Problem Set 4A Algebra 10th Standard Maths Part 1 Chapter 4 Financial Planning Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Problem Set 4A Algebra 10th Class Maths Part 1 Answers Solutions Chapter 4 Financial Planning.

10th Standard Maths 1 Problem Set 4A Chapter 4 Financial Planning Textbook Answers Maharashtra Board

Class 10 Maths Part 1 Problem Set 4A Chapter 4 Financial Planning Questions With Answers Maharashtra Board

Financial Planning Class 10 Problem Set 4a Question 1.
Write the correct alternative for each of the following.

i. Rate of GST on essential commodities is ______
(A) 5%
(B) 12%
(C) 0%
(D) 18%
Answer:
(C)

ii. The tax levied by the central government for trading within state is ______
(A) IGST
(B) CGST
(C) SGST
(D) UTGST
Answer:
(B)

iii. GST system was introduced in our country from ______
(A) 31st March 2017
(B) 1st April 2017
(C) 1st January 2017
(D) 1st July 2017
Answer:
(D)

iv. The rate of GST on stainless steel utensils is 18%, then the rate of state
GST is ______
(A) 18%
(B) 9%
(C) 36%
(D) 0.9%
Answer:
(B)

v. In the format of GSTIN there are ______ alpha-numerals.
(A) 15
(B) 10
(C) 16
(D) 9
Answer:
(A)

vi. When a registered dealer sells goods to another registered dealer under GST, then this trading is termed as ______
(A) BB
(B) B2B
(C) BC
(D) B2C
Answer:
(B)

10th Class Algebra Problem Set 4a Question 2.
A dealer has given 10% discount on a showpiece of ₹ 25,000. GST of 28% was charged on the discounted price. Find the total amount shown in the tax invoice. What is the amount of CGST and SGST.
Solution:
Printed price of showpiece = ₹ 25,000,
Rate of discount = 10%
∴ Amount of discount = 10% of printed price
= \(\frac { 10 }{ 100 } \) × 25000
= ₹ 2500
∴ Taxable value
= Printed price – discount
= 25,000 – 2500 = ₹ 22,500
Rate of GST = 28%
∴ Rate of CGST = 14% and
Rate of SGST = 14%
CGST = 14% of taxable value
= \(\frac { 14 }{ 100 } \) × 22500
= ₹ 3150
∴ CGST = SGST = ₹ 3150
∴ Total amount of tax invoice
= Taxable value + CGST + SGST
= 22500 + 3150 + 3150
= ₹ 28,800
∴ The total amount shown in the tax invoice is ₹ 28,800, and the amount of CGST and SGST is ₹ 3150 each.

Financial Planning Problem Set 4a Question 3.
A ready-made garment shopkeeper gives 5% discount on the dress of ₹ 1000 and charges 5% GST on the remaining amount, then what is the purchase price of the dress for the customer?
Solution:
Printed price of dress = ₹ 1000
Rate of discount = 5%
∴ Amount of discount = 5% of printed price
= \(\frac { 5 }{ 100 } \) × 1000
= ₹ 50
∴ Taxable value = Printed price – discount
= 1000 – 50
= ₹ 950
Rate of GST = 5%
∴ GST = 5% of taxable value
= \(\frac { 5 }{ 100 } \) × 950
∴ GST = ₹ 47.5
Purchase price of the dress
= Taxable value + GST
= 950 + 47.5 = ₹ 997.50
∴ Purchase price of the dress for the customer is ₹ 997.50.

Question 4.
A trader from Surat, Gujarat sold cotton clothes to a trader in Rajkot, Gujarat. The taxable value of cotton clothes is ₹ 2.5 lacs. What is the amount of GST at 5% paid by the trader in Rajkot?
Solution:
Taxable amount of cotton clothes = ₹ 2.5 lacs,
Rate of GST = 5%
GST = 5% of taxable amount
= \(\frac { 5 }{ 100 } \) × 2,50,000
= ₹ 12500
∴ Trader of Rajkot has to pay GST of ₹ 12,500.

Question 5.
Smt. Malhotra purchased solar panels for the taxable value of ₹ 85,000. She sold them for ₹ 90,000. The rate of GST is 5%. Find the ITC of Smt. Malhotra. What is the amount of GST payable by her?
Solution:
Output tax = 5% of 90000
= \(\frac { 5 }{ 100 } \) × 90000
= ₹ 4500
Input tax = 5% of 85000
= \(\frac { 5 }{ 100 } \) × 85000
= ₹ 4250
ITC = ₹ 4250.
∴ GST payable = Output tax – ITC
= 4500 – 4250
GST payable = ₹ 250
∴ ITC of Smt. Malhotra is ₹ 4250 and amount of GST payable by her is ₹ 250.

Question 6.
A company provided Z-security services for the taxable value of ₹ 64,500. Rate of GST is 18%. Company had paid GST of ₹ 1550 for laundry services and uniforms etc. What is the amount of ITC (input Tax Credit)? Find the amount of CGST and SGST payable by the company.
Solution:
Output tax = 18% of 64500
= \(\frac { 18 }{ 100 } \) × 64500
= ₹ 11610
Input tax = ₹ 1550
GST payable = Output tax – ITC
= 11610 – 1550
∴ GST payable = ₹ 10060
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Problem Set 4A 1
∴ Amount of ITC is ₹ 1550. Amount of CGST and SGST payable by the company is ₹ 5030 each.

Question 7.
A dealer supplied Walky-Talky set of ₹ 84,000 (with GST) to police control room. Rate of GST is 12%. Find the amount of state and central GST charged by the dealer. Also find the taxable value of the set.
Solution:
Let the amount of GST be ₹ x.
Price of walky talky with GST = ₹ 84,000
Taxable value of walky talky = ₹ (84,000 – x)
Now, GST = 12% of taxable value
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Problem Set 4A 2
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Problem Set 4A 3
∴ Amount of state and central GST charged by the dealer is ₹ 4,500 each. Taxable value of the set is ₹ 75,000.

Question 8.
A wholesaler purchased electric goods for the taxable amount of ₹ 1,50,000. He sold it to the retailer for the taxable amount of ₹ 1,80,000. Retailer sold it to the customer for the taxable amount of ₹ 2,20,000. Rate of GST is 18%. Show the computation of GST in tax invoices of sales. Also find the payable CGST and payable SGST for wholesaler and retailer.
Solution:
For Wholesaler:
Output tax = 18% of ₹ 1,80,000
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Problem Set 4A 4
Statement of GST payable at each stage of trading:
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Problem Set 4A 5

Question 9.
Anna Patil (Thane, Maharashtra) supplied vacuum cleaner to a shopkeeper in Vasai (Mumbai) for the taxable value of ₹ 14,000, and GST rate of 28% . Shopkeeper sold it to the customer at the same GST rate for ₹ 16,800 (taxable value). Find the following:
i. Amount of CGST and SGST shown in the tax invoice issued by Anna Patil.
ii. Amount of CGST and SGST charged by the shopkeeper in Vasai.
iii. What is the CGST and SGST payable by shopkeeper in Vasai at the time of filing the return.
Solution:
i. For Anna Patil:
Output tax = 28% of 14,000
= \(\frac { 18 }{ 100 } \) × 14000
= ₹ 3920
∴ CGST = SGST = \(\frac { GST }{ 2 } \)
= \(\frac { 3920 }{ 2 } \)
= ₹ 1960
∴ Amount of CGST and SGST shown in the tax invoice issued by Anna Patil is ₹ 1960 each.

ii. For Shopkeeper in Vasai:
Output tax = 28% of 16,800
= \(\frac { 28 }{ 100 } \) × 16,800
= ₹ 4704
∴ CGST = SGST = \(\frac { GST }{ 2 } \)
= \(\frac { 4704 }{ 2 } \)
= ₹ 2352
∴ Amount of CGST and SGST charged by the shopkeeper in Vasai is ₹ 2352 each.

iii. ITC = ₹ 3920
GST payable by shopkeeper in Vasai
= Output tax – ITC
= 4704 – 3920
= ₹ 784
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Problem Set 4A 6
∴ CGST and SGST payable by shopkeeper in Vasai at the time of filing the return is ₹ 392 each.

Question 10.
For the given trading chain prepare the tax invoice I, II, III. GST at the rate of 12% was charged for the article supplied.
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Problem Set 4A 7
i. Prepare the statement of GST payable under each head by the wholesaler, distributor and retailer at the time of filing the return to the government.
ii. At the end what amount is paid by the consumer?
iii. Write which of the invoices issued are B2B and B2C.
Solution:
i. For wholesaler:
Output tax = 12% of 5000
= \(\frac { 12 }{ 100 } \) × 5000 = ₹ 600
For Distributor:
Output Tax = 12% of 6000
= \(\frac { 12 }{ 100 } \) × 6000 = ₹ 720
ITC = ₹ 600
∴ GST payable = Output tax – ITC
= 720 – 600
= ₹ 120
For Retailer:
Output tax = 12 % of 6500
= \(\frac { 12 }{ 100 } \) × 6500 = ₹ 780
ITC = ₹ 720
∴ GST payable = Output tax – ITC
= 780 – 720 = ₹ 60
Statement of GST payable at each stage of trading:
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Problem Set 4A 8

ii. ITC for consumer = ₹ 780
∴ Amount paid by consumer
= taxable value + ITC
= 6500 + 780
= ₹ 7280
∴ Amount paid by the consumer is ₹ 7280.

iii. B2B = Wholesaler to Distributor
B2B = Distributor to Retailer
B2C = Retailer to Consumer

Class 10 Maths Digest

Practice Set 4.2 Algebra 10th Standard Maths Part 1 Chapter 4 Financial Planning Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 4.2 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 4 Financial Planning.

10th Standard Maths 1 Practice Set 4.2 Chapter 4 Financial Planning Textbook Answers Maharashtra Board

Class 10 Maths Part 1 Practice Set 4.2 Chapter 4 Financial Planning Questions With Answers Maharashtra Board

Question 1. ‘Chetana Store’ paid total GST of ₹ 1,00,500 at the time of purchase and collected GST ₹ 1,22,500 at the time of sale during 1st of July 2017 to 31st July 2017. Find the GST payable by Chetana Stores.
Answer:
Output tax (Tax collected at the time of sale)
= ₹ 1,22,500
Input tax (Tax paid at the time of purchase)
= ₹ 1,00,500
ITC (Input Tax credit) = ₹ 1,00,500.
GST payable = Output tax – ITC
= 1,22,500 – 1,00,500
= ₹ 22,000
GST payable by Chetana stores is ₹ 22,000.

