(-5, 6)
If A(ΔPQR) = 0, then the points P, Q, R are collinear.
∴ A(ΔPQR) = \(\frac{1}{2}\left|\begin{array}{ccc}
5 & 0 & 1 \\
10 & -3 & 1 \\
-5 & 6 & 1
\end{array}\right|\)
= \(\frac{1}{2}\) [5(-3 – 6) – 0(10 + 5) + 1(60 – 15)]
= \(\frac{1}{2}\) (-45 + 0 + 45)
= 0
∴ A(ΔPQR) = 0
∴ Points P, Q and R are collinear.

Maharashtra Board 11th Commerce Maths Solutions Chapter 6 Determinants Ex 6.3

Question 9.
The sum of three numbers is 15. If the second number is subtracted from the sum of first and third numbers, then we get 5. When the third number is subtracted from the sum of twice the first number and the second number, we get 4. Find the three numbers.
Solution:
Let the three numbers be x, y and z.
According to the given conditions,
x + y + z = 15
x + z – y = 5 i.e. x – y + z = 5
2x + y – z = 4
D = \(\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 1 \\
2 & 1 & -1
\end{array}\right|\)
= 1(1 – 1) – 1 (-1 – 2) + 1(1 + 2)
= 1(0) – 1(-3) + 1(3)
= 0 + 3 + 3
= 6 ≠ 0
Dx = \(\left|\begin{array}{ccc}
15 & 1 & 1 \\
5 & -1 & 1 \\
4 & 1 & -1
\end{array}\right|\)
= 15(1 – 1) – 1(-5 – 4) + 1(5 + 4)
= 15(0) – 1(-9) + 1(9)
= 0 + 9 + 9
= 18
Dy = \(\left|\begin{array}{ccc}
1 & 15 & 1 \\
1 & 5 & 1 \\
2 & 4 & -1
\end{array}\right|\)
= 1(-5 – 4) – 15(-1 – 2) + 1(4 – 10)
= 1(-9) – 15(-3) + 1(-6)
= -9 + 45 – 6
= 30
Dz = \(\left|\begin{array}{ccc}
1 & 1 & 15 \\
1 & -1 & 5 \\
2 & 1 & 4
\end{array}\right|\)
= 1(-4 – 5) – 1(4 – 10) + 15(1 + 2)
= 1(-9) – 1(-6) + 15(3)
= -9 + 6 + 45
= 42
By Cramer’s Rule,
x = \(\frac{D_{x}}{D}=\frac{18}{6}\) = 3
y = \(\frac{D_{y}}{D}=\frac{30}{6}\) = 5
z = \(\frac{D_{z}}{D}=\frac{42}{6}\) = 7
∴ The three numbers are 3, 5 and 7.

11th Commerce Maths Digest Pdf

11th Commerce Maths 1 Chapter 4 Exercise 4.3 Answers Maharashtra Board

Sequences and Series Class 11 Commerce Maths 1 Chapter 4 Exercise 4.3 Answers Maharashtra Board

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 4 Sequences and Series Ex 4.3 Questions and Answers.

Std 11 Maths 1 Exercise 4.3 Solutions Commerce Maths

Question 1.
Determine whether the sum to infinity of the following G.P’.s exist. If exists, find it.
(i) \(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\)
(ii) \(2, \frac{4}{3}, \frac{8}{9}, \frac{16}{27}, \ldots\)
(iii) \(-3,1, \frac{-1}{3}, \frac{1}{9}, \ldots\)
(iv) \(\frac{1}{5}, \frac{-2}{5}, \frac{4}{5}, \frac{-8}{5}, \frac{16}{5}, \ldots\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3 Q1
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3 Q1.1
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3 Q1.2

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3

Question 2.
Express the following recurring decimals as a rational number.
(i) \(0 . \overline{32}\)
(ii) 3.5
(iii) \(4 . \overline{18}\)
(iv) \(0.3 \overline{45}\)
(v) \(3.4 \overline{56}\)
Solution:
(i) \(0 . \overline{32}\) = 0.323232…..
= 0.32 + 0.0032 + 0.000032 + …..
Here, 0.32, 0.0032, 0.000032, … are in G.P. with a = 0.32 and r = 0.01
Since, |r| = |0.01| < 1
∴ Sum to infinity exists.
∴ Sum to infinity = \(\frac{a}{1-r}\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3 Q2

(ii) 3.5 = 3.555… = 3 + 0.5 + 0.05 + 0.005 + …
Here, 0.5, 0.05, 0.005, … are in G.P. with a = 0.5 and r = 0.1
Since, |r| = |0.1| < 1
∴ Sum to infinity exists.
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3 Q2.1

(iii) \(4 . \overline{18}\) = 4.181818…..
= 4 + 0.18 + 0.0018 + 0.000018 + …..
Here, 0.18, 0.0018, 0.000018, … are in G.P. with a = 0.18 and r = 0.01
Since, |r| = |0.01| < 1
∴ Sum to infinity exists.
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3 Q2.2

(iv) 0.345 = 0.3454545…..
= 0.3 + 0.045 + 0.00045 + 0.0000045 + …..
Here, 0.045, 0.00045, 0.0000045, … are in G.P. with a = 0.045, r = 0.01
Since, |r| = |0.01| < 1
∴ Sum to infinity exists.
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3 Q2.3
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3 Q2.4

