Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 3 Trigonometric Functions Ex 3.2 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2

Question 1.
Find the Cartesian co-ordinates of the point whose polar co-ordinates are:
(i) \(\left(\sqrt{2}, \frac{\pi}{4}\right)\)
Solution:
Here, r = \(\sqrt {2}\) and θ = \(\frac{\pi}{4}\)
Let the cartesian coordinates be (x, y)
Then, x = rcosθ = \(\sqrt {2}\)cos\(\frac{\pi}{4}\) = \(\sqrt{2}\left(\frac{1}{\sqrt{2}}\right)\) = 1
y = rsinθ = \(\sqrt {2}\)sin\(\frac{\pi}{4}\) = \(\sqrt{2}\left(\frac{1}{\sqrt{2}}\right)\) = 1
∴ the cartesian coordinates of the given point are (1, 1).

(ii) \(\left(4, \frac{\pi}{2}\right)\)
Solution:

(iii) \(\left(\frac{3}{4}, \frac{3 \pi}{4}\right)\)
Solution:
Here, r = \(\frac{3}{4}\) and θ = \(\frac{3 \pi}{4}\)
Let the cartesian coordinates be (x, y)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 1

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) \(\left(\frac{1}{2}, \frac{7 \pi}{3}\right)\)
Solution:
Here, r = \(\frac{1}{2}\) and θ = \(\frac{7 \pi}{4}\)
Let the cartesian coordinates be (x, y)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 2
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 3
∴ the cartesian coordinates of the given point are \(\left(\frac{1}{4}, \frac{\sqrt{3}}{4}\right)\)

Question 2.
Find the of the polar co-ordinates point whose Cartesian co-ordinates are.
(i) \((\sqrt{2}, \sqrt{2})\)
Solution:
Here x = \(\sqrt {2}\) and y = \(\sqrt {2}\)
∴ the point lies in the first quadrant.
Let the polar coordinates be (r, θ)
Then, r2 = x2 + y2 = (\(\sqrt {2}\) )2 + (\(\sqrt {2}\) )2 = 2 + 2 = 4
∴ r = 2 … [∵ r > 0]
cos θ = \(\frac{x}{r}=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}\)
and sin θ = \(\frac{y}{r}=\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}\)
∴ tan θ = 1
Since the point lies in the first quadrant and
0 ≤ θ ≤ 2π, tan θ = 1 = tan\(\frac{\pi}{4}\)
∴ θ = \(\frac{\pi}{4}\)
∴ the polar coordinates of the given point are \(\left(2, \frac{\pi}{4}\right)\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) \(\left(0, \frac{1}{2}\right)\)
Solution:
Here x = 0 and y = \(\frac{1}{2}\)
the point lies on the positive side of Y-axis. Let the polar coordinates be (r, θ)
Then, r2 = x2 + y2 = (0)2 + \(\left(\frac{1}{2}\right)^{2}=0+\frac{1}{4}=\frac{1}{4}\)
∴ r = \(\frac{1}{2}\) …[∵ r > 0]
cosθ = \(\frac{x}{r}=\frac{0}{(1 / 2)}\) = 0
and sin θ = \(\frac{y}{r}=\frac{(1 / 2)}{(1 / 2)}\) = 1
Since, the point lies on the positive side of Y-axis and 0 ≤ θ ≤ 2π
cosθ = 0 = cos\(\frac{\pi}{2}\) and sinθ = 1 = sin\(\frac{\pi}{2}\)
∴ θ = \(\frac{\pi}{2}\)
∴ the polar coordinates of the given point are \(\left(\frac{1}{2}, \frac{\pi}{2}\right)\).

(iii) \((1,-\sqrt{3})\)
Solution:
Here x = 1 and y = \(-\sqrt{3}\)
∴ the point lies in the fourth quadrant.
Let the polar coordinates be (r, θ).
Then, r2 = x2 + y2 = (1)2 + (\(-\sqrt {3}\) )2 = 1 + 3 = 4
∴ r = 2 … [∵ r > 0]
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 4
∴ the polar coordinates of the given point are \(\left(2, \frac{5 \pi}{3}\right)\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) \(\left(\frac{3}{2}, \frac{3 \sqrt{3}}{2}\right)\)
Solution:

Question 3.
In ∆ABC, if ∠A = 45º, ∠B = 60º then find the ratio of its sides.
Solution:
By the sine rule,
\(\frac{a}{\sin \mathrm{A}}\) = \(\frac{b}{\sin \mathrm{B}}\) = \(\frac{c}{\sin \mathrm{C}}\)
∴ \(\frac{a}{b}=\frac{\sin A}{\sin B}\) and \(\frac{b}{c}=\frac{\sin B}{\sin C}\)
∴ a : b : c = sinA : sinB : sinC
Given ∠A = 45° and ∠B = 60°
∵ ∠A + ∠B + ∠C = 180°
∴ 45° + 60° + ∠C = 180°
∴ ∠C = 180° – 105° = 75°
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 5

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 4.
In ∆ABC, prove that sin \(\left(\frac{\mathbf{B}-\mathbf{C}}{2}\right)=\left(\frac{\boldsymbol{b}-\boldsymbol{c}}{a}\right)\) cos \(\frac{A}{2}\).
Solution:
By the sine rule,
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 6
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 7

Question 5.
With usual notations prove that 2 \(\left\{a \sin ^{2} \frac{C}{2}+c \sin ^{2} \frac{A}{2}\right\}\) = a – b + c.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 8

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 6.
In ∆ABC, prove that a3sin(B – C) + b3sin(C – A) + c3sin(A – B) = 0
Solution:
By the sine rule,
\(\frac{a}{\sin A}\) = \(\frac{b}{\sin B}\) = \(\frac{c}{\sin C}\) = k
∴ a = k sin A, b = k sin B, c = k sin C
LHS = a3sin (B – C) + b3sin (C – A) + c3sin (A – B)
= a3(sin B cos C – cos B sin C) + b3(sinCcos A – cos C sin A) + c3(sinAcosB – cos A sin B)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 9
= \(\frac{1}{2 k}\) [a2(a2 + b2 – c2) – a2(a2 + c2 – b2) + b2(b2 + c2 – a2) – b2(a2 + b2 – c2) + c2(c2 + a2 – b2) – c2(b2 + c2 – a2)]
= \(\frac{1}{2 k}\) [a4 + a2b2 – a2c2 – a4 – a2c2 + a2b2 + b4 + b2c2 – a2b2 – a2b2 – b4 + b2c2 + c4 + a2c2 – b2c2 – b2c2 – c4 + a2c2]
= \(\frac{1}{2 k}\)(0) = 0 = RHS.

Question 7.
In ∆ABC, if cot A, cot B, cot C are in A.P. then show that a2, b2, c2 are also in A.P
Solution:
By the sine rule,
\(\frac{\sin \mathrm{A}}{a}\) = \(\frac{\sin \mathrm{B}}{b}\) =\(\frac{\sin \mathrm{C}}{c}\) = k
∴ sin A = ka, sin B = kb, sin C = kc …(1)
Now, cot A, cotB, cotC are in A.P.
∴ cotC – cotB = cotB – cot A
∴ cotA + cotC = 2cotB
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 10
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 11

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
In ∆ABC, if a cos A = b cos B then prove that the triangle is right angled or an isosceles traingle.
Solution:
By the sine rule,
\(\frac{a}{\sin \mathrm{A}}\) = \(\frac{b}{\sin \mathrm{B}}\) = k
a = k sin A and b = k sin B
∴ a cos A = b cos B gives
k sin A cos A = k sin B cos B
∴ 2 sin A cos A = 2 sin B cos B
∴ sin 2A = sin 2B ∴ sin 2A – sin 2B = 0
∴ 2 cos (A + B)∙sin (A -B) = 0
∴ 2cos (π – C)∙sin(A – B) = 0 … [∵ A + B + C = π]
∴ -2 cos C∙sin (A – B) = 0
∴ cos C = 0 OR sin(A -B) = 0
∴ C = 90° OR A – B = 0
∴ C = 90° OR A = B
∴ the triangle is either rightangled or an isosceles triangle.