Question 2. Nazama is a proprietor of a firm, registered under GST. She has paid GST of ₹ 12,500 on purchase and collected ₹ 14,750 on sale. What is the amount of ITC to be claimed? What is the amount of GST payable?
Solution:
Output tax = ₹ 14,750
Input tax = ₹ 12,500
∴ ITC for Nazama = ₹ 12,500.
∴ GST payable = Output tax – ITC
= 14750 – 12500
= ₹ 2250
∴ Amount of ITC to be claimed is ₹ 12,500 and amount of GST payable is ₹ 2250.

Question 3. Amir Enterprise purchased chocolate sauce bottles and paid GST of ₹ 3800. He sold those bottles to Akbari Bros, and collected GST of ₹ 4100. Mayank Food Corner purchased these bottles from Akbari Bros, and paid GST of ₹ 4500. Find the amount of GST payable at every stage of trading and hence find payable CGST and SGST.
Solution:
For Amir Enterprise:
Output tax = ₹ 4100
Input tax = ₹ 3800
ITC for Amir enterprise = ₹ 3800.
∴ GST payable = Output tax – ITC
= 4100 – 3800
= ₹ 300
For Akbari Bros.:
Output tax = ₹ 4500
Input tax = ₹ 4100
ITC for Akbari Bros = ₹ 4100.
GST payable = Output tax – ITC
= 4500 – 4100 = ₹ 400
∴ Statement of GST payable at every stage of trading:
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.2 1

Question 4. Malik Gas Agency (Chandigarh Union Territory) purchased some gas cylinders for industrial use for ₹ 24,500, and sold them to the local customers for ₹ 26,500. Find the GST to be paid at the rate of 5% and hence the CGST and UTGST to be paid for this transaction, (for Union Territories there is UTGST instead of SGST.)
Solution:
For Malik Gas Agency:
Output tax = 5% of 26500
= \(\frac { 5 }{ 100 } \) × 26500
= ₹ 1325
Input tax = 5% of 24500
= \(\frac { 5 }{ 100 } \) × 24500
= ₹ 1225
ITC for Malik Gas Agency = ₹ 1225.
∴ GST payable = Output tax – ITC
= 1325 – 1225
= ₹ 100
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.2 2
∴ CGST = UTGST = ₹ 50
∴ The GST to be paid at the rate of 5% is ₹ 100 and hence, CGST and UTGST paid for the transaction is ₹ 50 each.

Question 5.
M/s Beauty Products paid 18% GST on cosmetics worth ₹ 6000 and sold to a customer for ₹ 10,000. What are the amounts of CGST and SGST shown in the tax invoice issued?
Solution:
Output tax = 18% of 10,000
= \(\frac { 18 }{ 100 } \) × 10,000
= ₹ 1800
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.2 3
∴ Amount of CGST and SGST shown in the tax invoice issued is ₹ 900 each.

Question 6.
Prepare Business to Consumer (B2C) tax invoice using given information. Write the name of the supplier, address, state, Date, Invoice number, GSTIN etc. as per your choice.
Supplier: M/s ______ Address _______ State _______ Date _______ Invoice No. _______ GSTIN _______
Particulars
Rate of Mobile Battery ₹ 200 Rate of GST 12% HSN 8507 1 PC
Rate of Headphone ₹750 Rate of GST 18% HSN 8518 1 Pc
Solution:
Rate of Mobile Battery = ₹200
CGST = 6% of 200
= \(\frac { 6 }{ 100 } \) × 200
= ₹ 12
∴ CGST = SGST = ₹ 12

Rate of Headphone = ₹ 750
COST = 9% of 750
= \(\frac { 9 }{ 100 } \) × 750
= ₹ 67.5
∴ CGST = SGST = ₹ 67.5
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.2 4

Question 7.
Prepare Business to Business (B2B) Tax Invoice as per the details given below, name of the supplier, address, Date etc. as per your choice.
Supplier – Name, Address, State, GSTIN, Invoice No., Date
Recipient – Name, Address, State, GSTIN,
Items:
i. Pencil boxes 100, HSN – 3924, Rate – ₹ 20, GST 12%
ii. Jigsaw Puzzles 50, HSN 9503, Rate – ₹ 100 GST 12%.
Solution:
Cost of 100 Pencil boxes
= 20 × 1oo
= ₹ 2000
CGST = 6% of 2000
= \(\frac { 6 }{ 100 } \) × 2000
= ₹ 120
∴ CGST = SGST = ₹ 120

Cost of 50 Jigsaw Puzzles = 100 × 50
= ₹ 5000
CGST = 6% of 5000
= \(\frac { 6 }{ 100 } \) × 5000
= ₹ 300
CGST – SGST = ₹ 300
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.2 5

Question 1.
Suppose a manufacturer sold a cycle for a taxable value of ₹ 4000 to the wholesaler. Wholesaler sold it to the retailer for ₹ 4800 (taxable value). Retailer sold it to a customer for ₹ 5200 (taxable value). Rate of GST is 12%. Complete the following activity to find the payable CGST and SGST at each stage of trading. (Textbook pg. no. 92)
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.2 6
GST payable by manufacturer = ₹ 480
Output tax of wholesaler
= 12% of 4800 = \(\frac { 12 }{ 100 } \) × 4800 = ₹ 576
∴ GST payable by wholesaler
= Output tax – Input tax
= 576 – 480
= ₹ 96
Output tax of retailer = 12% of 5200
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.2 7

Question 2. Suppose in the month of July the output tax of a trader is equal to the input tax, then what is his payable GST?(Textbook pg. no. 93)
Answer:
Here, output tax is same as input tax.
∴ Trader payable GST will be zero.

Question 3.
Suppose in the month of July output tax of a trader is less than the input tax then how to compute his GST? (Textbook pg. no. 93)
Answer:
If output tax of a trader in a particular month is less than his input tax, then he won’t be able to get entire credit for his input tax. In such a case his balance credit will be carried forward and adjusted against the subsequent transactions.

Class 10 Maths Digest

Practice Set 4.3 Algebra 10th Standard Maths Part 1 Chapter 4 Financial Planning Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 4.3 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 4 Financial Planning.

10th Standard Maths 1 Practice Set 4.3 Chapter 4 Financial Planning Textbook Answers Maharashtra Board

Class 10 Maths Part 1 Practice Set 4.3 Chapter 4 Financial Planning Questions With Answers Maharashtra Board

Practice Set 4.3 Financial Planning Question 1. Complete the following table by writing suitable numbers and words.
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.3 1
Solution:
i. Here, share is at par.
∴ MV = FV
∴ MV = ₹ 100

ii. Here, Premium = ₹ 500, MV = ₹ 575
∴ FV + Premium = MV
∴ FV + 500 = 575
∴ FV = 575 – 500
∴ FV = ₹ 75

iii. Here, FV = ₹ 10, MV = ₹ 5
∴ FV > MV
Share is at discount.
FV – Discount = MV
∴ 10 – Discount = 5
∴ 10 – 5 = Discount
₹ Discount = ₹ 5
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.3 2

Practice Set 4.3 Question 2. Mr. Amol purchased 50 shares of Face value ₹ 100 when the Market value of the share was ₹ 80. Company had given 20% dividend. Find the rate of return on investment.
Solution:
Here, MV = ₹ 80, FV = ₹ 100,
Number of shares = 50, Rate of dividend = 20%
∴ Sum invested = Number of shares × MV
= 50 × 80
= ₹ 4000

Dividend per share = 20% of FV
= \(\frac { 20 }{ 100 } \) × 100 = ₹ 20
∴ Total dividend of 50 shares = 50 × 20
= ₹ 1000
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.3 3
∴ Rate of return on investment is 25%.

Practice Set 4.3 Question 3.
Joseph purchased following shares, Find his total investment.
Company A : 200 shares, FV = ₹ 2, Premium = ₹ 18.
Company B : 45 shares, MV = ₹ 500
Company C : 1 share, MV = ₹ 10,540
Solution:
For company A:
FV = ₹ 2, premium = ₹ 18,
Number of shares = 200
∴ MV = FV+ Premium
= 2 + 18
= ₹ 20
Sum invested = Number of shares × MV
= 200 × 20
= ₹ 14000

For company B:
MV = ₹ 500, Number of shares = 45
Sum invested = Number of shares × MV
= 45 × 500 = ₹ 22,500

For company C:
MV = ₹ 10,540, Number of shares = 1
∴ Sum invested = Number of shares × MV
= 1 × 10540
= ₹ 10,540
∴ Total investment of Joseph
= Investment for company A + Investment for company B + Investment for company C
= 4000 + 22,500 + 10,540
= ₹ 37040
∴ Total investment done by Joseph is ₹ 37,040.

Practice Set 4.3 Class 7th Question 4.
Smt. Deshpande purchased shares of FV ₹ 5 at a premium of ₹ 20. How many shares will she get for ₹ 20,000?
Solution:
Here, FV = ₹ 5, Premium = ₹ 20,
Sum invested = ₹ 20,000
∴ MV = FV + Premium
= 5 + 20
∴ MV = ₹ 25
Now, sum invested = Number of shares × MV
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.3 4
∴ Smt. Deshpande got 800 shares for ₹ 20,000.

Question 5.
Shri Shantilal has purchased 150 shares of FV ₹ 100, for MV of ₹ 120. Company has paid dividend at 7%. Find the rate of return on his investment.
Solution:
Here, FV = ₹ 100, MV = ₹ 120
Dividend = 7%, Number of shares = 150
∴ Sum invested = Number of shares × MV
= 150 × 120 = ₹ 18000
Dividend per share = 7% of FV
= \(\frac { 7 }{ 100 } \) × 100 = ₹ 7
∴ Total dividend of 150 shares
= 150 × 7 = ₹ 1050
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.3 5
∴ Rate of return on investment is 5.83%.

4.3 Class 10 Question 6. If the face value of both the shares is same, then which investment out of the following is more profitable?
Company A : dividend 16%, MV = ₹ 80,
Company B : dividend 20%, MV = ₹ 120.
Solution:
Let the face value of share be ₹ x.
For company A:
MV = ₹ 80, Dividend = 16%
Dividend = 16% of FV
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.3 6
∴ Rate of return of company A is more.
∴ Investment in company A is profitable.