(v) \(3.4 \overline{56}\) = 3.4565656 …..
= 3.4 + 0.056 + 0.00056 + 0.0000056 + ….
Here, 0.056, 0.00056, 0.0000056, … are in G.P. with a = 0.056 and r = 0.01
Since, |r| = |0.01| < 1
∴ Sum to infinity exists.
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3 Q2.5
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3 Q2.6

Question 3.
If the common ratio of a G.P. is \(\frac{2}{3}\) and sum of its terms to infinity is 12. Find the first term.
Solution:
r = \(\frac{2}{3}\), sum to infinity = 12 … [Given]
Sum to infinity = \(\frac{a}{1-r}\)
∴ 12 = \(\frac{a}{1-\frac{2}{3}}\)
∴ a = 12 × \(\frac{1}{3}\)
∴ a = 4

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3

Question 4.
If the first term of a G.P. is 16 and sum of its terms to infinity is \(\frac{176}{5}\), find the common ratio.
Solution:
a = 16, sum to infinity = \(\frac{176}{5}\) … [Given]
Sum to infinity = \(\frac{a}{1-r}\)
∴ \(\frac{176}{5}=\frac{16}{1-r}\)
∴ \(\frac{11}{5}=\frac{1}{1-r}\)
∴ 11 – 11r = 5
∴ 11r = 6
∴ r = \(\frac{6}{11}\)

Question 5.
The sum of the terms of an infinite G.P. is 5 and the sum of the squares of those terms is 15. Find the G.P.
Solution:
Let the required G.P. be a, ar, ar2, ar3, …..
Sum to infinity of this G.P. = 5
∴ 5 = \(\frac{a}{1-r}\)
∴ a = 5(1 – r) ……(i)
Also, the sum of the squares of the terms is 15.
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3 Q5

11th Commerce Maths Digest Pdf

11th Commerce Maths 1 Chapter 4 Exercise 4.2 Answers Maharashtra Board

Sequences and Series Class 11 Commerce Maths 1 Chapter 4 Exercise 4.2 Answers Maharashtra Board

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 4 Sequences and Series Ex 4.2 Questions and Answers.

Std 11 Maths 1 Exercise 4.2 Solutions Commerce Maths

Question 1.
For the following G.P.’s, find Sn.
(i) 3, 6, 12, 24, …..
(ii) \(\mathbf{p}, \mathbf{q}, \frac{\mathbf{q}^{2}}{\mathbf{p}}, \frac{\mathbf{q}^{3}}{\mathbf{p}^{2}}, \ldots\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q1
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q1.1

Question 2.
For a G.P., if
(i) a = 2, r = \(-\frac{2}{3}\), find S6.
(ii) S5 = 1023, r = 4, find a.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q2

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2

Question 3.
For a G. P., if
(i) a = 2, r = 3, Sn = 242, find n.
(ii) sum of the first 3 terms is 125 and the sum of the next 3 terms is 27, find the value of r.
Solution:
(i) a = 2, r = 3, Sn = 242
Sn = \(a\left(\frac{r^{n}-1}{r-1}\right)\), for r > 1
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q3
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q3.1

Question 4.
For a G. P.,
(i) if t3 = 20, t6 = 160, find S7.
(ii) if t4 = 16, t9 = 512, find S10.
Solution:
(i) t3 = 20, t6 = 160
tn = arn-1
∴ t3 = ar3-1 = ar2
∴ ar2 = 20
∴ a = \(\frac{20}{\mathrm{r}^{2}}\) ……(i)
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q4
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q4.1

Question 5.
Find the sum to n terms:
(i) 3 + 33 + 333 + 3333 + ……
(ii) 8 + 88 + 888 + 8888 + ……..
Solution:
(i) Sn = 3 + 33 + 333 +….. upto n terms
= 3(1 + 11 + 111 +….. upto n terms)
= \(\frac{3}{9}\)(9 + 99 + 999 + … upto n terms)
= \(\frac{3}{9}\)[(10 – 1) + (100 – 1) + (1000 – 1) +… upto n terms]
= \(\frac{3}{9}\)[(10 + 100 + 1000 + … upto n terms) – (1 + 1 + 1 + … n times)]
But 10, 100, 1000, … n terms are in G.P.
with a = 10, r = \(\frac{100}{10}\) = 10
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q5

(ii) Sn = 8 + 88 + 888 + … upto n terms
= 8(1 + 11 + 111 + … upto n terms)
= \(\frac{8}{9}\) (9 + 99 + 999 + … upto n terms)
= \(\frac{8}{9}\) [(10 – 1) + (100 – 1) + (1000 – 1) +… upto n terms]
= \(\frac{8}{9}\) [(10 + 100 + 1000 + … upto n terms) – (1 + 1 + 1 + … n times)]
But 10, 100, 1000, … n terms are in G.P. with
a = 10, r = \(\frac{100}{10}\) = 10
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q5.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2