Question 9.
With usual notations prove that 2(bc cos A + ac cos B + ab cos C) = a2 + b2 + c2.
Solution:
LHS = 2 (bc cos A + ac cos B + ab cos C)
= 2bc cos A + 2ac cos B + 2ab cos C
= 2bc \(\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)\) + 2ac\(\left(\frac{c^{2}+a^{2}-b^{2}}{2 c a}\right)\) + 2ab\(\left(\frac{a^{2}+b^{2}-c^{2}}{2 a b}\right)\) …(By cosine rule]
= b2 + c2 – a2 + c2 + a2 – b2 + a2 + b2 – c2 = a2 + b2 + c2 = RHS.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 10.
In △ABC, if a = 18, b = 24, c = 30 then find the values of
(i) cos A
Solution:
Given : a = 18, b = 24 and c = 30
∴ 2s = a + b + c = 18 + 24 + 30 = 72 ∴ s = 36
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 12

(ii) sin\(\frac{A}{2}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 13

(iii) cos\(\frac{A}{2}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 14

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) tan\(\frac{A}{2}\)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 15

(v) A(△ABC)
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 16

(iv) sin A.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 17

Question 11.
In △ABC prove that (b + c – a) tan \(\frac{A}{2}\) = (c + a – b) tan\(\frac{B}{2}\) = (a + b – c) tan\(\frac{C}{2}\).
Solution:
(b + c – a) tan \(\frac{A}{2}\)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 18
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 19

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 12.
In △ABC prove that sin \(\frac{A}{2}\)∙sin \(\frac{A}{2}\)∙sin \(\frac{A}{2}\) = \(\frac{[A(\triangle A B C)]^{2}}{a b c s}\)
Solution:
LHS = sin \(\frac{A}{2}\)∙sin \(\frac{B}{2}\)∙sin \(\frac{C}{2}\)
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.2 20

Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 3 Trigonometric Functions Ex 3.1 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1

Question 1.
Find the principal solutions of the following equations :
(i) cos θ= \(\frac{1}{2}\)
Solution:
We know that, cos\(\frac{\pi}{3}\) = \(\frac{1}{2}\) and cos (2π – θ) = cos θ
∴ cos\(\frac{\pi}{3}\) = cos(2π – \(\frac{\pi}{3}\)) = cos\(\frac{5 \pi}{3}\)
∴ cos\(\frac{\pi}{3}\) = cos\(\frac{5 \pi}{3}\) = \(\frac{1}{2}\), where
0 < \(\frac{\pi}{3}\) < 2π and 0 < \(\frac{5 \pi}{3}\) < 2π
∴ cos θ = \(\frac{1}{2}\) gives cos θ = cos\(\frac{\pi}{3}\) = cos\(\frac{5 \pi}{3}\)
∴ θ = \(\frac{\pi}{3}\) and θ = \(\frac{5 \pi}{3}\)
Hence, the required principal solutions are
θ = \(\frac{\pi}{3}\) and θ = \(\frac{5 \pi}{3}\)

(ii) sec θ = \(\frac{2}{\sqrt{3}}\)
Solution:

(iii) cot θ = \(\sqrt {3}\)
Solution:
The given equation is cot θ = \(\sqrt {3}\) which is same as tan θ = \(\frac{1}{\sqrt{3}}\).
We know that,
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 1
Hence, the required principal solution are
θ = \(\frac{\pi}{6}\) and θ = \(\frac{7 \pi}{6}\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) cot θ = 0.
Solution:

Question 2.
Find the principal solutions of the following equations:
(i) sinθ = \(-\frac{1}{2}\)
Solution:
We know that,
sin\(\frac{\pi}{6}\) = \(\frac{1}{2}\) and sin (π + θ) = -sinθ,
sin(2π – θ) = -sinθ
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 2
Hence, the required principal solutions are
θ = \(\frac{7\pi}{6}\) and θ = \(\frac{11 \pi}{6}\).

(ii) tanθ = -1
Solution:
We know that,
tan\(\frac{\pi}{4}\) = 1 and tan(π – θ) = -tanθ,
tan(2π – θ) = -tanθ
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 3
Hence, the required principal solutions are
θ = \(\frac{3\pi}{4}\) and θ = \(\frac{7 \pi}{4}\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) \(\sqrt {3}\) cosecθ + 2 = 0.
Solution:

Question 3.
Find the general solutions of the following equations :
(i) sinθ = \(\frac{1}{2}\)
Solution:
(i) The general solution of sin θ = sin ∝ is
θ = nπ + (-1 )n∝, n ∈ Z
Now, sinθ = \(\frac{1}{2}\) = sin\(\frac{\pi}{6}\) …[∵ sin\(\frac{\pi}{6}\) = \(\frac{1}{2}\)]
∴ the required general solution is
θ = nπ + (-1)n\(\frac{\pi}{6}\), n ∈ Z.

(ii) cosθ = \(\frac{\sqrt{3}}{2}\)
Solution:
The general solution of cos θ = cos ∝ is
θ = 2nπ ± ∝, n ∈ Z
Now, cosθ = \(\frac{\sqrt{3}}{2}\) = cos\(\frac{\pi}{6}\) …[∵ cos\(\frac{\pi}{6}\) = \(\frac{\sqrt{3}}{2}\)]
∴ the required general solution is
θ = 2nπ ± \(\frac{\pi}{6}\), n ∈ Z.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) tanθ = \(\frac{1}{\sqrt{3}}\)
Solution:
The general solution of tan θ = tan ∝ is
θ = nπ + ∝, n ∈ Z
Now, tan θ = \(\frac{1}{\sqrt{3}}\) = tan\(\frac{\pi}{6}\) …[tan\(\frac{\pi}{6}\) = \(\frac{1}{\sqrt{3}}\)]
∴ the required general solution is
θ = nπ + \(\frac{\pi}{6}\) , n ∈ Z.

(iv) cotθ = 0.
Solution:
The general solution of tan θ = tan ∝ is
θ = nπ + ∝, n ∈ Z
Now, cot θ = 0 ∴ tan θ does not exist
∴ tanθ = tan\(\frac{\pi}{2}\) [∵ tan\(\frac{\pi}{2}\) does not exist]
∴ the required general solution is
θ = nπ + \(\frac{\pi}{2}\), n ∈ Z.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 4.
Find the general solutions of the following equations:
(i) secθ = \(\sqrt {2}\)
Solution:
The general solution of cos θ = cos ∝ is
θ = nπ ± ∝, n ∈ Z.
Now, secθ = \(\sqrt {2}\) ∴ cosθ = \(\frac{1}{\sqrt{2}}\)
∴ cosθ = cos\(\frac{\pi}{4}\) ….[cos\(\frac{\pi}{4}\) = \(\frac{1}{\sqrt{2}}\)]
∴ the required general solution is
θ = 2nπ ± \(\frac{\pi}{4}\), n ∈ Z.

(ii) cosecθ = –\(\sqrt {2}\)
Solution:
The general solution of sinθ = sin∝ is
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 4

(iii) tanθ = -1
Solution:
The general solution of tanθ = tan∝ is
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 5

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
Find the general solutions of the following equations :
(i) sin 2θ = \(\frac{1}{2}\)
Solution:
The general solution of sin θ = sin ∝ is
θ = nπ + (-1)n∝, n ∈ Z
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 6

(ii) tan \(\frac{2 \theta}{3}\) = \(\sqrt {3}\)
Solution:
The general solution of tan θ = tan ∝ is
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 7

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) cot 4θ = -1
Solution:
The general solution of tan θ = tan ∝ is
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 8

Question 6.
Find the general solutions of the following equations :
(i) 4 cos2θ = 3
Solution:
The general solution of cos2θ = cos2 ∝ is
θ = nπ ± ∝, n ∈ Z
Now, 4 cos2θ = 3
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 9

(ii) 4 sin2θ = 1
Solution:
The general solution of sin2θ = sin2 ∝ is
θ = nπ ± ∝, n ∈ Z
Now, 4 sin2θ = 3
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 10