Question 1.
Smita has invested ₹ 12,000 and purchased shares of FV ₹ 10 at a premium of ₹ 2. Find the number of shares she purchased. Complete the given activity to get the answer. (Textbook pg. no. 101.)
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.3 7

Class 10 Maths Digest

Practice Set 4.1 Algebra 10th Standard Maths Part 1 Chapter 4 Financial Planning Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 4.1 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 4 Financial Planning.

10th Standard Maths 1 Practice Set 4.1 Chapter 4 Financial Planning Textbook Answers Maharashtra Board

Class 10 Maths Part 1 Practice Set 4.1 Chapter 4 Financial Planning Questions With Answers Maharashtra Board

Financial Planning Class 10 Practice Set 4.1 Question 1.
‘Pawan Medical’ supplies medicines. On some medicines the rate of GST is 12%, then what is the rate of CGST and SGST?
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.1 1

Question 2.
On certain article if rate of CGST is 9% then what is the rate of SGST? and what is the rate of GST?
Solution:
Rate of CGST = 9%
But, rate of SGST = rate of CGST
∴ Rate of SGST = 9%
Rate of GST = Rate of SGST + Rate of CGST = 9% + 9%
∴ Rate of GST = 18%

Financial Planning Class 10 Question 3.
‘M/s. Real Paint’ sold 2 tins of lustre paint and taxable value of each tin is ₹ 2800. If the rate of GST is 28%, then find the amount of CGST and SGST charged in the tax invoice.
Solution:
Taxable value of 1 tin = ₹ 2800
∴ Taxable value of 2 tins = 2 × 2800
= ₹ 5600
Rate of GST = 28 %
∴ Rate of CGST = Rate of SGST = 14 %
CGST = 14% of taxable value 14
= \(\frac { 14 }{ 100 } \) × 5600
∴ CGST = ₹ 784
∴ SGST = CGST = ₹ 784
∴ The amount of CGST and SGST charged in the tax invoice is ₹ 784 each.

Question 4.
The taxable value of a wrist watch belt is 7 586. Rate of GST is 18%. Then what is price of the belt for the customer?
Solution:
Taxable value of wrist watch belt = ₹ 586
Rate of GST = 18%
∴ GST = 18% of taxable value
= \(\frac { 18 }{ 100 } \) × 586
∴ GST = ₹ 105.48
∴ Amount paid by customer = Taxable value of wrist watch belt + GST
= 586+ 105.48
= ₹ 691.48
∴ The price of the belt for the customer is ₹ 691.48.

Question 5.
The total value (with GST) of a remote-controlled toy car is ₹ 1770. Rate of GST is 18% on toys. Find the taxable value, CGST and SGST for this toy-car.
Solution:
Let the amount of GST be ₹ x.
Total value of remote controlled toy car = ₹ 1770
∴ Taxable value of remote controlled toy car = ₹ (1770 – x)
Now, GST = 18% of taxable value
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.1 2
∴ Taxable value of toy car is ₹ 1500 and CGST and SGST for it is ₹ 135 each.

Question 6.
‘Tiptop Electronics’ supplied an AC of 1.5 ton to a company. Cost of the AC supplied is ₹ 51,200 (with GST). Rate of CGST on AC is 14%. Then find the following amounts as shown in the tax invoice of Tiptop Electronics.
i. Rate of SGST
ii. Rate of GST on AC
iii. Taxable value of AC
iv. Total amount of GST
v. Amount of CGST
vi. Amount of SGST
Solution:
i. Rate of CGST = 14%
But, Rate of SGST = Rate of CGST
∴ Rate of SGST = 14%

ii. Rate of GST on AC
= Rate of SGST + Rate of CGST
= 14% + 14% = 28%
∴ Rate of GST on AC is 28%.

iii. Let the cost (Taxable value) of AC be ₹ 100.
Given, GST = 28%
∴ The cost of AC with GST is ₹ 128.
For the total value of ₹ 128, the taxable value is ₹ 100.
For the total value of ₹ 51200, let the taxable value be ₹ x
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.1 3
∴ Taxable value of AC is ₹ 40,000.

iv. Total amount of GST = 28% of taxable value
= \(\frac { 28 }{ 100 } \) × 40000
= ₹ 11,200
∴ Total amount of GST is ₹ 11,200.

∴ Amount of CGST is ₹ 5600.

Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.1 4

vi. Amount of SGST = Amount of CGST
= ₹ 5600
Amount of SGST is ₹ 5600.

Question 7.
Prasad purchased a washing-machine from ‘Maharashtra Electronic Goods’. The discount of 5% was given on the printed price of ₹ 40,000. Rate of GST charged was 28%. Find the purchase price of washing machine. Also find the amount of CGST and SGST shown in the tax invoice.
Solution:
Printed price of washing machine = ₹ 40,000
Rate of discount = 5%
Amount of discount = 5% of printed price
= \(\frac { 5 }{ 100 } \) × 40000 = ₹ 2000
∴ Taxable value = Printed price – Discount
= 40000 – 2000 = ₹ 38000
Rate of GST = 28%
∴ Rate of CGST = 14% and
Rate of SGST = 14%
CGST = 14% of taxable value
= \(\frac { 14 }{ 100 } \) × 38000
∴ CGST = ₹ 5320
∴ CGST = SGST = ₹ 5320
Purchase price of washing machine
= Taxable value + CGST + SGST
= 38000 + 5320 + 5320
= ₹ 48,640
∴ Purchase price of washing machine is ₹ 48640. Amount of CGST and SGST in tax invoice is ₹ 5320 each.

Question 1.
Observe the given bill and fill in the boxes with the appropriate number. (Textbook pg. no. 82 and 83)
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.1 5
Solution:
i. Price of 1 kg of Pedhe is ₹ 400, therefore cost of 500 gm. of Pedhe is ₹ 200.
CGST for pedhe at the rate of 2.5% is ₹ [5] and SGST at the rate of [2.5| % is ₹ 5.00. It means that the rate of GST on Pedhe is 2.5% + 2.5% = 5% and hence the total GST is ₹ 10.
ii. The rate of GST on chocolate is [28] % and hence the total GST is ₹ [22.40]
iii. Rate of GST on Ice-cream is [18] %, hence the total cost of ice-cream is ₹ 236
iv. On butter CGST rate is [6] % and SGST rate is also [6] %. So GST rate on butter is [12]%.

Question 2.
Fill in the blanks with the help of given information for the table given below. (Textbook pg. no. 83)
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.1 6

Question 3.
Make a list of ten things you need in your daily life. Find the GST rates with the help of GST rate chart given in the textbook, news papers or books, internet, or the bills of purchases. Verify these rates with the list prepared by your friends. (Textbook pg. no. 85)
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.1 7

Question 4.
Make a list of ten services and their GST rates as per activity 1. (e.g. Railway and ST bus booking services etc.) You can also collect service bills and complete the given information (Textbook pg. no. 85)
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.1 8

Question 5.
Complete the given table by writing remaining SAC and HSN codes with rates and add some more items in the list. (Textbook pg, no. 85)
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 4 Financial Planning Practice Set 4.1 9
[Note : The above Activities has many answers students may write answers other than the ones given]

Class 10 Maths Digest

Practice Set 3.3 Algebra 10th Standard Maths Part 1 Chapter 3 Arithmetic Progression Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 3.3 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 3 Arithmetic Progression.

10th Standard Maths 1 Practice Set 3.3 Chapter 3 Arithmetic Progression Textbook Answers Maharashtra Board

Class 10 Maths Part 1 Practice Set 3.3 Chapter 3 Arithmetic Progression Questions With Answers Maharashtra Board

Arithmetic Progression Practice Set 3.3 Question 1.
First term and common difference of an A.P. are 6 and 3 respectively; find S27.
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Practice Set 3.3 1

Arithmetic Progression Class 10 Practice Set 3.3 Question 2.
Find the sum of first 123 even natural numbers.
Solution:
The even natural numbers are 2, 4, 6, 8,…
The above sequence is an A.P.
∴ a = 2, d = 4 – 2 = 2, n = 123
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Practice Set 3.3 2
∴ The sum of first 123 even natural numbers is 15252.

Practice Set 3.3 Question 3.
Find the sum of all even numbers between 1 and 350.
Solution:
The even numbers between 1 and 350 are 2, 4, 6,…, 348.
The above sequence is an A.P.
∴ a = 2, d = 4 – 2 = 2, tn = 348
Since, tn = a + (n – 1)d
∴ 348 = 2 + (n – 1)2
∴ 348 – 2 = (n – 1)2
∴ 346 = (n – 1)2
∴ n – 1 = \(\frac { 346 }{ 2 } \)
∴ n – 1 = 173
∴ n = 173 + 1 = 174
Now, Sn = \(\frac { n }{ 2 } \) [2a + (n – 1)d]
∴ S174 = \(\frac { 174 }{ 2 } \) [2 (2) + (174 – 1)2]
= 87(4 + 173 × 2)
= 87(4 + 346)
= 87 × 350
∴ S174 = 30450
∴ The sum of all even numbers between 1 and 350 is 30450.

Arithmetic Progression 3.3 Question 4.
In an A.P. 19th term is 52 and 38th term is 128, find sum of first 56 terms.
Solution:
For an A.P., let a be the first term and d be the common difference.
t19 = 52, t38 = 128 …[Given]
Since, tn = a + (n – 1)d
∴ t19 = a + (19 – 1)d
∴ 52 = a + 18d
i.e. a + 18d = 52 …(i)
Also, t38 = a + (38 – 1)d
∴ 128 = a + 37d
i.e. a + 37d = 128 …(ii)
Adding equations (i) and (ii), we get
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Practice Set 3.3 3

3 Arithmetic Progression Question 5.
Complete the following activity to find the sum of natural numbers between 1 to 140 which are divisible by 4.
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Practice Set 3.3 4

10th Algebra Practice Set 3.3 Question 6.
Sum of first 55 terms in an A.P. is 3300, find its 28th term.
Solution:
For an A.P., let a be the first term and d be the common difference.
S55 =3300 …[Given]
Since, Sn = \(\frac { n }{ 2 } \) [2a + (n – 1)d]
∴ S55 = \(\frac { 55 }{ 2 } \) [2a + (55 – 1)d]
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Practice Set 3.3 5

Arithmetic Practice Set Question 7.
In an A.P. sum of three consecutive terms is 27 and their product is 504, find the terms. (Assume that three consecutive terms in A.P. are a – d, a, a + d.)
Solution:
Let the three consecutive terms in an A.P. be
a – d, a and a + d.
According to the first condition,
a – d + a + a + d = 27
∴ 3a = 27
∴ a = \(\frac { 27 }{ 3 } \)
∴ a = 9 ….(i)
According to the second condition,
(a – d) a (a + d) = 504
∴ a(a2 – d2) = 504
∴ 9(a2 – d2) = 504 …[From (i)]
∴ 9(81 – d2) = 504
∴ 81 – d2 = \(\frac { 504 }{ 9 } \)
∴ 81 – d2 = 56
∴ d2 = 81 – 56
∴ d2 = 25
Taking square root of both sides, we get
d = ± 5
When d = 5 and a =9,
a – d 9 – 5 = 4
a = 9
a + d 9 + 5 = 14
When d = -5 and a = 9,
a – d = 9 – (-5) = 9 + 5 = 14
a = 9
a + d = 9 – 5 = 4
∴ The three consecutive terms are 4, 9 and 14 or 14, 9 and 4.