Question 6.
Find the sum to n terms:
(i) 0.4 + 0.44 + 0.444 + ……
(ii) 0.7 + 0.77 + 0.777 + …..
Solution:
(i) Sn = 0.4 + 0.44 + 0.444 + ….. upto n terms
= 4(0.1 + 0.11 + 0.111 + …. upto n terms)
= \(\frac{4}{9}\) (0.9 + 0.99 + 0.999 + … upto n terms)
= \(\frac{4}{9}\) [(i – 0.1) + (1 – 0.01) + (1 – 0.001) … upto n terms]
= \(\frac{4}{9}\) [(1 + 1 + 1 + …n times) – (0.1 + 0.01 + 0.001 +… upto n terms)]
But 0.1, 0.01, 0.001, … n terms are in G.P.
with a = 0.1, r = \(\frac{0.01}{0.1}\) = 0.1
∴ Sn = \(\frac{4}{9}\left\{\mathrm{n}-0.1\left[\frac{1-(0.1)^{\mathrm{n}}}{1-0.1}\right]\right\}\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q6

(ii) Sn = 0.7 + 0.77 + 0.777 + … upto n terms
= 7(0.1 + 0.11 + 0.111 + … upto n terms)
= \(\frac{7}{9}\) (0.9 + 0.99 + 0.999 + … upto n terms)
= \(\frac{7}{9}\) [(1 – 0.1) + (1 – 0.01) + (1 – 0.001) +… upto n terms]
= \(\frac{7}{9}\) [(1 + 1 + 1 +… n times) – (0.1 + 0.01 + 0.001 +… upto n terms)]
But 0.1, 0.01, 0.001, … n terms are in G.P.
with a = 0.1, r = \(\frac{0.01}{0.1}\) = 0.1
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q6.1

Question 7.
Find the nth terms of the sequences:
(i) 0.5, 0.55, 0.555,…..
(ii) 0.2, 0.22, 0.222,…..
Solution:
(i) Let t1 = 0.5, t2 = 0.55, t3 = 0.555 and so on.
t1 = 0.5
t2 = 0.55 = 0.5 + 0.05
t3 = 0.555 = 0.5 + 0.05 + 0.005
∴ tn = 0.5 + 0.05 + 0.005 + … upto n terms
But 0.5, 0.05, 0.005, … upto n terms are in G.P. with a = 0.5 and r = 0.1
∴ tn = the sum of first n terms of the G.P.
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q7

(ii) Let t1 = 0.2, t2 = 0.22, t3 = 0.222 and so on
t1 = 0.2
t2 = 0.22 = 0.2 + 0.02
t3 = 0.222 = 0.2 + 0.02 + 0.002
∴ tn = 0.2 + 0.02 + 0.002 + … upto n terms
But 0.2, 0.02, 0.002, … upto n terms are in G.P. with a = 0.2 and r = 0.1
∴ tn = the sum of first n terms of the G.P.
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q7.1

Question 8.
For a sequence, if Sn = 2(3n-1), find the nth term, hence showing that the sequence is a G.P.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q8

Question 9.
If S, P, R are the sum, product and sum of the reciprocals of n terms of a G.P. respectively, then verify that \(\left(\frac{\mathbf{S}}{\mathbf{R}}\right)^{\mathbf{n}}\) = P2.
Solution:
Let a be the 1st term and r be the common ratio of the G.P.
∴ the G.P. is a, ar, ar2, ar3, …, arn-1
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q9
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q9.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2

Question 10.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
Solution:
Let a and r be the 1st term and common ratio of the G.P. respectively.
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q10
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q10.1

11th Commerce Maths Digest Pdf

11th Commerce Maths 1 Chapter 4 Miscellaneous Exercise 4 Answers Maharashtra Board

Sequences and Series Class 11 Commerce Maths 1 Chapter 4 Miscellaneous Exercise 4 Answers Maharashtra Board

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 4 Sequences and Series Miscellaneous Exercise 4 Questions and Answers.

Std 11 Maths 1 Miscellaneous Exercise 4 Solutions Commerce Maths

Question 1.
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4 Q1

Question 2.
For a G.P. a = \(\frac{4}{3}\) and t7 = \(\frac{243}{1024}\), find the value of r.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4 Q2

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4

Question 3.
For a sequence, if tn = \(\frac{5^{n-2}}{7^{n-3}}\), verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
Solution:
The sequence (tn) is a G.P., if \(\frac{5^{n-2}}{7^{n-3}}\) = constant, for all n ∈ N.
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4 Q3
∴ the sequence is a G.P. with common ratio = \(\frac{5}{7}\)
∴ first term = t1 = \(\frac{5^{1-2}}{7^{1-3}}=\frac{5^{-1}}{7^{-2}}=\frac{7^{2}}{5}=\frac{49}{5}\)

Question 4.
Find three numbers in G.P., such that their sum is 35 and their product is 1000.
Solution:
Let the three numbers in G.P. be \(\frac{a}{r}\), a, ar.
According to the first condition,
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4 Q4
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4 Q4.1
∴ the three numbers in G.P. are 20, 10, 5 or 5, 10, 20.