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) cos 4θ = cos 2θ
Solution:
The general solution of cos θ = cos ∝ is
θ = 2nπ ± ∝, n ∈ Z
∴ the general solution of cos 4θ = cos 2θ is given by
4θ = 2nπ ± 2θ, n ∈ Z
Taking positive sign, we get
4θ = 2nπ + 2θ, n ∈ Z
∴ 2θ = 2nπ, n ∈ Z
∴ θ = nπ, n ∈ Z
Taking negative sign, we get
4θ = 2nπ – 2θ, n ∈ Z
∴ 6θ = 2nπ, n ∈ Z
∴ θ = \(\frac{n \pi}{3}\), n ∈ Z
Hence, the required general solution is
θ = \(\frac{n \pi}{3}\), n ∈ Z or ∴ θ = nπ, n ∈ Z.
Alternative Method:
cos 4θ = cos 2θ
∴ cos4θ – cos 20 = 0
∴ -2sin\(\left(\frac{4 \theta+2 \theta}{2}\right)\)∙sin\(\left(\frac{4 \theta-2 \theta}{2}\right)\) = 0
∴ sin3θ∙sinθ = 0
∴ either sin3θ = 0 or sin θ = 0
The general solution of sin θ = 0 is
θ = nπ, n ∈ Z.
∴ the required general solution is given by
3θ = nπ, n ∈ Z or θ = nπ, n ∈ Z
i.e. θ = \(\frac{n \pi}{3}\), n ∈ Z or θ = nπ, n ∈ Z.

Question 7.
Find the general solutions of the following equations :
(i) sinθ = tanθ
Solution:
sin θ = tan θ
∴ sin θ = \(\frac{\sin \theta}{\cos \theta}\)
∴ sin θ cos θ = sin θ
∴ sin θ cos θ – sinθ = 0
∴ sin θ (cos θ – 1) = θ
∴ either sinθ = 0 or cosθ – 1 = 0
∴ either sin θ = 0 or cos θ = 1
∴ either sinθ = 0 or cosθ = cosθ …[∵ cos0 = 1]
The general solution of sinθ = 0 is θ = nπ, n ∈ Z and cos θ = cos ∝ is θ = 2nπ ± ∝, where n ∈ Z.
∴ the required general solution is given by
θ = nπ, n ∈ Z or θ = 2nπ ± 0, n ∈ Z
∴ θ = nπ, n ∈ Z or θ = 2nπ, n ∈ Z.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) tan3θ = 3tanθ
Solution:
tan3θ = 3tanθ
∴ tan3θ – 3tanθ = 0
∴ tan θ (tan2θ – 3) = 0
∴ either tan θ = 0 or tan2θ – 3 = 0
∴ either tanθ = 0 or tan2θ = 3
∴ either tan θ = 0 or tan2θ = (\(\sqrt {3}\) )3
∴ either tan θ = 0 or tan2θ = (tan\(\frac{\pi}{3}\))3 …[tan\(\frac{\pi}{3}\) = \(\sqrt {3}\)]
∴ either tanθ = 0 or tan2θ = tan2\(\frac{\pi}{3}\)
The general solution of
tanθ = 0 is θ = nπ, n ∈ Z and
tan2θ = tan2∝ is θ = nπ ± ∝, n ∈ Z.
∴ the required general solution is given by
θ = nπ, n ∈ Z or θ = nπ ± \(\frac{\pi}{3}\), n ∈ Z.

(iii) cosθ + sinθ = 1.
Solution:
cosθ + sinθ = 1
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 11
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 12
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 13
Maharashtra Board 12th Maths Solutions Chapter 3 Trigonometric Functions Ex 3.1 14

Question 8.
Which of the following equations have solutions ?
(i) cos 2θ = -1
Solution:
cos 2θ = -1
Since -1 ≤ cos θ ≤ 1 for any θ,
cos 2θ = -1 has solution.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) cos2θ = -1
Solution:
cos2θ = -1
This is not possible because cos2θ ≥ 0 for any θ.
∴ cos2θ = -1 does not have any solution.

(iii) 2 sinθ = 3
Solution:
2 sin θ = 3 ∴ sin θ = \(\frac{3}{2}\)
This is not possible because -1 ≤ sin θ ≤ 1 for any θ.
∴ 2 sin θ = 3 does not have any solution.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) 3 tanθ = 5
Solution:
3tanθ = 5 ∴ tanθ = \(\frac{5}{3}\)
This is possible because tan θ is any real number.
∴ 3tanθ = 5 has solution.

Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 2 Matrices Miscellaneous Exercise 2B Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B

I. Choose the correct answer from the given alternatives in each of the following questions:

Question 1.
If A = \(\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\), adj = \(\left(\begin{array}{ll}
4 & a \\
-3 & b
\end{array}\right)\) then the values of a and b are,
(a) a = – 2, b = 1
(b) a = 2, b = 4
(c) a = 2, b = –1
(d) a = 1, b = –2
Solution:
(a) a = – 2, b = 1

Question 2.
The inverse of \(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\) is
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 1
Solution:
\(\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\)

Question 3.
If A = \(\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\) and A(adj A) = k 1, then the value of k is
(a) 1
(b) -1
(c) 0
(d) -3
Solution:
(d) -3 [Hint : A(adj A) = |A| ∙ I]

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 4.
If A = \(\left(\begin{array}{ll}
2 & -4 \\
3 & 1
\end{array}\right)\), then the adjoint of matrix A is
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 2
Solution:\(\left(\begin{array}{ll}
1 & 4 \\
-3 & 2
\end{array}\right)\)

Question 5.
If A = \(\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\) and A(adj A) = kI, then the value of k is
(a) 2
(b) -2
(c) 10
(d) -10
Solution:
(b) -2

Question 6.
If A = \(\left(\begin{array}{rr}
\lambda & 1 \\
-1 & -\lambda
\end{array}\right)\), then A-1 does not exist if λ = ………..
(a) 0
(b) ± 1
(c) 2
(d) 3
Solution:
(b) ± 1

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 7.
If A = \(\left[\begin{array}{ll}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\) then A-1 = ….
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 3
Solution:
\(\left[\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right]\)

Question 8.
If F (∝) = \(\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]\) where ∝ ∈ R then [F(∝)]-1 is =
(a) F(-∝)
(b) F(∝-1)
(c) F(2∝)
(d) None of these
Solution:
(a) F(-∝)

Question 9.
The inverse of A = \(\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\)
(a) I
(b) A
(c) A’
(d) -I
Solution:
(b) A

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 10.
The inverse of a symmetric matrix is
(a) Symmetric
(b) Non-symmetric
(c) Null matrix
(d) Diagonal matrix
Solution:
(a) Symmetric

Question 11.
For a 2 × 2 matrix A, if A(adjA) = \(\left(\begin{array}{ll}
10 & 0 \\
0 & 10
\end{array}\right)\) then determinant A equals
(a) 20
(b) 10
(c) 30
(d) 40
Solution:
(b) 10

Question 12.
If A2 = \(-\frac{1}{2}\left[\begin{array}{cc}
1 & -4 \\
-1 & 2
\end{array}\right]\) then A =
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 4
Solution:
\(-\frac{1}{2}\left[\begin{array}{cc}
2 & 4 \\
1 & 1
\end{array}\right]\)

II. Solve the following equations by the methods of inversion.

(i) 2x – y = -2 , 3x + 4y = 5
Solution:
The given equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 5
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 6
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 7
By equality of matrices,
x = \(-\frac{5}{11}\), y = \(\frac{12}{11}\) is the required solution.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) x + y + z = 1, 2x + 3y + 2z = 2 and ax + ay + 2az = 4, a ≠ 0.
Solution:
The given equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 8
= 1(6a – 2a) – 1(4a – 2a) + 1(2a – 3a)
= 4a – 2a – a = a ≠ 0 ∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 9
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 10
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 11
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 12

(iii) 5x – y +4z = 5, 2x + 3y + 5z = 2 and 5x – 2y + 6z = -1
Solution:
The given equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 13
= 5(18 + 10) + 1 (12 – 25) + 4( -4 – 15)
= 140 – 13 – 76 = 51 #0
∴ A-1 exists.
Now, we have to find the cofactor matrix
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 14
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 15
Now, premultiply AX = B by A-1, we get,
A-1(AX) = A-1B
∴ (A-1A)X = A-1B
∴ IX = A-1B
∴ X = \(\frac{1}{51}\left[\begin{array}{rrr}
28 & -2 & -17 \\
13 & 10 & -17 \\
-19 & 5 & 17
\end{array}\right]\left[\begin{array}{r}
5 \\
2 \\
-1
\end{array}\right]\)
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 16
By equality of matrices,
x = 3, y = 2, z = -2 is the required solution.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) 2x + 3y = -5, 3x + y = 3
Solution:

(v) x + y + z = -1, y + z = 2 and x + y – z = 3
Solution:
The given equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 17
= 1(-1 – 1) – 1 (0 – 1) + 1(0 – 1)
= -2 + 1 – 1 = -2 ≠ 0 ∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 18
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 19
Now, premultiply AX = B by A-1, we get,
A-1(AX) = A-1B
∴ (A-1A)X = A-1B
∴ IX = A-1B
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 20
∴ by equality of the matrices, x= -3, y = 4, z = -2 is the required solution.