10th Maths 1 Practice Set 3.3 Question 8.
Find four consecutive terms in an A.P. whose sum is 12 and sum of 3rd and 4th term is 14. (Assume the four consecutive terms in A.P. are a – d, a, a + d, a + 2d.)
Solution:
Let the four consecutive terms in an A.P. be
a – d, a, a + d and a + 2d.
According to the first condition,
a – d + a + a + d + a + 2d = 12
∴ 4a + 2d =12
∴ 2(2a + d) = 12
∴ 2a + d = \(\frac { 12 }{ 2 } \)
∴ 2a + d = 6 …(i)
According to the second condition,
a + d + a + 2d = 14
∴ 2a + 3d = 14 …(ii)
Subtracting equation (i) from (ii), we get
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Practice Set 3.3 6
∴ The four consecutive terms are -3,1,5 and 9.

Math 1 Practice Set 3.3 Question 9.
If the 9th term of an A.P. is zero, then show that the 29th term is twice the 19th term.
To prove: t29 = 2t19
Proof:
For an A.P., let a be the first term and d be the common difference.
t9 = 0 …[Given]
Since, tn = a + (n – 1)d
∴ t9 = a + (9 – 1)d
∴ 0 = a + 8d
∴ a = -8d …(i)
Also, t19 = a + (19 – 1)d
= a + 18d
= -8d + 18d … [From (i)]
∴ t19 = 10d …(ii)
and t29 = a + (29 – 1)d
= a + 28d
= -8d + 28d …[From (i)]
∴ t29 = 20d = 2(10d)
∴ t29 = 2(t19) … [From (ii)]
∴ The 29th term is twice the 19th term.

10 Class Math Part 1 Practice Set 3.3 Question 1.
Find the sum of all odd numbers from 1 to 150. (Textbook pg, no. 71)
Solution:
Odd numbers from 1 to 150 are 1,3, 5, 7,…, 149
Here, difference between any two consecutive terms is 2.
∴ It is an A.P.
∴ a = 1, d = 2
Let us find how many odd numbers are there from 1 to 150, i.e. find the value of n if
tn = 149
tn = a + (n – 1)d
∴ 149 = 1 + (n – 1)2
∴ 149 – 1 = (n – 1)2
∴ \(\frac { 148 }{ 2 } \) = n – 1
∴ 74 = n – 1
∴ n = 74 + 1 = 75

ii. Now, let’s find the sum of 75 numbers
i. e. 1 + 3 + 5 + 7 + … + 149
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Practice Set 3.3 7

Class 10 Maths Digest

Problem Set 2 Algebra 10th Standard Maths Part 1 Chapter 2 Quadratic Equations Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Problem Set 2 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 2 Quadratic Equations.

10th Standard Maths 1 Problem Set 2 Chapter 2 Quadratic Equations Textbook Answers Maharashtra Board

Class 10 Maths Part 1 Problem Set 2 Chapter 2 Quadratic Equations Questions With Answers Maharashtra Board

Question 1.
Choose the correct answers for the following questions.

i. Which one is the quadratic equation?
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Problem Set 2 1
Answer:
(B)

ii. Out of the following equations which one is not a quadratic equation?
(A) x2 + 4x = 11 + x2
(B) x = 4x
(C) 5x2 = 90
(D) 2x – x2 = x2 + 5
Answer:
(A)

iii. The roots of x2 + kx + k = 0 are real and equal, find k.
(A) 0
(B) 4
(C) 0 or 4
(D) 2
Answer:
(C)

iv. For √2 x2 – 5x + √2 = 0, find the value of the discriminant.
(A) -5
(B) 17
(C) √2
(D) 2 √2 – 5
Answer:
(B)

v. Which of the following quadratic equations has roots 3,5?
(A) x2 – 15x + 8 = 0
(B) x2 – 8x + 15 = 0
(C) x2 + 3x + 5 = 0
(D) x2 + 8x – 15 = 0
Answer:
(B)

vi. Out of the following equations, find the equation having the sum of its roots -5.
(A) 3x2 – 15x + 3 = 0
(B) x2 – 5x + 3 = 0
(C) x2 + 3x – 5 = 0
(D) 3x2 + 15x + 3 = 0
Answer:
(D)

vii. √5m2 – √5 m + √5 =0 which of the following statement is true for this given equation?
(A) Real and unequal roots
(B) Real and equal roots
(C) Roots are not real
(D) Three roots
Answer:
(C)

viii. One of the roots of equation x2 + mx – 5 = 0 is 2; find m.
(A) -2
(B) – \(\frac { 1 }{ 2 } \)
(C) \(\frac { 1 }{ 2 } \)
(D) 2
Answer:
(C)

Question 2.
Which of the following equations is quadratic
i. x2 + 2x + 11 = 0
ii. x2 – 2x + 5 = x2
iii. (x + 2)2 = 2x2
Solution:
i. The given equation is
x2 + 2x + 11 = 0
Here, x is the only variable and maximum index of the variable is 2.
a = 1, b = 2, c = 11 are real numbers and
a ≠ 0.
The given equation is a quadratic equation.

ii. The given equation is
x2 – 2x + 5 = x2
∴ x2 – x2 + 2x – 5 = 0
∴ 2x – 5 = 0
Here, x is the only variable and maximum index of the variable is not 2.
∴ The given equation is not a quadratic equation.

iii. The given equation is
(x + 2)2 = 2x2
∴ x2 + 4x + 4 = 2x2
∴ 2x2 – x2 – 4x – 4 = 0
∴ x2 – 4x – 4 = 0
Here, x is the only variable and maximum index of the variable is 2.
a = 1, b = -4, c = —4 are real numbers and
a ≠ 0.
∴ The given equation is a quadratic equation.

Question 3.
Find the value of discriminant for each of the following equations.
i. 2y2 – y + 2 = 0
ii. 5m2 – m = 0
iii. √5 x2 – x – √5 = 0
Solution:
i. 2y2 – y + 2 = 0
Comparing the above equation with
ay2 + by + c = 0, we get
a = 2, b = -1, c = 2
∴ b2 – 4ac = (-1)2 – 4 × 2 × 2
= 1 – 16
∴ b2 – 4ac = -15

ii. 5m2 – m = 0
∴ 5m2 – m + 0 = 0
Comparing the above equation with
am2 + bm + c = 0, we get
a = 5, b = -1, c = 0
∴ b2 – 4ac = (-1)2 – 4 × 5 × 0
= 1 – 0
∴ b2 – 4ac = 1

iii. √5x2 – x – √5 = 0
Comparing the above equation with
ax2 + bx + c = 0, we get
a = √5, b = -1, c = -√5
∴ b2 – 4ac = (-1)2 – 4 × √5 × √5
= 1 + 20
∴ b2 – 4ac = 21

Question 4.
One of the roots of quadratic equation 2x2 + kx – 2 = 0 is – 2, find k.
Solution:
-2 is one of the roots of the equation
2x2 + kx – 2 = 0.
∴ Putting x = – 2 in the given equation, we get
2(-2)2 + k(-2) -2 = 0
∴ 8 – 2k – 2 = 0
∴ 6 – 2k = 0
∴ 2k = 6
∴ k = \(\frac { 6 }{ 2 } \)
∴ k = 3

Question 5.
Two roots of quadratic equations are given; frame the equation.
i. 10 and -10
ii. 1 – 3√5 and 1 + 3√5
iii. 0 and 7
Solution:
i. Let α = 10 and β = -10
∴ α + β = 10 – 10 = 0
and α × p = 10 × -10 = -100
∴ The required quadratic equation is
x2 – (α + β)x + αβ = 0
∴ x2 – 0x + (-100) = 0
∴ x2 – 100 = 0

ii. Let α = 1 – 3 √5 and β = 1 + 3 √5
α + β = 1 – 3 √5 + 1 + 3 √5 = 2
and α × β = (1 – 3√5) (1 + 3 √5)
= (1)2 – (3√5)2
= 1 – 45
= -44
∴ The required quadratic equation is
x2 – (α + β)x + αβ = 0
∴ x2 – 2x – 44 = 0

iii. Let α = 0 and β = 7
∴ α + β = 0 + 7 = 7
and α × β = 0 × 7 = 0
∴ The required quadratic equation is
x2 – (α + β)x + αβ = 0
∴ x2 – 7x + 0 = 0
∴ x2 – 7x = 0

Question 6.
Determine the nature of roots for each of the quadratic equation.
i. 3x2 – 5x + 7 = 0
ii. √3 x2 + √2 x – 2 √3 = 0
iii. m2 – 2m + 1 = 0
Solution:
i. 3x2 – 5x + 7 = 0
Comparing the above equation with
ax2 + bx + c = 0, we get
a = 3, b = -5, c = 7
∴ ∆ = b2 – 4ac
= (-5)2 -4 × 3 × 7
= 25 – 84
∴ ∆ = -59
∴ ∆ < 0
∴ Roots of the given quadratic equation are not real.

ii. √3 x2 + √2 x – 2 √3 = 0
Comparing the above equation with
ax2 + bx + c = 0, we get
a = √3 , b = √2, c = -2√3
∴ ∆ = b2 – 4ac
= (√2)2 – 4 × √3 × (-2√3)
= 2 + 24
∴ ∆ = 26
∴ ∆ > 0
∴ Roots of the given quadratic equation are real and unequal.

iii. m2 – 2m + 1 = 0
Comparing the above equation with
am2 + bm + c = 0, we get
a = 1, b = -2, c = 1
∴ ∆ = b2 – 4ac
= (-2)2 – 4 × 1 × 1
= 4 – 4
∴ ∆ = 0
∴ Roots of the given quadratic equation are real and equal