Question 5.
Find 4 numbers in G. P. such that the sum of the middle 2 numbers is \(\frac{10}{3}\) and their product is 1.
Solution:
Let the four numbers in G.P. be \(\frac{a}{r^{3}}, \frac{a}{r}, a r, a r^{3}\).
According to the second condition,
\(\frac{\mathrm{a}}{\mathrm{r}^{3}}\left(\frac{\mathrm{a}}{\mathrm{r}}\right)(\mathrm{ar})\left(\mathrm{ar}^{3}\right)=1\)
∴ a4 = 1
∴ a = 1
According to the first condition,
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4 Q5

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4

Question 6.
Find five numbers in G.P. such that their product is 243 and the sum of the second and fourth numbers is 10.
Solution:
Let the five numbers in G.P. be
\(\frac{a}{r^{2}}, \frac{a}{r}, a, a r, a r^{2}\)
According to the first condition,
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4 Q6
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4 Q6.1

Question 7.
For a sequence, Sn = 4(7n – 1), verify whether the sequence is a G.P.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4 Q7

Question 8.
Find 2 + 22 + 222 + 2222 + …… upto n terms.
Solution:
Sn = 2 + 22 + 222 +….. upto n terms
= 2(1 + 11 + 111 +…… upto n terms)
= \(\frac{2}{9}\) (9 + 99 + 999 + … upto n terms)
= \(\frac{2}{9}\) [(10 – 1) + (100 – 1) + (1000 – 1) +…… upto n terms]
= \(\frac{2}{9}\) [(10 + 100 + 1000 + … upto n terms) – (1 + 1 + 1 + ….. n times)]
Since, 10, 100, 1000, …… n terms are in G.P.
with a = 10, r = \(\frac{100}{10}\) = 10
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4 Q8

Question 9.
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666,…..
Solution:
0.6, 0.66, 0.666, 0.6666, ……
∴ t1 = 0.6
t2 = 0.66 = 0.6 + 0.06
t3 = 0.666 = 0.6 + 0.06 + 0.006
Hence, in general
tn = 0.6 + 0.06 + 0.006 + …… upto n terms.
The terms are in G.P.with
a = 0.6, r = \(\frac{0.06}{0.6}\) = 0.1
∴ tn = the sum of first n terms of the G.P.
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4 Q9

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4

Question 10.
Find \(\sum_{r=1}^{n}\left(5 r^{2}+4 r-3\right)\).
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4 Q10

Question 11.
Find \(\sum_{\mathbf{r}=1}^{\mathbf{n}} \mathbf{r}(\mathbf{r}-\mathbf{3})(\mathbf{r}-\mathbf{2})\).
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4 Q11
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4 Q11.1

Question 12.
Find \(\sum_{r=1}^{n} \frac{1^{2}+2^{2}+3^{2}+\ldots+r^{2}}{2 r+1}\)
Solution:
We know that,
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4 Q12

Question 13.
Find \(\sum_{r=1}^{n} \frac{1^{3}+2^{3}+3^{3}+\ldots+r^{3}}{(r+1)^{2}}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4 Q13
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4 Q13.1

Question 14.
Find 2 × 6 + 4 × 9 + 6 × 12 + …… upto n terms.
Solution:
2, 4, 6, … are in A.P.
∴ rth term = 2 + (r – 1)2 = 2r
6, 9, 12, … are in A.P.
∴ rth term = 6 + (r – 1) (3) = (3r + 3)
∴ 2 × 6 + 4 × 9 + 6 × 12 +…… upto n terms
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4 Q14
= n(n + 1) (2n + 1 + 3)
= 2n(n + 1)(n + 2)

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4

Question 15.
Find 122 + 132 + 142 + 152 + …… + 202.
Solution:
122 + 132 + 142 + 152 + …… + 202
= (12 + 22 + 32 + 42 + ……. + 202) – (12 + 22 + 32 + 42 + …… + 112)
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4 Q15
= 2870 – 506
= 2364

Question 16.
Find (502 – 492) + (482 – 472) + (462 – 452) + …… + (22 – 12).
Solution:
(502 – 492) + (482 – 472) + (462 – 452) + …… + (22 – 12)
= (502 + 482 + 462 + …… + 22) – (492 + 472 + 452 + …… + 12)
= \(\sum_{r=1}^{25}(2 r)^{2}-\sum_{r=1}^{25}(2 r-1)^{2}\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4 Q16
= 1300 – 25
= 1275

Question 17.
In a G.P., if t2 = 7, t4 = 1575, find r.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4 Q17

Question 18.
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
Solution:
Since k – 1, k, k + 2 are consecutive terms of a G.P.
∴ \(\frac{k}{k-1}=\frac{k+2}{k}\)
∴ k2 = k2 + k – 2
∴ k – 2 = 0
∴ k = 2

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4

Question 19.
If pth, qth and rth terms of a G.P. are x, y, z respectively, find the value of \(x^{q-r} \cdot y^{r-p} \cdot z^{p-q}\).
Solution:
Let a be the first term and R be the common ratio of the G.P.
∴ tn = \(\text { a. } R^{n-1}\)
∴ x = \(\text { a. } R^{p-1}\), y = \(\text { a. } R^{q-1}\), z = \(\text { a. } R^{r-1}\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Miscellaneous Exercise 4 Q19

11th Commerce Maths Digest Pdf

11th Commerce Maths 1 Chapter 3 Exercise 3.1 Answers Maharashtra Board

Complex Numbers Class 11 Commerce Maths 1 Chapter 3 Exercise 3.1 Answers Maharashtra Board

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 3 Complex Numbers Ex 3.1 Questions and Answers.