Question 2.
Express the following equation in matrix from and solve them by the method of reduction.
(i) x – y + z = 1, 2x – y = 1, 3x + 3y – 4z = 2
Solution:
The given equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 21
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 22
By equality of matrices,
x – y + z = 1 ……(1)
y – 2z = -1 …..(2)
5z = 5 ….(3)
From (3), z = 1
Substituting z = 1 in (2), we get,
y – 2 = -1 ∴ y = 1
Substituting y = 1, z = 1 in (1), we get,
x – 1 + 1 = 1
∴ x = 1
Hence, x = 1, y = 1, z = 1 is the required solution.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) x + y = 1, y + z = \(\frac{5}{3}\), z + x = \(\frac{4}{3}\).
Solution:
The given equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 23
By equality of matrices,
x + y = 1 ……(1)
y + z = \(\frac{5}{3}\) …(2)
2z = 2 ……..(3)
From (3), z = 1
Substituting z = 1 in (2), we get,
y + 1 = \(\frac{5}{3}\) ∴ y = \(\frac{2}{3}\)
Substituting y = \(\frac{2}{3}\) in (1), we get,
x + \(\frac{2}{3}\) = 1 ∴ x = \(\frac{1}{3}\)
Hence, x = \(\frac{1}{3}\), y = \(\frac{2}{3}\), z = 1 is the required solution.

(iii) 2x – y + z = 1, x + 2y + 3z = 8 and 3x + y – 4z = 1
Solution:
The given equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 24
∴ \(\left[\begin{array}{r}
x+2 y+3 z \\
0-5 y-5 z \\
0+0-8 z
\end{array}\right]\) = \(\left[\begin{array}{r}
8 \\
-15 \\
-8
\end{array}\right]\)
By equality of matrices,
x + 2y + 3z = 8 …..(1)
-5y – 5z = -15 ….(2)
-8z = -8 …..(3)
From (3), z = 1
Substituting z = 1 in (2), we get,
-5y – 5 = -15
-5y = -10
∴ y = 2
Substituting y = 2, z = 1 in (1), we get,
x + 4 + 3 = 8 ∴ x = 1
Hence, x = 1, y = 2, z = 1 is the required solution.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) x + y + z = 6, 3x – y + 3z =10 and 5x + 5y – 4z = 3.
Solution:

(v) x + 2y + z = 8, 2x + 3y – z =11 and 3x – y – 2z = 5
Solution:
The given equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 25
By equality of matrices,
x + 2y + z = 8 … (1)
-y – 3z = -5 … (2)
16z = 16 … (3)
From (3), z = 1
Substituting z = 1 in (2), we get,
-y – 3 = -5, ∴ y = 2
Substituting y = 2, z = 1 in (1), we get,
x + 4 + 1 = 8 ∴ x = 3
Hence, x = 3, y = 2, z = 1 is the required solution.

(vi) x + 3y + 2z = 6, 3x – 2y + 5z =5 and 2x – 3y + 6z = 7.
Solution:
The given equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 26
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 27
By equality of matrices,
x + 3y + 2z = 6 …(1)
y + \(\frac{3}{2}\) z = 4 …(2)
\(\frac{31}{2}\)z = 31 …..(3)
From (3), z = 2
Substituting z = 2 in (2), we get,
y + \(\frac{3}{2}\)z = 4
y + \(\frac{3}{2}\)(2) = 4
y + 3 = 4
y = 1
Substituting y = 1, z = 2 in (2), we get,
x + 3y + 2z = 6
x + 3(1) + 2(2) = 6
x + 3 + 4 = 6
x = -1
Hence, x = -1, y = 1, z = 2 is the required solution.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 3.
The sum of three numbers is 6. If we multiply third number by 3 and add it to the second number we get 11. By adding first and the third numbers we get a number which is double the second number. Use this information and find a system of linear equations. Find the three numbers using matrices.
Solution:
Let the three numbers be x, y and z. According to the given conditions,
x + y + z = 6.
3z + y = 11, i.e., y + 3z = 11 and x + z = 2y,
i.e., x – 2y + z = 0
Hence, the system of the linear equations is
x + y + z = 6
y + 3z = 11
x – 2y + z = 0
These equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 28
By equality of matrices,
x + y + z = 6 …(1)
y + 3z = 11 …(2)
-3y = -6 …(3)
From (3), y = 2
Substituting y = 2 in (2), we get,
2 + 3z = 11
∴ 3z = 9 ∴ z = 3
Put y = 2, z — 3 in (1), we get,
x + 2 + 3 = 6 ∴ x = 1
∴ x = 1, y = 2, z = 3
Hence, the required numbers are 1, 2 and 3.

Question 4.
The cost of 4 pencils, 3 pens and 2 books is ₹ 150. The cost of 1 pencil, 2 pens and 3 books is ₹ 125. The cos of 6 pencils, 2 pens and 3 books is ₹ 175. Fild the cost of each item by using Matrices.
Solution:
Let the cost of 1 pencil, 1 pen and 1 book be ₹x, ₹ y, ₹ z respectively.
According to the given conditions,
4x + 3y + 2z = 150
x + 2y + 3z = 125
6x + 2y + 3z = 175
The equations can be written in matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 29
By equality of matrices,
x + 2y + 3z = 125 …(1)
-5y – 10z = -350 …(2)
5z = 125 …(3)
From (3), z = 25
Substituting z = 25 in (2), we get
-5y – 10(25) = -350
∴ -5y = -350 + 250 = -100
∴ y = 20
Substituting y = 20, z = 25 in (1), we get
x + 2(20) + 3(25) = 125
∴ x = 125 – 40 – 75 = 10
∴ x = 10, y = 20, z = 25
Hence, the cost of 1 pencil is ₹ 10, 1 pen is ₹ 20 and 1 book is ₹ 25.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
The sum of three numbers is 6. Thrice the third number when added to the first number, gives 7. On adding three times first number to the sum of second and third number, we get 12. Find the three numbers by using Matrices.
Solution:
Let the numbers be x, y and z.
According to the given conditions,
x + y + z = 6
3z + x = 7, i.e., x + 3z = 7
and 3x + y + z = 12
Hence, the system of linear equations is
x + y + z = 6
x + 3z = 7
3x + y + z = 12
These equations can be written in matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 30
By equality of matrices,
x + y + z = 6 …(1)
-y + 2z = 1 …(2)
-3y = -5 …(3)
From (3), y = \(\frac{5}{3}\)
Substituting y = \(\frac{5}{3}\) in (2), we get,
–\(\frac{5}{3}\) + 2z = 1
∴ 2z = 1 + \(\frac{5}{3}\) = \(\frac{8}{3}\)
∴ z = \(\frac{4}{3}\)
Substituting y =\(\frac{5}{3}\), z = \(\frac{5}{3}\) in (1), we get,
x + \(\frac{5}{3}+\frac{4}{3}\) = 6
∴ x = 3
∴ x = 3, y = \(\frac{5}{3}\), z = \(\frac{4}{3}\)
Hence, the required numbers are 3, \(\frac{5}{3}\) and \(\frac{4}{3}\).