Question 7.
Solve the following quadratic equations.
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Problem Set 2 2
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Problem Set 2 3
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Problem Set 2 4

ii. x2 – \(\frac { 3x }{ 10 } \) – \(\frac { 1 }{ 10 } \) = 0
∴ 10x2 – 3x – 1 = 0
…[Multiplying both sides by 10]
∴ 10x2 – 5x + 2x – 1 = 0
∴ 5x(2x – 1) + 1(2x – 1) = 0
∴ (2x – 1)(5x + 1) = 0
By using the property, if the product of two numbers is zero, then at least one of them is zero, we get
∴2x – 1 = 0 or 5x + 1 = 0
∴2x = 1 or 5x = -1
∴ x = –\(\frac { 1 }{ 2 } \) or x = \(\frac { -1 }{ 5 } \)
∴ The roots of the given quadratic equation are \(\frac { 1 }{ 2 } \) and \(\frac { -1 }{ 5 } \)

iii. (2x + 3)2 = 25
∴ (2x + 3)2 – 25 = 0
∴ (2x + 3)2 – (5)2 = 0
∴ (2x + 3 – 5) (2x + 3 + 5) = 0 ….. [∵ a2 – b2 = (a – b) (a + b)]
∴ (2x – 2) (2x + 8) = 0
By using the property, if the product of two numbers is zero, then at least one of them is zero, we get
∴ 2x – 2 = 0 or 2x + 8 = 0
∴ 2x = 2 or 2x = -8
∴ x = \(\frac { 2 }{ 2 } \) or x = \(\frac { -8 }{ 2 } \)
∴ x = 1 or x = -4
∴ The roots of the given quadratic equation are 1 and -4.

iv. m2 + 5m + 5 = 0
Comparing the above equation with
am2 + bm + c = 0, we get
a = 1, b = 5, c = 5
∴ b2 – 4ac = (5)2 – 4 × 1 × 5
= 25 – 20 = 5
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Problem Set 2 5

v. 5m2 + 2m+1 = 0
Comparing the above equation with
am2 + bm + c = 0, we get
a = 5, b = 2, c = 1
∴ b2 – 4ac = (2)2 -4 × 5 × 1
= 4 – 20
= -16
∴ b2 – 4ac < 0
∴ Roots of the given quadratic equation are not real.

vi. x2 – 4x – 3 = 0
Comparing the above equation with
ax2 + bx + c = 0, we get
a = 1, b = -4, c = -3
∴ b2 – 4ac = (-4)2 – 4 × 1 × -3
= 16 + 12
= 28
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Problem Set 2 6

Question 8.
Find m, if (m – 12) x2 + 2(m – 12) x + 2 = 0 has real and equal roots.
Solution:
(m – 12) x2 + 2(m – 12)x + 2 = 0
Comparing the above equation with
ax2 + bx + c = 0, we get
a = m – 12, b = 2(m – 12), c = 2
∴ ∆ = b2 – 4ac
= [2(m -12)]2 – 4 × (m – 12) × 2
= 4(m – 12)2 – 8(m – 12)
= 4(m – 12) (m – 12 – 2)
∴ ∆ = 4(m – 12) (m – 14)
Since, the roots are real and equal.
∴ ∆ = 0
∴ 4(m – 12) (m – 14) = 0 (m – 12) (m – 14) = 0
By using the property, if the product of two numbers is zero, then at least one of them is zero, we get
∴ m – 12 = 0 or m – 14 = 0
∴ m = 12 or m = 14
But ,if m = 12, then quadratic coefficient becomes zero.
∴ m ≠ 12
∴m = 14

Question 9.
The sum of two roots of a quadratic equation is 5 and sum of their cubes is 35, find the equation.
Solution:
Let α and β be the roots of the quadratic equation.
According to the given conditions,
α + β = 5 and α3 + β3 = 35
Now, (α + β)3 = α3 + 3α2β + 3αβ2 + β3
∴ (α + β)3 = α3 + β3 + 3αβ (α + β)
∴ (5)3 = 35 + 3αβ(5)
∴ 125 = 35 + 15αβ
∴ 125 – 35 = 15αβ
∴ 15αβ = 90
∴ αβ = \(\frac { 90 }{ 15 } \)
∴ αβ = 6
∴ The required quadratic equation is
x2 – (α + β)x + αβ = 0
∴ x2 – 5x + 6 = 0

Question 10.
Find quadratic equation such that its roots are square of sum of the roots and square of difference of the roots of equation
2x2 + 2(p + q)x + p2 + q2 = 0.
Solution:
The given quadratic equation is
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Problem Set 2 7
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Problem Set 2 8
According to the given condition,
Roots of the required quadratic equation are
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Problem Set 2 9

Question 11.
Mukund possesses ₹ 50 more than what Sagar possesses. The product of the amount they have is 15,000. Find the amount each one has.
Solution:
Let the amount Sagar possesses be ₹ x.
∴ the amount Mukund possesses = ₹ (x + 50)
According to the given condition,
x(x +50)= 15000
∴ x2 + 50x – 15000 = 0
∴ x2 + 150x- 100x- 15000 = 0
∴ x(x + 150) – 100(x + 150) = 0
∴ (x + 150)(x – 100) = 0
By using the property, if the product of two numbers is zero, then at least one of them is zero, we get
∴ x + 150 = 0 or x – 100 = 0
∴ x = -150 or x = 100
But, amount cannot be negative.
∴ x= 100 and x + 50 = 100 + 50 = 150
∴ The amount possessed by Sagar and Mukund are ₹ 100 and ₹150 respectively.

Question 12.
The difference between squares of two numbers is 120. The square of smaller number is twice the greater number. Find the numbers.
Solution:
Let the numbers be x and y (x > y).
According to the given condition,
x2 – y2 = 120 …(i)
y2 = 2x …(ii)
Substituting y2 = 2x in equation (i), we get
x2 – 2x = 120
∴ x2 – 2x – 120 = 0
∴ x2 – 12x + 10x – 120 = 0
∴ x(x – 12) + 10(x – 12) = 0
∴ (x – 12)(x + 10) = 0
By using the property, if the product of two numbers is zero, then at least one of them is zero, we get
∴ x – 12 = 0 or x + 10 = 0
∴ x = 12 or x = -10
But x ≠ -10
as, y2 = 2x = 2(-10) = -20 …[Since, the square of number cannot be negative]
∴ x = 12
Smaller number = y2 =2x
∴ y2 = 2 × 12
∴ y2 = 24
∴ y = ± √24 …[Taking square root of both sides]
∴ The smaller number is √24 and greater number is 12 or the smaller number is – √24 and greater number is 12.

Question 13.
Ranjana wants to distribute 540 oranges among some students. If 30 students were more each would get 3 oranges less. Find the number of students.
Solution:
Let the number of students be x.
Total number of oranges = 540
∴ the number of oranges each student gets = \(\frac { 540 }{ x } \)
If there were 30 more students, the total number of students = (x + 30) and the total number of oranges each student gets
= (\(\frac { 540 }{ x+30 } \)
According to the given condition,
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Problem Set 2 10Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Problem Set 2 11
∴ 30 × 540 = 3x2 + 90 x
∴ 3x2 + 90x= 16200
∴ x2 + 30x – 5400 = 0
…[Dividing both sides by 3]
∴ x2 + 90x – 60x – 5400 = 0
∴ x(x + 90) – 60(x + 90) = 0
∴ (x + 90) (x – 60) = 0
By using the property, if the product of two numbers is zero, then at least one of them is zero, we get
∴ x + 90 = 0 or x – 60 = 0
∴ x = – 90 or x = 60
But, number of students cannot be negative,
x = 60
∴ The total number of students is 60.

Question 14.
Mr. Dinesh owns an rectangular agricultural farm at village Talvel. The length of the farm is 10 metre more than twice the breadth. In order to harvest rain water, he dug a square shaped pond inside the farm. The side of pond is \(\frac { 1 }{ 3 } \) of the breadth of the farm. The
area of the farm is 20 times the area of the pond. Find the length and breadth of the farm and side of the pond.
Solution:
Let the breadth of the rectangular farm be x m.
∴ Length of rectangular farm = (2x + 10) m
Area of rectangular farm = Length × Breadth
= (2x + 10) × x
= (2x2+ 10x) sq. m
Now ,side of square shaped pond = \(\frac { x }{ 3 } \) m
∴ Area of square shaped pond = (side)2
= (\(\frac { x }{ 3 } \))2 m
= \(\frac { { x }^{ 2 } }{ 9 } \) m
According to the given condition,
Area of rectangular farm = 20 × Area of pond
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Problem Set 2 11
By using the property, if the product of two numbers is zero, then at least one of them is zero, we get
∴ x = 0 or x – 45 = 0
x = 0 or x = 45
But, breadth of the rectangular farm cannot be zero,
∴ x = 45
Length of rectangular farm
= 2x + 10 = 2(45) + 10 = 100 m
Side of the pond = \(\frac { x }{ 3 } \) = \(\frac { 45 }{ 3 } \) = 15 m
∴ Length and breadth of the farm and the side of the pond are 100 m, 45 m and 15 m respectively.

Question 15.
A tank fills completely in 2 hours if both the taps are open. If only one of the taps is open at the given time, the smaller tap takes 3 hours more than the larger one to fill the tank. How much time does each tap take to fill the tank completely?
Solution:
Let the larger tap take x hours to fill the tank completely.
∴ Part of tank filled by the larger tap in 1 hour = \(\frac { 1 }{ x } \)
Also, the smaller tap takes (x + 3) hours to fill the tank completely.
∴ Part of tank filled by the smaller tap in 1 hour = \(\frac { 1 }{ x+3 } \)
∴Part of tank filled by both the taps in 1 hour
= (\(\frac { 1 }{ x } \) + \(\frac { 1 }{ x+3 } \))
But, the tank gets filled in 2 hours by both the taps.
∴ Part of tank filled by both the taps in 1 hour = \(\frac { 1 }{ 2 } \)
According to the given condition,
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Problem Set 2 12
∴ 2(2x + 3) = x(x + 3)
∴ 4x + 6 = x2 + 3x
∴ x2 + 3x – 4x – 6 = 0
∴ x2 – x – 6 = 0
∴ x2 – 3x + 2x – 6 = 0
∴ x(x – 3) + 2(x – 3) = 0
∴ (x – 3)(x + 2) = 0
By using the property, if the product of two numbers is zero, then at least one of them is zero, we get
∴ x – 3 = 0 or x + 2 = 0
∴ x = 3 or x = -2
But, time cannot be negative.
∴ x = 3 and x + 3 = 3 + 3 = 6
∴ The larger tap takes 3 hours and the smaller tap takes 6 hours to fill the tank completely.