Std 11 Maths 1 Exercise 3.1 Solutions Commerce Maths

Question 1.
Write the conjugates of the following complex numbers:
(i) 3 + i
(ii) 3 – i
(iii) -√5 – √7i
(iv) -√-5
(v) 5i
(vi) √5 – i
(vii) √2 + √3i
Solution:
(i) Conjugate of (3 + i) is (3 – i)
(ii) Conjugate of (3 – i) is (3 + i)
(iii) Conjugate of (-√5 – √7i) is (-√5 + √7i)
(iv) -√-5 = -√5 × √-1 = -√5i
Conjugate of -√-5 is √5i
(v) Conjugate of 5i is -5i
(vi) Conjugate of √5 – i is √5 + i
(vii) Conjugate of √2 + √3i is √2 – √3i

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1

Question 2.
Express the following in the form of a + ib, a, b ∈ R, i = √-1. State the values of a and b:
(i) (1 + 2i)(-2 + i)
(ii) \(\frac{\mathrm{i}(4+3 \mathrm{i})}{(1-\mathrm{i})}\)
(iii) \(\frac{(2+i)}{(3-i)(1+2 i)}\)
(iv) \(\frac{3+2 i}{2-5 i}+\frac{3-2 i}{2+5 i}\)
(v) \(\frac{2+\sqrt{-3}}{4+\sqrt{-3}}\)
(vi) (2 + 3i)(2 – 3i)
(vii) \(\frac{4 i^{8}-3 i^{9}+3}{3 i^{11}-4 i^{10}-2}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q2
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q2.1
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q2.2
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q2.3
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q2.4
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q2.5

Question 3.
Show that (-1 + √3i)3 is a real number.
Solution:
(-1 + √3i)3
= (-1)3 + 3(-1)2 (√3i) + 3(-1)(√3i)2 +(√3i)3 [∵ (a + b)3 = a3 + 3a2b + 3ab2 + b3]
= -1 + 3√3i – 3(3i2) + 3√3 i3
= -1 + 3√3i – 3(-3) – 3√3i [∵ i2 = -1, i3 = -1]
= -1 + 9
= 8, which is a real number.

Question 4.
Evaluate the following:
(i) i35
(ii) i888
(iii) i93
(iv) i116
(v) i403
(vi) \(\frac{1}{i^{58}}\)
(vii) i30 + i40 + i50 + i60
Solution:
We know that, i2 = -1, i3 = -i, i4 = 1
(i) i35 = (i4)8 (i2) i = (1)8 (-1) i = -i
(ii) i888 = (i4)222 = (1)222 = 1
(iii) i93 = (i4)23 . i = (1)23 . i = i
(iv) i116 = (i4)29 = (1)29 = 1
(v) i403 = (i4)100 (i2) i = (1)100 (-1) i = -i
(vi) \(\frac{1}{i^{88}}=\frac{1}{\left(i^{4}\right)^{14} \cdot i^{2}}=\frac{1}{(1)^{14}(-1)}=-1\)
(vii) i30 + i40 + i50 + i60
= (i4)7 i2 + (i4)10 + (i4)12 i2 + (i4)15
= (1)7 (-1) + (1)10 + (1)12 (-1) + (1)15
= -1 + 1 – 1 + 1
= 0

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1

Question 5.
Show that 1 + i10 + i20 + i30 is a real number.
Solution:
1 + i10 + i20 + i30
= 1 + (i4)2 . i2 + (i4)5 + (i4)7 . i2
= 1 + (1)2 (-1) + (1)5 + (1)7 (-1) [∵ i4 = 1, i2 = -1]
= 1 – 1 + 1 – 1
= 0, which is a real number.

Question 6.
Find the value of
(i) i49 + i68 + i89 + i110
(ii) i + i2 + i3 + i4
Solution:
(i) i49 + i68 + i89 + i110
= (i4)12 . i + (i4)17 + (i4)22 . i + (i4)27 . i2
= (1)12 . i + (1)17 + (1)22 . i + (1)27(-1) ……[∵ i4 = 1, i2 = -1]
= i + 1 + i – 1
= 2i

(ii) i + i2 + i3 + i4
= i + i2 + i2 . i + i4
= i – 1 – i + 1 [∵ i2 = -1, i4 = 1]
= 0

Question 7.
Find the value of 1 + i2 + i4 + i6 + i8 + …… + i20.
Solution:
1 + i2 + i4 + i6 + i8 + ….. + i20
= 1 + (i2 + i4) + (i6 + i8) + (i10 + i12) + (i14 + i16) + (i18 + i20)
= 1 + [i2 + (i2)2] + [(i2)3 + (i2)4] + [(i2)5 + (i2)6] + [(i2)7 + (i2)8] + [(i2)9 + (i2)10]
= 1 + [-1 + (- 1)2] + [(-1)3 + (-1)4] + [(-1)5 + (-1)6] + [(-1)7 + (-1)8] + [(-1)9 + (-1)10] [∵ i2 = -1]
= 1 + (-1 + 1) + (-1 + 1) + (-1 + 1) + (-1 + 1) + (-1 + 1)
= 1 + 0 + 0 + 0 + 0 + 0
= 1