Question 6.
The sum of three numbers is 2. If twice the second number is added to the sum of first and third number, we get 1 adding five times the first number to the sum of second and third we get 6. Find the three numbers by using matrices.
Solution:
Let the three numbers be x, y and z.
According to the question,
x + y + 2
x + 2y + z = 1
5x + y + z = 6
The given system of equations can be written in matrix form as follows:
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 33
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 34
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 35

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 7.
An amount of ₹ 5000 is invested in three types of investments, at interest rates 6%, 7%, 8% per annum respectively. The total annual income from this investment is ₹ 350. If the total annual income from the first two investments is ₹ 70 more than the income from the third, find the amount of each investment using the matrix method.
Solution:
Let the amounts in three investments by ₹ x, ₹ y, and ₹ z respectively.
Then x + y + z = 5000
Since the rate of interest in these investments are 6%, 7% and 8% respectively, the annual income of the three investments are \(\frac{6 x}{100}\), \(\frac{7 y}{100}\) and \(\frac{8 z}{100}\) respectively.
According to the given conditions,
\(\frac{6 x}{100}+\frac{7 y}{100}+\frac{8 z}{100}\) = 350
i.e. 6x + 7y + 8z = 35000
Also, \(\frac{6 x}{100}+\frac{7 y}{100}\) = \(\frac{8 z}{100}\) + 70
i.e. 6x + 7y – 8z = 7000
Hence, the system of linear equation is
x + y + z = 5000
6x + 7y + 8z = 35000
6x + 7y – 8z = 7000
These equations can be written in matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 31
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2B 32
By equality of matrices,
x + y + z = 5000 …(1)
y + 2z = 5000 …(2)
-16z = -28000 ….(3)
From (3), z = 1750
Substituting z = 1750 in (2), we get,
y + 2(1750) = 5000
∴ y = 5000 – 3500 = 1500
Substituting y = 1500, z = 1750 in (1), we get,
x + 1500 + 1750 = 5000
∴ x = 5000 – 3250 = 1750
∴ x = 1750, y = 1500, z = 1750
Hence, the amounts of the three investments are ₹ 1750, ₹ 1500 and ₹ 1750 respectively.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
The sum of the costs of one ook each of Mathematics, Physics and Chemistry is ₹ 210. Total cost of a mathematics book, 2 physics books, and a chemistry book is ₹ 240 Also the total cost of a Mathematics book, 3 physics book and chemistry books is Rs. 300/-. Find the cost of each book, using Matrices.

Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 2 Matrices Miscellaneous Exercise 2A Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A

Question 1.
If A = \(\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right]\) then reduce it to I3 by using column transformations.
Solution:
|A| = \(\left|\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right|\)
= 1(1 – 0) – 0 + 0 = 1 ≠ 0
∴ A is a non-singular matrix.
Hence, the required transformation is possible.
Now, A = \(\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 3 & 1
\end{array}\right]\)
By C1 – 2C2, we get, A ~ \(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 3 & 1
\end{array}\right]\)
By C1 + 3C3 and C2 – 3C3, we get,
A ~ \(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\) = I3.

Question 2.
If A = \(\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]\), then reduce it to I3 by using row transformations.
Solution:
|A| = \(\left|\begin{array}{lll}
2 & 1 & 3 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right|\)
= 2 (0 – 1) – 1(1 – 1) + 3 (1 – 0)
= -2 – 0 + 3 = 1 ≠ 0
∴ A is a non-singular matrix.
Hence, the required transformation is possible.
Now, A = \(\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]\)
By R1 – R2, we get,
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 1
By R1 – R3 and By R2 – R3, we get
A ~ \(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\) = I3.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 3.
Check whether the following matrices are invertible or not:
(i) \(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|\) = 1 – 0 = 1 ≠ 0.
∴ A is a non-singular matrix.
Hence, A-1 exists.

(ii) \(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right|\) = 1 – 1 = 0.
∴ A is a singular matrix.
Hence, A-1 does not exist.

(iii) \(\left[\begin{array}{ll}
1 & 2 \\
3 & 3
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
1 & 2 \\
3 & 3
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{ll}
1 & 2 \\
3 & 3
\end{array}\right|\) = 3 – 6 = -3 ≠ 0.
∴ A is a non-singular matrix.
Hence, A-1 exist.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iv) \(\left[\begin{array}{ll}
2 & 3 \\
10 & 15
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
2 & 3 \\
10 & 15
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{ll}
2 & 3 \\
10 & 15
\end{array}\right|\) = 30 – 30 = 0.
∴ A is a singular matrix.
Hence, A-1 does not exist.

(v) \(\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{cc}
\sec \theta & \tan \theta \\
\tan \theta & \sec \theta
\end{array}\right|\)
= sec2θ – tan2θ = 1 ≠ 0.
∴ A is a non-singular matrix.
Hence, A-1 exist.

(vii) \(\left[\begin{array}{lll}
3 & 4 & 3 \\
1 & 1 & 0 \\
1 & 4 & 5
\end{array}\right]\)
Solution:
let A = \(\left[\begin{array}{lll}
3 & 4 & 3 \\
1 & 1 & 0 \\
1 & 4 & 5
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{lll}
3 & 4 & 3 \\
1 & 1 & 0 \\
1 & 4 & 5
\end{array}\right|\)
= 3(5 – 0) – 4(5 – 0) + 3(4 – 1)
= 15 – 20 + 9 = 4 ≠ 0
∴ A is a non-singular matrix.
Hence, A-1 exist.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(viii) \(\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & -1 & 3 \\
1 & 2 & 3
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & -1 & 3 \\
1 & 2 & 3
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{lll}
1 & 2 & 3 \\
2 & -1 & 3 \\
1 & 2 & 3
\end{array}\right|\)
= 1 (-3 -6) – 2 (6 – 3) + 3 (4 + 1)
= -9 – 6 + 15 = 0
∴ A is a singular matrix.
Hence, A-1 does not exist.

(ix) \(\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5 \\
4 & 6 & 8
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5 \\
4 & 6 & 8
\end{array}\right]\)
Then, |A| = \(\left|\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5 \\
4 & 6 & 8
\end{array}\right|\)
= 1(32 – 30) – 2(24 – 20) + 3(18 – 16)
= 2 – 8 + 6 = 0
∴ A is a singular matrix.
Hence, A-1 does not exist.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 4.
Find AB, if A = \(\left[\begin{array}{ccc}
1 & 2 & 3 \\
1 & -2 & -3
\end{array}\right]\) and B = \(\left[\begin{array}{cc}
1 & -1 \\
1 & 2 \\
1 & -2
\end{array}\right]\) Examine whether AB has inverse or not.
Solution:
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 2
∴ A is a non-singular matrix.
Hence, (AB)-1 exist.

Question 5.
If A = \(\left[\begin{array}{lll}
x & 0 & 0 \\
0 & y & 0 \\
0 & 0 & z
\end{array}\right]\) is a nonsingular matrix then find A-1 by elementary row transformations.
Hence, find the inverse of \(\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\)
Solution:
Since A is a non-singular matrix, then find A-1 by using elementary row transformations.
We write AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 3
Comparing \(\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\) with \(\left[\begin{array}{lll}
x & 0 & 0 \\
0 & y & 0 \\
0 & 0 & z
\end{array}\right]\),
we get, x = 2, y = 1, z = -1
∴ \(\frac{1}{x}\) = \(\frac{1}{2}\), \(\frac{1}{y}\) = \(\frac{1}{1}\) = 1, \(\frac{1}{z}\) = \(\frac{1}{-1}\) = -1
\(\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\) is \(\left(\begin{array}{rrr}
\frac{1}{2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)\).