Class 10 Maths Digest

Practice Set 3.1 Algebra 10th Standard Maths Part 1 Chapter 3 Arithmetic Progression Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 3.1 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 3 Arithmetic Progression.

10th Standard Maths 1 Practice Set 3.1 Chapter 3 Arithmetic Progression Textbook Answers Maharashtra Board

Class 10 Maths Part 1 Practice Set 3.1 Chapter 3 Arithmetic Progression Questions With Answers Maharashtra Board

Question 1.
Which of the following sequences are A.P.? If they are A.P. find the common difference.
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Practice Set 3.1 1
Solution:
i. The given sequence is 2, 4, 6, 8,…
Here, t1 = 2, t2 = 4, t3 = 6, t4 = 8
∴ t2 – t1 = 4 – 2 = 2
t3 – t2 = 6 – 4 = 2
t4 – t3 = 8 – 6 = 2
∴ t2 – t1 =  t3 – t2 = … = 2 = d = constant
The difference between two consecutive terms is constant.
∴ The given sequence is an A.P. and common difference (d) = 2.

Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Practice Set 3.1 2
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Practice Set 3.1 3
The difference between two consecutive terms is constant.
∴ The given sequence is an A.P. and common difference (d) = \(\frac { 1 }{ 2 } \).

iii. The given sequence is -10, -6, -2, 2,…
Here, t1 = -10, t2 = – 6, t3 = -2, t4 = 2
∴ t2 – t1 = -6 – (-10) = -6 + 10 = 4
t3 – t2 = -2 -(-6) = -2 + 6 = 4
t4 – t3 = 2 – (-2) = 2 + 2 = 4
∴ t2 – t1 = t3 – t2 = … = 4 = d = constant
The difference between two consecutive terms is constant.
∴ The given sequence is an A.P. and common difference (d) = 4.

iv. The given sequence is 0.3, 0.33, 0.333,…
Here, t1 = 0.3, t2 = 0.33, t3 = 0.333
∴ t2 -t1 = 0.33 – 0.3 = 0.03
t3 – t2 = 0.333 – 0.33 = 0.003
∴ t2 – t1 ≠ t3 – t2
The difference between two consecutive terms is not constant.
∴ The given sequence is not an A.P.

v. The given sequence is 0, -4, -8, -12,…
Here, t1 = 0, t2 = -4, t3 = -8, t4 = -12
∴ t2 – t1 = -4 – 0 = -4
t3 – t2 = -8 – (-4) = -8 + 4 = -4
t4 – t3 = -12 – (-8) = -12 + 8 = -4
∴ t2 – t1 = t3 – t2 = … = —4 = d = constant
The difference between two consecutive terms is constant.
∴ The given sequence is an A.P. and common difference (d) = -4.

Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Practice Set 3.1 4
The difference between two consecutive terms is constant.
∴ The given sequence is an A.P. and common difference (d) = 0.

Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Practice Set 3.1 5
The difference between two consecutive terms is constant.
∴ The given sequence is an A.P. and common difference (d) = √2.

viii. The given sequence is 127, 132, 137,…
Here, t1 = 127, t2 = 132, t3 = 137
∴ t2 – t1 = 132 – 127 = 5
t3 – t2 = 137 – 132 = 5
∴ t2 – t1 = t3 – t2 = … = 5 = d = constant
The difference between two consecutive terms is constant.
∴ The given sequence is an A.P. and common difference (d) = 5.

Question 2.
Write an A.P. whose first term is a and common difference is d in each of the following.
i. a = 10, d = 5
ii. a = -3, d = 0
iii. a = -7, d = \(\frac { 1 }{ 2 } \)
iv. a = -1.25, d = 3
v. a = 6, d = -3
vi. a = -19, d = -4
Solution:
i. a = 10, d = 5 …[Given]
∴ t1 = a = 10
t2 = t1 + d = 10 + 5 = 15
t3 = t2 + d = 15 + 5 = 20
t4 = t3 + d = 20 + 5 = 25
∴ The required A.P. is 10,15, 20, 25,…

ii. a = -3, d = 0 …[Given]
∴ t1 = a = -3
t2 = t1 + d = -3 + 0 = -3
t3 = t2 + d = -3 + 0 = -3
t4 = t3 + d = -3 + 0 = -3
∴ The required A.P. is -3, -3, -3, -3,…

Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Practice Set 3.1 6
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Practice Set 3.1 7
∴ The required A.P. is -7, – 6.5, – 6, – 5.5,

iv. a = -1.25, d = 3 …[Given]
t1 = a = -1.25
t2 = t1 + d = – 1.25 + 3 = 1.75
t3 = t2 + d = 1.75 + 3 = .4.75
t4 = t3 + d = 4.75 + 3 = 7.75
∴ The required A.P. is -1.25, 1.75, 4.75, 7.75,…

v. a = 6, d = -3 …[Given]
∴ t1 = a = 6
t2 = t1 + d = 6 – 3 = 3
t3 = t2 + d = 3 – 3 = 0
t4 = t3 + d = 0- 3 = -3
∴ The required A.P. is 6, 3, 0, -3,…

vi. a = -19, d = -4 …[Given]
t1 = a = -19
t2 = t1 + d = -19 – 4 = -23
t3 = t2 + d = -23 – 4 = -27
t4 = t3 + d = -27 – 4 = -31
∴ The required A.P. is -19, -23, -27, -31,…

Question 3.
Find the first term and common difference for each of the A.P.
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Practice Set 3.1 8
Solution:
i. The given A.P. is 5, 1,-3,-7,…
Here, t1 = 5, t2 = 1
∴ a = t1 = 5 and
d = t2 – t1 = 1 – 5 = -4
∴ first term (a) = 5,
common difference (d) = -4

ii. The given A.P. is 0.6, 0.9, 1.2, 1.5,…
Here, t1 = 0.6, t2 = 0.9
∴ a = t1 = 0.6 and
d = t2 – t1 = 0.9 – 0.6 = 0.3
∴ first term (a) = 0.6,
common difference (d) = 0.3

iii. The given A.P. is 127, 135, 143, 151,…
Here, t1 = 127, t2 = 135
∴ a = t1 = 127 and
d = t2 – t1 = 135 – 127 = 8
∴ first term (a) = 127,
common difference (d) = 8

Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Practice Set 3.1 9

Question 1.
Complete the given pattern. Look at the pattern of the numbers. Try to find a rule to obtain the next number from its preceding number. Write the next numbers. (Textbook pg, no. 55 and 56)
Answer:
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Practice Set 3.1 10
Every pattern is formed by adding a circle in horizontal and vertical rows to the preceding pattern.
∴ The sequence for the above pattern is 1,3, 5, 7, 9,11,13,15,17,….
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Practice Set 3.1 11
Every pattern is formed by adding 2 triangles horizontally and 1 triangle vertically to the preceding pattern.
∴ The sequence for the above pattern is 5,8,11,14,17,20,23,…

Question 2.
Some sequences are given below. Show the positions of the terms by t1, t2, t3,…
Answer:
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Practice Set 3.1 12

Question 3.
Some sequences are given below. Check whether there is any rule among the terms. Find the similarity between two sequences. To check the rule for the terms of the sequence look at the arrangements and fill the empty boxes suitably. (Textbook pg. no. 56 and 57)
i. .1,4,7,10,13,…
ii. 6,12,18,24,…
iii. 3,3,3,3,…
iv. 4, 16, 64,…
v. -1, -1.5, -2, -2.5,…
vi. 13, 23, 33, 43
Answer:
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Practice Set 3.1 13
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Practice Set 3.1 14
The similarity in the sequences i., ii., iii. and v. is that the next term is obtained by adding a particular fixed number to the previous term.

Note : A Geometric Progression is a sequence in which the ratio of any two consecutive terms is a constant,
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Practice Set 3.1 15
Sequence iv. is a geometric progression.

Question 4.
Write one example of finite and infinite A.P. each. (Textbook pg. no. 59)
Answer:
Finite A.P.:
Even natural numbers from 4 to 50:
4, 6, 8, ………………. 50.
Infinite A. P.:
Positive multiples of 5:
5, 10, 15, ……………..

Class 10 Maths Digest

Problem Set 3 Algebra 10th Standard Maths Part 1 Chapter 3 Arithmetic Progression Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Problem Set 3 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 3 Arithmetic Progression.

10th Standard Maths 1 Problem Set 3 Chapter 3 Arithmetic Progression Textbook Answers Maharashtra Board

Class 10 Maths Part 1 Problem Set 3 Chapter 3 Arithmetic Progression Questions With Answers Maharashtra Board

Question 1.
Choose the correct alternative answer for each of the following sub questions.

i. The sequence – 10,- 6,- 2, 2, …
(A) is an A.P. Reason d = – 16
(B) is an A.P. Reason d = 4
(C) is an A.P. Reason d = – 4
(D) is not an A.P.
Answer:
(B)

ii. First four terms of an A.P. are …, whose first term is -2 and common difference is -2.
(A) -2, 0, 2, 4
(B) -2, 4,- 8, 16
(C) -2, -4, -6, -8
(D) -2,-4, -8, -16
Answer:
(C)

iii. What is the sum of the first 30 natural numbers?
(A) 464
(B) 465
(C) 462
(D) 461
Answer:
(B)

iv. For an given A.P. t7 = 4, d = – 4, then a = ………
(A) 6
(B) 7
(C) 20
(D) 28
Answer:
(D)

v. For an given A.P. a = 3.5, d = 0, n = 101, then tn = ….
(A) 0
(B) 3.5
(c) 103.5
(D) 104.5
Answer:
(B)

vi. In an A.P. first two terms are – 3, 4, then 21st term is ….
(A) -143
(B) 143
(C) 137
(D) 17
Answer:
(C)

vii. If for any A.P. d = 5, then t18 – t13 = ….
(A) 5
(B) 20
(C) 25
(D) 30
Answer:
(C)

viii. Sum of first five multiples of 3 is …
(A) 45
(B) 55
(C) 15
(D) 75
Answer:
(A)

ix. 15, 10, 5, … In this A.P. sum of first 10 terms is…
(A) -75
(B) -125
(C) 75
(D) 125
Answer:
(A)

x. In an A.P. 1st term is 1 and the last term is 20. The sum of all terms is 399, then n = ….
(A) 42
(B) 38
(C) 21
(D) 19
Answer:
(B)

Hints:
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Problem Set 3 1

Question 2.
Find the fourth term from the end in an
A.P.: -11, -8, -5, …, 49.
Solution:
The given A.P. is
-11,-8,-5, ……. 49
Reversing the A.P., we get 49, …, -5, -8, -11
Here, a = 49, d = -11 -(-8) = -11 + 8 = -3
Since, tn = a + (n – 1)d
∴ t4 = 49 + (4 – 1)(-3)
= 49 + (3) (-3)
= 49 – 9
= 40
∴ Fourth term from the end in the given A.P. is 40.
[Note: If an AY. is reversed, then the resulting sequence is also an A.P.]