Question 8.
Find the values of x and y which satisfy the following equations (x, y ∈ R):
(i) (x + 2y) + (2x – 3y)i + 4i = 5
(ii) \(\frac{x+1}{1+\mathrm{i}}+\frac{y-1}{1-\mathrm{i}}=\mathrm{i}\)
Solution:
(i) (x + 2y) + (2x – 3y)i + 4i = 5
∴ (x + 2y) + (2x – 3y)i = 5 – 4i
Equating real and imaginary parts, we get
x + 2y = 5 ……..(i)
and 2x – 3y = -4 ………(ii)
Equation (i) × 2 – equation (ii) gives
7y = 14
∴ y = 2
Putting y- 2 in (i), we get
x + 2(2) = 5
∴ x + 4 = 5
∴ x = 1
∴ x = 1 and y = 2
Check:
If x = 1 and y = 2 satisfy the given condition, then our answer is correct.
L.H.S. = (x + 2y) + (2x – 3y)i + 4i
= (1 + 4) + (2 – 6)i + 4i
= 5 – 4i + 4i
= 5
= R.H.S.
Thus, our answer is correct.

(ii) \(\frac{x+1}{1+\mathrm{i}}+\frac{y-1}{1-\mathrm{i}}=\mathrm{i}\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q8
(x + y) + (y – x – 2)i = 2i
(x + y) + (y – x – 2)i = 0 + 2i
Equating real and imaginary parts, we get
x + y = 0 and y – x – 2 = 2
∴ x + y = 0 ……(i)
and -x + y = 4 ……..(ii)
Adding (i) and (ii), we get
2y = 4
∴ y = 2
Putting y = 2 in (i), we get
x + 2 = 0
∴ x = -2
∴ x = -2 and y = 2

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1

Question 9.
Find the value of:
(i) x3 – x2 + x + 46, if x = 2 + 3i
(ii) 2x3 – 11x2 + 44x + 27, if x = \(\frac{25}{3-4 i}\)
Solution:
(i) x = 2 + 3i
∴ x – 2 = 3i
∴ (x – 2)2 = 9i2
∴ x2 – 4x + 4 = 9(-1) …..[∵ i2 = -1]
∴ x2 – 4x + 13 = 0 ……(i)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q9
∴ x3 – x2 + x + 46 = (x2 – 4x + 13)(x + 3) + 7
= 0(x + 3) + 7 ……[From (i)]
= 7

(ii) x = \(\frac{25}{3-4 i}\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q9.1
∴ x = 3 + 4i
∴ x – 3 = 4i
∴ (x – 3)2 = 16i2
∴ x2 – 6x + 9 = 16(-1) …….[∵ i2 = -1]
∴ x2 – 6x + 25 = 0 …….(i)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q9.2
∴ 2x3 – 11x2 + 44x + 27
= (x2 – 6x + 25) (2x + 1) + 2
= 0 . (2x + 1) + 2 ……[From (i)]
= 0 + 2
= 2

11th Commerce Maths Digest Pdf 

11th Commerce Maths 1 Chapter 7 Miscellaneous Exercise 7 Answers Maharashtra Board

Limits Class 11 Commerce Maths 1 Chapter 7 Miscellaneous Exercise 7 Answers Maharashtra Board

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 7 Limits Miscellaneous Exercise 7 Questions and Answers.

Std 11 Maths 1 Miscellaneous Exercise 7 Solutions Commerce Maths

I.

Question 1.
If \(\lim _{x \rightarrow 2} \frac{x^{n}-2^{n}}{x-2}=80\) then find the value of n.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 I Q1

II. Evaluate the following Limits:

Question 1.
\(\lim _{x \rightarrow a} \frac{(x+2)^{\frac{5}{3}}-(a+2)^{\frac{5}{3}}}{x-a}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q1

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 2.
\(\lim _{x \rightarrow 0} \frac{(1+x)^{n}-1}{x}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q2
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q2.1

Question 3.
\(\lim _{x \rightarrow 2}\left[\frac{(x-2)}{2 x^{2}-7 x+6}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q3

Question 4.
\(\lim _{x \rightarrow 1}\left[\frac{x^{3}-1}{x^{2}+5 x-6}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q4

Question 5.
\(\lim _{x \rightarrow 3}\left[\frac{x-3}{\sqrt{x-2}-\sqrt{4-x}}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q5
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q5.1

Question 6.
\(\lim _{x \rightarrow 4}\left[\frac{3-\sqrt{5+x}}{1-\sqrt{5-x}}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q6

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 7.
\(\lim _{x \rightarrow 0}\left[\frac{5^{x}-1}{x}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q7

Question 8.
\(\lim _{x \rightarrow 0}\left(1+\frac{x}{5}\right)^{\frac{1}{x}}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q8

Question 9.
\(\lim _{x \rightarrow 0}\left[\frac{\log (1+9 x)}{x}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q9