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 6.
if A = \(\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\) and X is a 2 × 2 matrix such that AX = I , then find X.
Solution:
We will reduce the matrix A to the identity matrix by using row transformations. During this pro¬cess, I will be converted to the matrix X.
We have AX = I.
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 4

Question 7.
Find the inverse of each of the following matrices (if they exist).
(i) \(\left[\begin{array}{ll}
1 & -1 \\
2 & 3
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
1 & -1 \\
2 & 3
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{ll}
1 & -1 \\
2 & 3
\end{array}\right|\) = 3 + 2 = 5 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 5
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 6

(ii) \(\left[\begin{array}{ll}
2 & 1 \\
1 & -1
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
2 & 1 \\
1 & -1
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{ll}
2 & 1 \\
1 & -1
\end{array}\right|\) = -2 – 1 = -3 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 7

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) \(\left[\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{ll}
1 & 3 \\
2 & 7
\end{array}\right|\) = 7 – 6 = 1 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 8

(iv) \(\left[\begin{array}{ll}
2 & -3 \\
5 & 7
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
2 & -3 \\
5 & 7
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{ll}
2 & -3 \\
5 & 7
\end{array}\right|\) = 14 + 15 = 29 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 9
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 10

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(v) \(\left[\begin{array}{ll}
2 & 1 \\
7 & 4
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
2 & 1 \\
7 & 4
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{ll}
2 & 1 \\
7 & 4
\end{array}\right|\) = 8 – 7 = 1 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 11

(vi) \(\left[\begin{array}{ll}
3 & -10 \\
2 & -7
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{ll}
3 & -10 \\
2 & -7
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{ll}
3 & -10 \\
2 & -7
\end{array}\right|\) = -21 + 20 = -1 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 12
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 13

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(vii) \(\left[\begin{array}{lll}
2 & -3 & 3 \\
2 & 2 & 3 \\
3 & -2 & 2
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{lll}
2 & -3 & 3 \\
2 & 2 & 3 \\
3 & -2 & 2
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{lll}
2 & -3 & 3 \\
2 & 2 & 3 \\
3 & -2 & 2
\end{array}\right|\)
= 2(4 + 6) +3(4 – 9) + 3(-4 – 6)
= 20 – 15 – 30 = -25 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 14
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 15
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 16
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 17

(viii) \(\left[\begin{array}{lll}
1 & 3 & -2 \\
-3 & 0 & -5 \\
2 & 5 & 0
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{lll}
1 & 3 & -2 \\
-3 & 0 & -5 \\
2 & 5 & 0
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{lll}
1 & 3 & -2 \\
-3 & 0 & -5 \\
2 & 5 & 0
\end{array}\right|\)
= 1(0 + 25) + 3(0 + 10) + 2(-15 – 0)
= 25 + 30 -30
= 25 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 18
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 19
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 20
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 21

(ix) \(\left[\begin{array}{lll}
2 & 0 & -1 \\
5 & 1 & 0 \\
0 & 1 & 3
\end{array}\right]\)
Solution:
Let A =\(\left[\begin{array}{lll}
2 & 0 & -1 \\
5 & 1 & 0 \\
0 & 1 & 3
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{lll}
2 & 0 & -1 \\
5 & 1 & 0 \\
0 & 1 & 3
\end{array}\right|\)
= 2(3 – 0) – 0 – 1(5 – 0)
= 6 – 0 – 5 = 1 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 22
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 23
∴ A-1 = \(\left[\begin{array}{lll}
3 & -1 & 1 \\
-15 & 6 & -5 \\
5 & -2 & 2
\end{array}\right]\)

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(x) \(\left[\begin{array}{lll}
1 & 2 & -2 \\
0 & -2 & 1 \\
-1 & 3 & 0
\end{array}\right]\)
Solution:
Let A = \(\left[\begin{array}{lll}
1 & 2 & -2 \\
0 & -2 & 1 \\
-1 & 3 & 0
\end{array}\right]\)
∴ A-1 = \(\left[\begin{array}{lll}
1 & 2 & -2 \\
0 & -2 & 1 \\
-1 & 3 & 0
\end{array}\right]\)
= 1\(\left|\begin{array}{ll}
-2 & 1 \\
3 & 0
\end{array}\right|\) – 2\(\left|\begin{array}{ll}
0 & 1 \\
-1 & 1
\end{array}\right|\) – 2\(\left|\begin{array}{ll}
0 & -2 \\
-1 & 3
\end{array}\right|\)
|A| = 1(0 – 3) – 2(0 + 1) – 2(0 – 2)
= -3 – 2 + 4
= -1 ≠ 0
∴ A-1 exists.
We have
AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 24
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 25
∴ A-1 = \(\left[\begin{array}{lll}
3 & 6 & 2 \\
1 & 2 & 1 \\
2 & 5 & 2
\end{array}\right]\)

Question 8.
Find the inverse of A = \(\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\) by
(i) elementary row transformations
Solution:
|A| = \(\left|\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right|\)
= cosθ (cosθ – 0) + sinθ (sinθ – 0) + 0
= cos2θ + sin2θ = 1 ≠ 0
∴ A-1 exists.
(i) Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 26
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 27

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) elementary column transformations
Solution:
Consider A-1A = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 28
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 29

Question 9.
If A = \(\left[\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right]\), B = \(\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]\) find AB and (AB)-1. Verify that (AB)-1 = B-1A-1
Solution:
AB = \(\left[\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right]\) \(\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]\)
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 30
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 31
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 32
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 33
From (1) and (2), (AB)-1 = B-1 ∙ A-1.

Question 10.
If A = \(\left[\begin{array}{ll}
4 & 5 \\
2 & 1
\end{array}\right]\), then show that A-1 = \(\frac{1}{6}\)(A – 5I)
Solution:
|A| = \(\left|\begin{array}{ll}
4 & 5 \\
2 & 1
\end{array}\right|\) = 4 – 10 = -6 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 34
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 35
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 36

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 11.
Find matrix X such that AX = B, where A = \(\left[\begin{array}{ll}
1 & 2 \\
-1 & 3
\end{array}\right]\) and B = \(\left[\begin{array}{ll}
0 & 1 \\
2 & 4
\end{array}\right]\)
Solution:
AX = B
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 37

Question 12.
Find X, if AX = B where A = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
-1 & 1 & 2 \\
1 & 2 & 4
\end{array}\right]\) and B = \(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\).
Solution:
AX = B
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 38
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 39

Question 13.
If A = \(\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\), B = \(\left[\begin{array}{ll}
4 & 1 \\
3 & 1
\end{array}\right]\) and C = \(\left[\begin{array}{ll}
24 & 7 \\
31 & 9
\end{array}\right]\) then find matrix X such that AXB = C.
Solution:
AXB = C
∴ \(\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)(\mathrm{XB})\) =\(\left[\begin{array}{ll}
24 & 7 \\
31 & 9
\end{array}\right]\)
First we perform the row transformations.
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 40
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 41

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 14.
Find the inverse of \(\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right]\) by adjoint method.
Solution:
Let A = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right|\)
= 1(7 – 20) – 2(7 – 10) + 3(4 – 2)
= -13 + 6 + 6 = -1 ≠ 0
∴ A-1 exists.
First we have to find the cofactor matrix
= [Aij]3×3 where Aij = (-1)i+jMij
Now, A11 = (-1)1+1M11 = \(\left|\begin{array}{ll}
1 & 5 \\
4 & 7
\end{array}\right|\) = 7 – 20 = -13
A12 = (-1)1+2M12 = \(\left|\begin{array}{ll}
1 & 5 \\
2 & 7
\end{array}\right|\) = -(7 – 10) = 3
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 42
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 43

Question 15.
Find the inverse of \(\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right]\) by adjoint method.
Solution:
where A = \(\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right]\)
|A| = 1(2 – 6) – 0(0 – 3) + 1(0 – 2)
|A| = -4 – 2
|A| = -6 ≠ 0
∴ A-1 exists.
First we have to find the cofactor matrix
= [Aij]3×3, where Aij = (-1)i+jMij
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 44
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 45

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 16.
Find A-1 by adjoint method and by elementary transformations if A = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
-1 & 1 & 2 \\
1 & 2 & 4
\end{array}\right]\)
Solution:
|A| = \(\left|\begin{array}{lll}
1 & 2 & 3 \\
-1 & 1 & 2 \\
1 & 2 & 4
\end{array}\right|\)
= 1(4 – 4) – 2(-4 – 2) + 3(-2 – 1)
= 0 + 12 – 9 = 3 ≠ 0
∴ A-1 exists.
A-1by adjoint method :
We have to find the cofactor matrix
= [Aij]3×3, where Aij = (-1)i+j Mij
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 46
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 47
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 48
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 49