Question 3.
In an A.P. the 10th term is 46, sum of the 5th and 7th term is 52. Find the A.P.
Solution:
For an A.P., let a be the first term and d be the common difference.
t10 = 46, t5 + t7 = 52 …[Given]
Since, tn = a + (n – 1)d
∴ t10 = a + (10 – 1)d
∴ 46 = a + 9d
i. e. a + 9d = 46 …(i)
Also, t5 + t7 = 52
∴ a + (5 – 1)d + a + (7 – 1)d = 52
∴ a + 4d + a + 6d = 52
∴ 2a + 10d = 52
∴ 2 (a + 5d) = 52
∴ a + 5d = \(\frac { 52 }{ 2 } \)
∴ a + 5d = 26 …(ii)
Subtracting equation (ii) from (i), we get
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Problem Set 3 2
Substituting d = 5 in equation (ii), we get
a + 5(5) = 26
∴ a + 25 = 26
∴ a = 26 – 25 = 1
t1 = a = 1
t2 = t1 + d = 1 + 5 = 6
t3 = t2 + d = 6 + 5 = 11
t4 = t3 + d = 11 + 5 = 16
The required A.P. is 1,6,11,16,….

Question 4.
The A.P. in which 4th term is -15 and 9th term is -30. Find the sum of the first 10 numbers.
Solution:
t4 = -15, t9 = – 30 …[Given]
Since, tn = a + (n – 1)d
∴ t4 = a + (4 – 1)d
∴ – 15 = a + 3d
i. e. a + 3d = -15 …(i)
Also, t9 = a + (9 – 1)d
∴ -30 = a + 8d
i.e. a + 8d = -30 …(ii)
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Problem Set 3 3
∴ The sum of the first 10 numbers is -195.

Question 5.
Two given A.P.’s are 9, 7, 5, … and 24, 21, 18, … If nth term of both the .progressions are equal then find the value of n and n,h term.
Solution:
The first A.P. is 9, 7, 5,…
Here, a = 9, d = 7- 9 = -2
∴nth term = a + (n – 1)d
= 9 + (n – 1) (-2)
= 9 – 2n + 2
= 11 – 2n
The second A.P. is 24, 21, 18, …
Here, a = 24, d = 21 – 24 = – 3
∴ nth term = a + (n – 1)d
= 24 + (n – 1) (-3)
= 24 – 3n + 3
= 27 – 3n
Since, the nth terms of the two A.P.’s are equal.
∴ 11 – 2n = 27 – 3n
∴ 3n – 2n = 27 – 11
∴ n = 16
∴ t16 = 9 + (16 – 1) (-2)
= 9 + 15 × (-2)
= 9 – 30
∴ t16 = -21
∴ The values of n and nth term are 16 and -21 respectively.

Question 6.
If sum of 3rd and 8th terms of an A.P. is 7 and sum of 7th and 14th terms is -3, then find the 10th term.
Solution:
for an A.P., let a be the first term and d be the common difference.
According to the first condition,
t3 + tg = 7
∴ a + (3 – 1) d + a + (8 – 1)d = 7 …[∵ tn = a + (n – 1)d]
∴ a + 2d + a + 7d = 7
∴ 2a + 9d = 7 …(i)
According to the second condition,
t7 + t14 = -3
∴ a + (7 – 1)d + a + (14 – 1 )d = -3
∴ a + 6d + a + 13d = -3
∴ 2a + 19 d = – 3 …(ii)
Subtracting equation (i) from (ii), we get
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Problem Set 3 4

Question 7.
In an A.P. the first term is -5 and last term is 45. If sum of all numbers in the A.P. is 120, then how many terms are there? What is the common difference?
Solution:
Let the number of terms in the A.P. be n and the common difference be d.
Then, a = -5, tn = 45, Sn = 120
Since, tn = a + (n – 1)d
∴ 45 = -5 + (n – 1)d
∴ 45 + 5 = (n – 1)d
∴ (n – 1)d = 50 …(i)
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Problem Set 3 5
Substituting n = 6 in equation (i), we get
(6 – 1)d = 50
∴ 5d = 50
∴ d = \(\frac { 50 }{ 5 } \) = 10
∴ There are 6 terms in the A.P. and the common difference is 10.

Alternate Method:
Let the number of terms in the A.P. be n.
Then, t1 = a = -5, tn = 45, Sn = 120
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Problem Set 3 6
∴ There are 6 terms in the A.P. and the common difference is 10.

Question 8.
Sum of 1 to n natural numbers is 36, then find the value of n.
Solution:
The natural numbers from 1 to n are
1,2, 3, ……, n.
The above sequence is an A.P.
∴ a = 1, d = 2 – 1 = 1
Sn = 36 …[Given]
Now, Sn = \(\frac { n }{ 2 } \) [2a + (n – 1)d]
∴ 36 = \(\frac { n }{ 2 } \) [2(1) + (n – 1)(1)]
∴ 36 = \(\frac { n }{ 2 } \) (2 + n – 1)
∴ 36 × 2 = n (n + 1)
∴ 72 = n (n + 1)
∴ 72 = n2 + n
∴ n2 + n – 72 = 0
∴ n2 + 9n – 8n – 72 = 0
∴ n(n + 9) – 8 (n + 9) = 0
∴ (n + 9) (n – 8) = 0
∴ n + 9 = 0 or n – 8 = 0
∴ n = -9 or n = 8
But, n cannot be negative.
∴ n = 8
∴ The value of n is 8.

Question 9.
Divide 207 in three parts, such that all parts are in A.P. and product of two smaller parts will be 4623.
Solution:
Let the three parts of 207 that are in A.P. be
a – d, a, a + d
According to the first condition,
(a – d) + a + (a + d) = 207
∴ 3a = 207
∴ a = \(\frac { 207 }{ 3 } \)
∴ a = 69 …(i)
According to the second condition,
(a – d) × a = 4623
∴ (69 – d) × 69 = 4623 …[From (i)]
∴ 69 – d = \(\frac { 4623 }{ 69 } \)
∴ d = 69 – 67
∴ d = 2
∴ a – d = 69 – 2 = 67
a = 69
a + d = 69 + 2 = 71
∴ The three parts of 207 that are in A.P. are 67, 69 and 71.

Question 10.
There are 37 terms in an A.P., the sum of three terms placed exactly at the middle is 225 and the sum of last three terms is 429. Write the A.P.
Solution:
Since, there are 37 terms in the A.P.
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Problem Set 3 7
Substituting d = 4 in equation (i), we get
3a + 54(4) = 225
∴ 3a + 216 = 225
∴ 3a = 225 – 216
∴ 3a = 9
∴ a = \(\frac { 9 }{ 3 } \) = 3
∴The required A. P. is
a, a + d, a + 2d, a + 3d, …., a + (n – 1)d
i.e. 3, 3 + 4,3 + 2 × 4, 3 + 3 × 4,…, 3 + (37 – 1)4
i.e. 3, 7,11,15, …,147

Question 11.
If first term of an A.P. is a, second term is b and last term is c, then show that sum of all
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Problem Set 3 8
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Problem Set 3 9

Question 12.
If the sum of first p terms of an A.P. is equal to the sum of first q terms then show that the sum of its first (p + q) terms is zero, (p ≠ q)
Solution:
For an A.P., let a be the first term and d be the common difference.
The sum of first n terms of an A.P. is given by
Sn = [2a + (n – 1)d]
According to the given condition,
Sp = Sq
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Problem Set 3 10
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Problem Set 3 11
∴ The sum of the first (p + q) terms is zero

Question 13.
If m times the mth term of an A.P. is equal to n times nth term, then show that the (m + n)th term of the A.P. is zero.
Solution:
According to the given condition,
mtm = ntn
∴ m[a + (m – 1)d] = n[a + (n – 1)d]
∴ ma + md(m – 1) = na + nd(n- 1)
∴ ma + m2d – md = na + n2d – nd
∴ ma + m2d – md – na – n2d + nd = 0
∴ (ma – na) + (m2d – n2d) – (md – nd) = 0
∴ a(m – n) + d(m2 – n2) – d(m – n) = 0
∴ a(m – n) + d(m + n) (m – n) – d(m – n) = 0
∴ (m – n)[a + (m + n – 1) d] = 0
∴ [a+ (m + n – 1)d] = 0 …[Dividing both sides by (m – n)]
∴ t(m+n) = 0
∴ The (m + n)th term of the A.P. is zero.

Question 14.
₹ 1000 is invested at 10 percent simple interest. Check at the end of every year if the total interest amount is in A.P. If this is an A.P. then find interest amount after 20 years. For this complete the following activity.
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Problem Set 3 12
Maharashtra Board Class 10 Maths Solutions Chapter 3 Arithmetic Progression Problem Set 3 13

Class 10 Maths Digest

Practice Set 2.5 Algebra 10th Standard Maths Part 1 Chapter 1 Quadratic Equations Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 2.5 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 2 Quadratic Equations.