Question 10.
\(\lim _{x \rightarrow 0} \frac{(1-x)^{5}-1}{(1-x)^{3}-1}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q10

Question 11.
\(\lim _{x \rightarrow 0}\left[\frac{a^{x}+b^{x}+c^{x}-3}{x}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q11

Question 12.
\(\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2}{x^{2}}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q12

Question 13.
\(\lim _{x \rightarrow 0}\left[\frac{x\left(6^{x}-3^{x}\right)}{\left(2^{x}-1\right) \cdot \log (1+x)}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q13
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q13.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 14.
\(\lim _{x \rightarrow 0}\left[\frac{a^{3 x}-a^{2 x}-a^{x}+1}{x^{2}}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q14

Question 15.
\(\lim _{x \rightarrow 0}\left[\frac{\left(5^{x}-1\right)^{2}}{x \cdot \log (1+x)}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q15
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q15.1

Question 16.
\(\lim _{x \rightarrow 0}\left[\frac{a^{4 x}-1}{b^{2 x}-1}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q16

Question 17.
\(\lim _{x \rightarrow 0}\left[\frac{\log 100+\log (0.01+x)}{x}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q17

Question 18.
\(\lim _{x \rightarrow 0}\left[\frac{\log (4-x)-\log (4+x)}{x}\right]\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q18
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q18.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7

Question 19.
Evaluate the limit of the function if exist at x = 1 where,
\(f(x)= \begin{cases}7-4 x & x<1 \\ x^{2}+2 & x \geq 1\end{cases}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 7 Limits Miscellaneous Exercise 7 II Q19

11th Commerce Maths Digest Pdf

11th Commerce Maths 1 Chapter 9 Miscellaneous Exercise 9 Answers Maharashtra Board

Differentiation Class 11 Commerce Maths 1 Chapter 9 Miscellaneous Exercise 1 Answers Maharashtra Board

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 9 Differentiation Miscellaneous Exercise 9 Questions and Answers.

Std 11 Maths 1 Miscellaneous Exercise 9 Solutions Commerce Maths

I. Differentiate the following functions w.r.t.x.

Question 1.
x5
Solution:
Let y = x5
Differentiating w.r.t. x, we get
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{d} x} x^{5}=5 x^{4}\)

Question 2.
x-2
Solution:
Let y = x-2
Differentiating w.r.t. x, we get
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{-2}\right)=-2 x^{-3}=\frac{-2}{x^{3}}\)

Question 3.
√x
Solution:
Let y = √x
Differentiating w.r.t. x, we get
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{d} x} \sqrt{x}=\frac{1}{2 \sqrt{x}}\)

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9

Question 4.
x√x
Solution:
Let y = x√x
∴ y = \(x^{\frac{3}{2}}\)
Differentiating w.r.t. x, we get
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{d} x} x^{\frac{3}{2}}=\frac{3}{2} x^{\frac{1}{2}}\)

Question 5.
\(\frac{1}{\sqrt{x}}\)
Solution:
Let y = \(\frac{1}{\sqrt{x}}\)
∴ y = \(x^{\frac{-1}{2}}\)
Differentiating w.r.t. x, we get
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-1}{2} x^{\frac{-3}{2}}=\frac{-1}{2 x^{\frac{3}{2}}}\)

Question 6.
7x
Solution:
Let y = 7x
Differentiating w.r.t. x, we get
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{d} x} 7^{x}=7^{x} \log 7\)

II. Find \(\frac{d y}{d x}\) if

Question 1.
y = x2 + \(\frac{1}{x^{2}}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q1

Question 2.
y = (√x + 1)2
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q2

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9

Question 3.
y = \(\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)^{2}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q3
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q3.1

Question 4.
y = x3 – 2x2 + √x + 1
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q4

Question 5.
y = x2 + 2x – 1
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q5

Question 6.
y = (1 – x)(2 – x)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q6

Question 7.
y = \(\frac{1+x}{2+x}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q7
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q7.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9

Question 8.
y = \(\frac{(\log x+1)}{x}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q8

Question 9.
y = \(\frac{e^{x}}{\log x}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q9

Question 10.
y = x log x (x2 + 1)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 II Q10

III. Solve the following:

Question 1.
The relation between price (P) and demand (D) of a cup of Tea is given by D = \(\frac{12}{P}\). Find
the rate at which the demand changes when the price is ₹ 2/-. Interpret the result.
Solution:
Demand, D = \(\frac{12}{P}\)
Rate of change of demand
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 III Q1
When price P = 2,
Rate of change of demand,
\(\left(\frac{\mathrm{dD}}{\mathrm{dP}}\right)_{\mathrm{P}=2}=\frac{-12}{(2)^{2}}=-3\)
∴ When the price is 2, the rate of change of demand is -3.
∴ Here, the rate of change of demand is negative demand would fall when the price becomes ₹ 2.