Question 17.
Find the inverse of A = \(\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right]\) by elementary column transformations.
Solution:
|A| = \(\left|\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right|\)
= 1 (2 – 6) – 0 + 1 (0 – 2)
= -4 – 2= -6 ≠ 0
∴ A-1 exists.
Consider A-1A = I
∴ A-1\(\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right]\) = \(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\)
By C3 – C1, we get,
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 50
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 51

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 18.
Find the inverse of \(\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right]\) by elementary row transformations.
Solution:
Let A = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right]\)
∴ |A| = \(\left|\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right|\)
= 1(7 – 20) – 2(7 – 10) + 3(4 – 2)
= -13 + 6 + 6 = -1 ≠ 0
∴ A-1 exists.
Consider AA-1 = I
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 52
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 53

Question 19.
Show with usual notations that for any matrix A = [aij]3×3
(i) a11A21 + a12A22 + a13A23 = 0
Solution:
A = [aij]3×3 = \(\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\)
(i) A21 = (-1)2+1M21 = \(-\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|\)
= -(a12a33 – a13a32)
= -a12a33 + a13a32
A22 = (-1)2+2M22 = \(\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right|\)
= a11a33 – a13a31
A23 = (-1)2+3M23 = \(-\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right|\)
= -(a11a32 – a12a31)
= -a11a32+ a12a31
∴ a11A21 + a12A22 + a13A23
= a11(-a1233 + a13a32) + a12(a11a33 – a13a31) + a13(-a11a32 + a12a31)
= -a11a12a33 + a11a13a32 + a11a12a33 – a12a13a31 – a11a13a32 + a12a13a31
= 0

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) a11A11 + a12A12 + a13A13 = |A|
Solution:
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 54

Question 20.
If A = \(\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1
\end{array}\right]\) and B = \(\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 5 \\
2 & 4 & 7
\end{array}\right]\), then find a matrix X such that XA= B.
Solution:
Consider XA = B
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 55
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Miscellaneous Exercise 2A 56

Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Ex 2.3

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 2 Matrices Ex 2.3 Questions and Answers.

Maharashtra State Board 12th Maths Solutions Chapter 2 Matrices Ex 2.3

Question 1.
Solve the following equations by the inversion method.
(i) x + 2y = 2, 2x + 3y = 3
Solution:
The given equations can be written in the matrix form as :
\(\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\) = \(\left[\begin{array}{l}
2 \\
3
\end{array}\right]\)
This is of the form AX = B, where
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Ex 2.3 1
∴ A-1 = \(\left[\begin{array}{rr}
-3 & 2 \\
2 & -1
\end{array}\right]\)
Now, premultiply AX = B by A-1, we get,
A-1(AX) = A-1B
∴ (A-1A)X = A-1B
∴ IX = A-1B
∴ X = \(=\left[\begin{array}{rr}
-3 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]\)
∴ \(\left[\begin{array}{l}
x \\
y
\end{array}\right]\) = \(=\left[\begin{array}{r}
-6+6 \\
4-3
\end{array}\right]\) = \(=\left[\begin{array}{l}
0 \\
1
\end{array}\right]\)
By equality of matrices,
x = 0, y = 1 is the required solution.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(ii) x + y = 4, 2x – y = 5
Solution:
x + y = 4, 2x – y = 5
The given equations can be written in the matrix form as:
\(\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\) = \(\left[\begin{array}{l}
4 \\
5
\end{array}\right]\)
This is of the form AX = B ⇒ X ⇒ A-1B
A = \(\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right]\)
|A| = -1 – 2 = -3 ≠ 0
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Ex 2.3 5
By equality of matrices.
x = 3, y = 1

(iii) 2x + 6y = 8, x + 3y = 5
Solution:
The given equations can be written in the matrix form as :
\(\left[\begin{array}{ll}
2 & 6 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
8 \\
5
\end{array}\right]\)
This is of the form AX = B, where
A = \(\left[\begin{array}{ll}
2 & 6 \\
1 & 3
\end{array}\right]\), X = \(\left[\begin{array}{l}
x \\
y
\end{array}\right]\) and B = \(\left[\begin{array}{l}
8 \\
5
\end{array}\right]\)
Let us find A-1.
|A| = \(\left|\begin{array}{ll}
2 & 6 \\
1 & 3
\end{array}\right|\) = 6 – 6 = 0
∴ A-1 does not exist.
Hence, x and y do not exist.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 2.
Solve the following equations by reduction method.
(i) 2x + y = 5, 3x + 5y = -3
Solution:
The given equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Ex 2.3 2
By equality of matrices,
2x + y = 5 …(1)
7y = -21 …(2)
From (2), y = -3
Substituting y = -3 in (1), we get,
2x – 3 = 5
∴ 2x = 8 ∴ x = 4
Hence, x = 4, y = -3 is the required solution.

(ii) x + 3y = 2, 3x + 5y = 4.
Solution:
The given equations can be written in the matrix form as :
\(\left[\begin{array}{ll}
1 & 3 \\
3 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\) = \(\left[\begin{array}{l}
2 \\
4
\end{array}\right]\)
By R2 – 3R1, we get
\(\left[\begin{array}{rr}
1 & 3 \\
0 & -4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]\) = \(\left(\begin{array}{r}
2 \\
-2
\end{array}\right)\)
∴ \(\left[\begin{array}{l}
x+3 \\
0-4 y
\end{array}\right]\) = \(\left[\begin{array}{r}
2 \\
-2
\end{array}\right]\)
By equality of matrices,
x + 3y = 2 …(1)
-4y = -2
From (2), y = \(\frac{1}{2}\)
Substituting y = \(\frac{1}{2}\) in (1), we get,
x + \(\frac{3}{2}\) = 2
∴ x = 2 – \(\frac{3}{2}=\frac{1}{2}\)
Hence, x = \(\frac{1}{2}\), y = \(\frac{1}{2}\) is the required solution.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

(iii) 3x – y = 1, 4x + y = 6
Solution:
The given equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Ex 2.3 3
By equality of matrices,
12x – 4y = 4 … (1)
7y = 14 … (2)
From (2), y = 2
Substituting y = 2 in (1), we get,
12x – 8 = 4
∴ 12x = 12 ∴ x = 1
Hence, x = 1, y = 2 is the required solution.