10th Standard Maths 1 Practice Set 2.5 Chapter 2 Quadratic Equations Textbook Answers Maharashtra Board

Class 10 Maths Part 1 Practice Set 2.5 Chapter 2 Quadratic Equations Questions With Answers Maharashtra Board

Question 1.
Fill in the gaps and complete.
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.5 1
Answer:
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.5 2

Question 2.
Find the value of discriminant.
i. x2 + 7x – 1 = 0
ii. 2y2 – 5y + 10 = 0
iii. √2 x2 + 4x + 2√2 = 0
Solution:
i. x2 +7 x – 1 = 0
Comparing the above equation with
ax2 + bx + c = 0, we get
a = 1, b = 7, c = -1
∴ b2– 4ac = (7)2 – 4 × 1 × (-1)
= 49 + 4
∴ b2 – 4ac = 53

ii. 2y2 – 5y + 10 = 0
Comparing the above equation with
ay2 + by + c = 0, we get
a = 2, b = -5, c = 10
∴ b2 – 4ac = (-5)2 -4 × 2 × 10
= 25 – 80
∴ b2 – 4ac = -55

iii. √2 x2 + 4x + 2√2 = 0
Comparing the above equation with
ax + bx + c = 0, we get
a = √2,b = 4, c = 2√2
∴ b2 – 4ac = (4)2 – 4 × √2 × 2√2
= 16 – 16
∴ b2 – 4ac =0

Question 3.
Determine the nature of roots of the following quadratic equations.
i. x2 – 4x + 4 = 0
ii. 2y2 – 7y + 2 = 0
iii. m2 + 2m + 9 = 0
Solution:
i. x2 – 4x + 4= 0
Comparing the above equation with
ax2 + bx + c = 0, we get
a = 1,b = -4, c = 4
∴ ∆ = b2 – 4ac
= (- 4)2 – 4 × 1 × 4
= 16 – 16
∴ ∆ = 0
∴ Roots of the given quadratic equation are real and equal.

ii. 2y2 – 7y + 2 = 0
Comparing the above equation with
ay2 + by + c = 0, we get
a = 2, b = -7, c = 2
∴ ∆ = b2 – 4ac
= (- 7)2 – 4 × 2 × 2
= 49 – 16
∴ ∆ = 33
∴ ∆ > 0
∴ Roots of the given quadratic equation are real and unequal.

iii. m2 + 2m + 9 = 0
Comparing the above equation with
am2 + bm + c = 0, we get
a = 1,b = 2, c = 9
∴ ∆ = b2 – 4ac
= (2)2 – 4 × 1 × 9
= 4 – 36
∴ ∆ = -32
∴ ∆ < 0
∴ Roots of the given quadratic equation are not real.

Question 4.
Form the quadratic equation from the roots given below.
i. 0 and 4
ii. 3 and -10
iii. \(\frac { 1 }{ 2 } \) , \(\frac { 1 }{ 2 } \)
iv. 2 – √5, 2 + √5
Solution:
i. Let a = 0 and β = 4
∴ α + β = 0 + 4 = 4
and α × β = 0 × 4 = 0
∴ The required quadratic equation is
x2 – (α + β) x + αβ = 0
∴ x2 – 4x + 0 = 0
∴ x2 – 4x = 0

ii. Let α = 3 and β = -10
∴ α + β = 3 – 10 = -7
and α × β = 3 × -10 = -30
∴ The required quadratic equation is
x2 – (α + β)x + αβ = 0
∴ x2 – (-7) x + (-30) = 0

Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.5 3

Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.5 4
∴ The required quadratic equation is
x2 – (α + β)x + αβ = 0
∴ x2 – 4x – 1 = 0

Question 5.
Sum of the roots of a quadratic equation is double their product. Find k if equation is x2 – 4kx + k + 3 = 0.
Solution:
x2 – 4kx + k + 3 = 0
Comparing the above equation with
ax2 + bx + c = 0, we get
a = 1, b = – 4k, c = k + 3
Let α and β be the roots of the given quadratic equation.
Then, α + β  = \(\frac { -b }{ a } \) and αβ = \(\frac { c }{ a } \)
According to the given condition,
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.5 5

Question 6.
α, β are roots of y2 – 2y – 7 = 0 find,
i. α2 + β2
ii. α3 + β3
Solution:
y2 – 2y – 7 = 0
Comparing the above equation with
ay2 + by + c = 0, we get
a = 1, b = -2, c = -7
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.5 6

Question 7.
The roots of each of the following quadratic equations are real and equal, find k.
i. 3y2 + ky + 12 = 0
ii. kx (x-2) + 6 = 0
Solution:
i. 3y2 + kg + 12 = 0
Comparing the above equation with
ay2 + by + c = 0, we get
a = 3, b = k, c = 12
∴ ∆ = b2 – 4ac
= (k)2 – 4 × 3 × 12
= k2 – 144 = k2 – (12)2
∴ ∆ = (k + 12) (k – 12) …[∵ a2 – b2 = (a + b) (a – b)]
Since, the roots are real and equal.
∴ ∆ = 0
∴ (k + 12) (k – 12) = 0
∴ k + 12 = 0 or k – 12 = 0
∴ k = -12 or k = 12

ii. kx (x – 2) + 6 = 0
∴ kx2 – 2kx + 6 = 0
Comparing the above equation with
ax2 + bx + c = 0, we get
a = k, b = -2k, c = 6
∴ ∆ = b2 – 4ac
= (-2k)2 – 4 × k × 6
= 4k2 – 24k
∴ ∆ = 4k (k – 6)
Since, the roots are real and equal.
∴ ∆ = 0
∴ 4k (k – 6) = 0
∴ k(k – 6) = 0
∴ k = 0 or k – 6 = 0
But, if k = 0 then quadratic coefficient becomes zero.
∴ k ≠ 0
∴ k = 6

Question 1.
Fill in the blanks. (Textbook pg. no. 44)
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.5 7

Question 2.
Determine nature of roots of the quadratic equation: x2 + 2x – 9 = 0 (Textbook pg. no. 45)
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.5 8
∴ The roots of the given equation are real and unequal.

Question 3.
Fill in the empty boxes properly. (Textbook pg. no. 46)
Solution:
10x2 + 10x + 1 = 0
Comparing the above equation with
ax2 + bx + c = 0, we get
a = 10, b = 10, c = 1
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.5 9

Question 4.
Write the quadratic equation if addition of the roots is 10 and product of the roots is 9. (Textbook pg, no. 48)
Answer:
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.5 10

Question 5.
What will be the quadratic equation if α = 2, β = 5. (Textbook pg. no, 48)
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.5 11

Class 10 Maths Digest

Practice Set 2.2 Algebra 10th Standard Maths Part 1 Chapter 1 Quadratic Equations Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 10 Maths Solutions covers the Practice Set 2.2 Algebra 10th Class Maths Part 1 Answers Solutions Chapter 2 Quadratic Equations.

10th Standard Maths 1 Practice Set 2.2 Chapter 2 Quadratic Equations Textbook Answers Maharashtra Board

Class 10 Maths Part 1 Practice Set 2.2 Chapter 2 Quadratic Equations Questions With Answers Maharashtra Board

Question 1.
Solve the following quadratic equations by factorisation.
i. x2 – 15x + 54 = 0
ii. x2 + x – 20 = 0
iii. 2y2 + 27y + 13 = 0
iv. 5m2 = 22m + 15
v. 2x2 – 2x + \(\frac { 1 }{ 2 } \) = 0
vi. 6x – \(\frac { 2 }{ x } \) = 1
vii. √2x2 + 7x + 5√2 = 0 to solve this quadratic equation by factorisation complete the following activity
viii. 3x2 – 2√6x + 2 = 0
ix. 2m(m – 24) = 50
x. 252 = 9
xi. 7m2 = 21 m
xii. m2 – 11 = 0
Solution:
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.2 1
By using the property, if the product of two numbers is zero, then at least one of them is zero, we get
∴ x – 9 = 0 or x – 6 = 0
∴ x = 9 or x = 6
∴ The roots of the given quadratic equation are 9 and 6.

Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.2 2
By using the property, if the product of two numbers is zero, then at least one of them is zero, we get
∴ x + 5 = 0 or x – 4 = 0
∴ x = -5 or x = 4
∴ The roots of the given quadratic equation are -5 and 4.

Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.2 3
By using the property, if the product of two numbers is zero, then at least one of them is zero, we get
∴ y + 13 = 0 or 2y + 1 = 0
∴ y = – 13 or 2y = -1
∴ y = -13 or y = –\(\frac { 1 }{ 2 } \)
∴ The roots of the given quadratic equation are -13 and – \(\frac { 1 }{ 2 } \)

Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.2 4
By using the property, if the product of two numbers is zero, then at least one of them is zero, we get
∴ m – 5 = 0 or 5m + 3 = 0
∴ m = 5 or 5m = -3
∴ m = 5 or m = \(\frac { -3 }{ 5 } \)
∴ The roots of the given quadratic equation are 5 and – \(\frac { 3 }{ 5 } \)

Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.2 5

Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.2 6
By using the property, if the product of two numbers is zero, then at least one of them is zero, we get
∴ 3x – 2 = 0 or 2x + 1 = 0
∴ 3x = 2 or 2x = -1
∴ x = \(\frac { 2 }{ 3 } \) or 2x = -1
∴ The roots of the given quadratic equation are \(\frac { 2 }{ 3 } \) and \(\frac { -1 }{ 2 } \).

Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.2 7
By using the property, if the product of two numbers is zero, then at least one of them is zero, we get
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.2 8

Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.2 9
By using the property, if the product of two numbers is zero, then at least one of them is zero, we get
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.2 10

ix. 2m (m – 24) = 50
∴ 2m2 – 48m = 50
∴ 2m2 – 48m – 50 = 0
∴m2 – 24m – 25 = 0 …[Dividing both sides by 2]
Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.2 11
∴ m – 25 = 0 or m + 1 = 0
∴ m = 25 or m = -1
∴ The roots of thes given quadratic equation are 25 and -1.

x. 25m2 = 9
∴ 25m2 – 9 = 0
∴ (5m)2 – (3)2 = 0
∴ (5m + 3) (5m – 3) = 0
…. [∵a2 – b2 = (a + b) (a – b)]
By using the property, if the product of two numbers is zero, then at least one of them is zero, we get
∴ 5m + 3 = 0 or 5m – 3 = 0
∴ 5m = -3 or 5m = 3
∴ m = \(\frac { -3 }{ 5 } \) or m = \(\frac { 3 }{ 5 } \)
∴ The roots of the given quadratic equation are \(\frac { -3 }{ 5 } \) and \(\frac { 3 }{ 5 } \).

xi. 7m2 = 21m
∴ 7m2 – 21m = 0
∴ m2 – 3m = 0 …[Dividing both sides by 7]
∴ m(m – 3) = 0
By using the property, if the product of two numbers is zero, then at least one of them is zero, we get
∴ m = 0 or m – 3 = 0
∴ m = 0 or m = 3
∴ The roots of the given quadratic equation are 0 and 3.

Maharashtra Board Class 10 Maths Solutions Chapter 2 Quadratic Equations Practice Set 2.2 12
By using the property, if the product of two numbers is zero, then at least one of them is zero, we get
∴ m + √11 = 0 or m – √11 = 0
∴ m = -√11 or m = √11
∴ The roots of the given quadratic equation are – √11 and √11

Class 10 Maths Digest