Question 2.
The demand (D) of biscuits at price P is given by D = \(\frac{64}{P^{3}}\), find the marginal demand
when the price is ₹ 4/-.
Solution:
Given demand D = \(\frac{64}{P^{3}}\)
Now, marginal demand
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 III Q2
When P = 4
Marginal demand
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 III Q2.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9

Question 3.
The supply S of electric bulbs at price P is given by S = 2p3 + 5. Find the marginal supply when the price is ₹ 5/-. Interpret the result.
Solution:
Given, supply S = 2p3 + 5
Now, marginal supply
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 III Q3
∴ When p = 5
Marginal supply = \(\left(\frac{\mathrm{dS}}{\mathrm{dp}}\right)_{\mathrm{p}=5}\)
= 6(5)2
= 150
Here, the rate of change of supply with respect to the price is positive which indicates that the supply increases.

Question 4.
The total cost of producing x items is given by C = x2 + 4x + 4. Find the average cost and the marginal cost. What is the marginal cost when x = 7?
Solution:
Total cost C = x2 + 4x + 4
Now. Average cost = \(\frac{C}{x}=\frac{x^{2}+4 x+4}{x}\)
= x + 4 + \(\frac{4}{x}\)
and Marginal cost = \(\frac{\mathrm{dC}}{\mathrm{d} x}=\frac{\mathrm{d}}{\mathrm{d} x}\)(x2 + 4x + 4)
= \(\frac{\mathrm{d}}{\mathrm{d} x}\) (x2) + 4\(\frac{\mathrm{d}}{\mathrm{d} x}\) (x) + \(\frac{\mathrm{d}}{\mathrm{d} x}\) (4)
= 2x + 4(1) + 0
= 2x + 4
∴ When x = 7,
Marginal cost = \(\left(\frac{\mathrm{d} \mathrm{C}}{\mathrm{d} x}\right)_{x=7}\)
= 2(7) + 4
= 14 + 4
= 18

Question 5.
The demand D for a price P is given as D = \(\frac{27}{P}\), find the rate of change of demand when the price is ₹ 3/-.
Solution:
Demand, D = \(\frac{27}{P}\)
Rate of change of demand = \(\frac{dD}{dP}\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 III Q5
When price P = 3,
Rate of change of demand,
\(\left(\frac{\mathrm{dD}}{\mathrm{dP}}\right)_{\mathrm{P}=3}=\frac{-27}{(3)^{2}}=-3\)
∴ When price is 3, Rate of change of demand is -3.

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9

Question 6.
If for a commodity; the price demand relation is given as D = \(\left(\frac{P+5}{P-1}\right)\). Find the marginal demand when price is ₹ 2/-
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 III Q6

Question 7.
The price function P of a commodity is given as P = 20 + D – D2 where D is demand. Find the rate at which price (P) is changing when demand D = 3.
Solution:
Given, P = 20 + D – D2
Rate of change of price = \(\frac{dP}{dD}\)
= \(\frac{d}{dD}\)(20 + D – D2)
= 0 + 1 – 2D
= 1 – 2D
Rate of change of price at D = 3 is
\(\left(\frac{\mathrm{dP}}{\mathrm{dD}}\right)_{\mathrm{D}=3}\) = 1 – 2(3) = -5
∴ Price is changing at a rate of -5, when demand is 3.

Question 8.
If the total cost function is given by C = 5x3 + 2x2 + 1; find the average cost and the marginal cost when x = 4.
Solution:
Total cost function C = 5x3 + 2x2 + 1
Average cost = \(\frac{C}{x}\)
= \(\frac{5 x^{3}+2 x^{2}+1}{x}\)
= 5x2 + 2x + \(\frac{1}{x}\)
When x = 4,
Average cost = 5(4)2 + 2(4) + \(\frac{1}{4}\)
= 80 + 8 + \(\frac{1}{4}\)
= \(\frac{320+32+1}{4}\)
= \(\frac{353}{4}\)
Marginal cost = \(\frac{\mathrm{dC}}{\mathrm{d} x}\)
= \(\frac{d}{dx}\) (5x3 + 2x2 + 1)
= 5\(\frac{d}{dx}\) (x3) + 2 \(\frac{d}{dx}\) (x2) + \(\frac{d}{dx}\) (1)
= 5(3x2) + 2(2x) + 0
= 15x2 + 4x
When x = 4, marginal cost = \(\left(\frac{\mathrm{dC}}{\mathrm{d} x}\right)_{x=4}\)
= 15(4)2 + 4(4)
= 240 + 16
= 256
∴ The average cost and marginal cost at x = 4 are \(\frac{353}{4}\) and 256 respectively.

Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9

Question 9.
The supply S for a commodity at price P is given by S = P2 + 9P – 2. Find the marginal supply when the price is 7/-.
Solution:
Given, S = P2 + 9P – 2
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 III Q9
∴ The marginal supply is 23, at P = 7.

Question 10.
The cost of producing x articles is given by C = x2 + 15x + 81. Find the average cost and marginal cost functions. Find the marginal cost when x = 10. Find x for which the marginal cost equals the average cost.
Solution:
Given, cost C = x2 + 15x + 81
Maharashtra Board 11th Commerce Maths Solutions Chapter 9 Differentiation Miscellaneous Exercise 9 III Q10
If marginal cost = average cost, then
2x + 15 = x + 15 + \(\frac{81}{x}\)
∴ x = \(\frac{81}{x}\)
∴ x2 = 81
∴ x = 9 …..[∵ x > 0]

11th Commerce Maths Digest Pdf