(iv) 5x + 2y = 4, 7x + 3y = 5
Solution:
5x + 2y = 4 ………..(1)
7x + 3y = 5 …………(2)
Multiplying Eq. (1) with 7 and Eq. (2) with 5
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Ex 2.3 6
Put y = -3 into Eq. (1)
5x + 2y = 4
5x + 2(-3) = 4
5x – 6 = 4
5x = 4 + 6
5x = 10
x = \(\frac{10}{5}\)
x = 2
Hence, x = 2, y = -3 is the required solution.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 3.
The cost of 4 pencils, 3 pens and 2 erasers is ₹ 60. The cost of 2 pencils, 4 pens and 6 erasers is ₹ 90, whereas the cost of 6 pencils, 2 pens and 3 erasers is ₹ 70. Find the cost of each item by using matrices.
Solution:
Let the cost of 1 pencil, 1 pen and 1 eraser be ₹ x, ₹ y and ₹ z respectively.
Then, from the given conditions,
4x + 3y + 2z = 60
2x + 4y + 6z = 90, i.e., x + 2y + 3z = 45
6x + 2y + 3z = 70
These equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Ex 2.3 4
By equality of matrices,
x + 2y + 3z = 45 …….(1)
– 5y – 10z = – 120 …….(2)
5z = 40
From (3), z = 8
Substituting z = 8 in (2), we get,
– 5y – 80 = -120
∴ – 5y = -40 ∴ y = 8
Substituting y = 8, z = 8 in (1), we get,
x + 16 + 24 = 45
∴ x + 40 = 45 ∴ x = 5
∴ x = 5, y = 8, z = 8
Hence, the cost is ₹ 5 for a pencil, ₹ 8 for a pen and ₹ 8 for an eraser.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 4.
If three numbers are added, their sum is 2. If 2 times the second number is subtracted from the sum of first and third numbers, we get 8 and if three times the first number is added to the sum of second and third numbers, we get 4. Find the numbers using matrices.
Solution:
Let the three numbers be x, y and z. According to the given conditions,
x + y + z = 2
x + z – 2y = 8, i.e., x – 2y + 2 = 8
and y + z + 3x = 4, i.e., 3x + y + z = 4
Hence, the system of linear equations is
x + y + z = 2
x – 2y + z = 8
3x + y + z = 4
These equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Ex 2.3 7
By equality of matrices,
x + y + z = 2 ……(1)
-3y = 6 ……(2)
– 2y – 2z = -2 ……..(3)
From (2), y = -2
Substituting y = -2 in (3), we get,
-2(-2) – 2z = -2
∴ -2z = -6 ∴ z = 3
Substituting y = -2, z = 3 in (1), we get,
x – 2 + 3 = 2 ∴ x = 1
Hence, the required numbers are 1, -2 and 3.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
The total cost of 3 T.V. sets and 2 V.C.R.s is ₹ 35000. The shop-keeper wants profit of ₹ 1000 per television and ₹ 500 per V.C.R. He can sell 2 T. V. sets and 1 V.C.R. and get the total revenue as ₹ 21,500. Find the cost price and the selling price of a T.V. sets and a V.C.R.
Solution:
Let the cost of each T.V. set be ₹ x and each V.C.R. be ₹ y. Then the total cost of 3 T.V. sets and 2 V.C.R.’s is ₹ (3x + 2y) which is given to be ₹ 35,000.
∴ 3x + 2y = 35000
The shopkeeper wants profit of ₹ 1000 per T.V. set and of ₹ 500 per V.C.R.
∴ the selling price of each T.V. set is ₹ (x + 1000) and of each V.C.R. is ₹ (y + 500).
∴ selling price of 2 T.V. set and 1 V.C.R. is
₹ [2(x + 1000) + (y + 500)] which is given to be ₹ 21,500.
∴ 2(x + 1000) + (y + 500) = 21500
∴ 2x + 2000 + y + 500 = 21500
∴ 2x + y = 19000
Hence, the system of linear equations is
3x + 2y = 35000
2x + y = 19000
These equations can be written in the matrix form as :
Maharashtra Board 12th Maths Solutions Chapter 2 Matrices Ex 2.3 8
By equality of matrices,
2x + y = 19000 ……….(1)
-x = -3000 ……….(2)
From (2), x = 3000
Substituting x = 3000 in (1), we get,
2(3000) + y = 19000
∴ y = 13000
∴ the cost price of one T.V. set is ₹ 3000 and of one V.C.R. is ₹ 13000 and the selling price of one T.V. set is ₹ 4000 and of one V.C.R. is ₹ 13500.

Maharashtra Board 12th BK Textbook Solutions Chapter 10 Computer in Accounting

Balbharti Maharashtra State Board 12th Commerce Book Keeping & Accountancy Solutions Chapter 10 Computer in Accounting Textbook Exercise Questions and Answers.

Maharashtra State Board 12th Book Keeping & Accountancy Solutions Chapter 10 Computer in Accounting

1. Objective questions:

A. Select the most appropriate alternatives from those given below and rewrite the statements.

Question 1.
The primary document for recording all financial transactions in Tally is the ______________
(a) Journal
(b) Trial sheet
(c) Voucher
(d) File
Answer:
(c) Voucher

Question 2.
______________ displays the balance day-wise for a selected voucher type.
(a) Record book
(b) Ledger book
(c) Journal book
(d) Daybook
Answer:
(d) Daybook

Maharashtra Board 12th BK Textbook Solutions Chapter 10 Computer in Accounting

Question 3.
Fixed Deposit A/c comes under ______________ group.
(a) Investments
(b) Current liability
(c) Bank A/c
(d) Current asset
Answer:
(a) Investments

B. Give the word term or phrase which can substitute each of the following statements:

Question 1.
The details of Bills receivable are maintained in this record.
Answer:
Sundry Debtors

Question 2.
Tally software is classified into this category.
Answer:
Mercantile

Question 3.
The short key is used to save or accept the information.
Answer:
Ctrl + A

Maharashtra Board 12th BK Textbook Solutions Chapter 10 Computer in Accounting

Question 4.
It is a damaged software, cracked, nearly fully functional.
Answer:
Pirated Software

Question 5.
The process by which all the calculations are automatically done by the accounting software.
Answer:
Automation

C. State whether the following statements are true or false with reason:

Question 1.
Alt + D is the short key for delete voucher entries.
Answer:
This statement is True.
To delete voucher entries, people use the Alt + D key.

Question 2.
In Tally, the F6 Function key is for the payment vouchers.
Answer:
This statement is False.
In Tally, the F6 Function key is useful for receipt vouchers.

Maharashtra Board 12th BK Textbook Solutions Chapter 10 Computer in Accounting

Question 3.
Legal software is fully functional software without any restriction.
Answer:
This statement is True.
The base of the legal software is fully functional, safe, and legal, so one can use this kind of software without any hesitation and restriction.

Question 4.
Salary Account comes under Indirect expenses.
Answer:
This statement is True.
When the expenses are made for the purchase of goods, and for the manufacturing process, they are known as a direct expense. Salary does not fall in that category and so it comes under the indirect expense category.

Question 5.
Accounting software may not be customized to meet the special requirement of the user.
Answer:
This statement is False.
Customized Accounting software is prepared to meet the special requirement of the user which is not readily available in the market.

D. Answer in One Sentences:

Question 1.
What is CAS?
Answer:
CAS means Computerized Accounting System which helps business firms to implement accounting processes and makes it user friendly with automation.

Question 2.
Write the steps to create a ledger account in tally.
Answer:
Steps to create a ledger account in the tally are as follows:

  • From Gateway of Tally Screen, click on accounts info.
  • Path gateway to Tally – Accounts Info – Ledgers – Single ledger – Choses create.

Maharashtra Board 12th BK Textbook Solutions Chapter 10 Computer in Accounting

Question 3.
How to view reports in Tally?
Answer:
For viewing accounting reports in accounting software to click on the report option and select the Display option.

Question 4.
State the various types of vouchers.
Answer:
Following are the various voucher types:

  1. F4 Contra voucher – For cash deposited in the bank and cash withdrawn from the bank, Transfer from one cash A/c to another Cash A/c and Bank to Bank transfer.
  2. F5 Payment voucher – For all types of payments are recorded through this voucher type (Cash and Bank) Cash or Bank.
  3. F6 Receipt voucher – For Cash and Bank receipts
  4. F7 Journal voucher – For non-cash transactions
  5. F8 Sales voucher – For cash as well as credit sales
  6. F9 Purchase voucher – For cash as well as a credit purchase

Question 5.
Write the steps to create a company.
Answer:
Following are the steps to create a company:

  1. After entering into Accounting software Tally, double click on the option, create a company, under company information. Then follow the navigation path.
    Gateway of Tally > Company Info > Create Company
  2. Fill in the detailed information in the company creation form, displayed on the screen – Company creation window.

Maharashtra State Board 12th Commerce Book Keeping & Accountancy Solutions Digest | 12th BK Textbook Solutions

Maharashtra State Board Std 12th Commerce Book Keeping & Accountancy Textbook Solutions Digest

Book Keeping and Accountancy Class 12 Solutions | 12th BK Textbook Solutions

Maharashtra State Board Class 12 Textbook Solutions

Maharashtra State Board Class 12 Biology Solutions Digest

Maharashtra State Board 12th Std Biology Textbook Solutions Digest

Maharashtra State Board Class 12 Textbook Solutions

Maharashtra State Board Class 12 History Solutions Digest

Maharashtra State Board 12th Std History Textbook Solutions Digest

Maharashtra State Board Class 12 Textbook Solutions

Maharashtra State Board Class 12 Political Science Solutions Digest

Maharashtra State Board 12th Std Political Science Textbook Solutions Digest

Maharashtra State Board Class 12 Textbook Solutions