Practice Set 8.3 Class 8 Answers Chapter 8 Quadrilateral: Constructions and Types Maharashtra Board

Balbharti Maharashtra State Board Class 8 Maths Solutions covers the Practice Set 8.3 8th Std Maths Answers Solutions Chapter 8 Quadrilateral: Constructions and Types.

Quadrilateral: Constructions and Types Class 8 Maths Chapter 8 Practice Set 8.3 Solutions Maharashtra Board

Std 8 Maths Practice Set 8.3 Chapter 8 Solutions Answers

Question 1.
Measures of opposite angles of a parallelogram are (3x – 2)° and (50 – x)°. Find the measure of its each angle.
Solution:
Let ₹PQRS be the parallelogram.
m∠Q = (3x – 2)° and m∠S = (50 – x)°
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.3 1
m∠Q = m∠S
…..(i)
[Opposite angles of a parallelogram are congruent]
∴ 3x – 2 = 50 – x
∴ 3x + x = 50 + 2
∴ 4x = 52
∴ x = \(\frac { 52 }{ 4 }\)
∴ x = 13
Now, m∠Q = (3x – 2)°
= (3 x 13 – 2)° = (39 – 2)° = 37°
∴ m∠S = m∠Q = 37° …[From(i)]
m∠P + m∠Q = 180°
….[Adjacent angles of a parallelogram are supplementary]
∴ m∠P + 37° = 180°
∴ m∠P = 180° – 37° = 143°
∴ m∠R = m∠P = 143°
…..[Opposite angles of a parallelogram are congruent]
∴ The measures of the angles of the parallelogram are 37°, 143°, 37° and 143°.

Question 2.
Referring the given figure of a parallelogram, write the answers of questions given below.
i. If l(WZ) = 4.5 cm, then l(XY) = ?
ii. If l(YZ) = 8.2 cm, then l(XW) = ?
iii. If l(OX) = 2.5 cm, then l(OZ) = ?
iv. If l(WO) = 3.3 cm, then l(WY) = ?
v. If m∠WZY = 120°, then m∠WXY = ? and m∠XWZ = ?
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.3 2
Solution:
i. l(WZ) = 4.5 cm … [Given]
l(X Y) = l(WZ) ….[Opposite sides of a parallelogram are congrument ]
∴ l(X Y) = 4.5cm

ii. l(YZ) = 8.2 cm …[Given]
l(XW) = l(YZ)
…[Opposite sides of a parallelogram are congruent]
∴ l(XW) = 8.2cm … [Given]

iii. l(OX) = 2.5 cm …[Given]
l(OZ) = l(OX)
….[Diagonals of a parallelogram bisect each other]
∴ l(OZ) = 2.5cm

iv. l(WO) = 3.3 cm … [Given]
l(WO) = \(\frac { 1 }{ 2 }\) l(WY)
….[Diagonals of a parallelogram bisect each other]
∴ 3.3 = \(\frac { 1 }{ 2 }\) l(WY)
∴ 3.3 x 2 = l(WY)
∴ l(WY) = 6.6cm

v. m∠WZY =120° … [Given]
m∠WXY = m∠WZY
…..[Opposite angles of a parallelogram are congrument]
∴ m∠WXY = 120° …(i)
m∠XWZ + m∠WXY = 180°
….[Adjacent angles of a parallelogram are supplementary]
∴ m∠XWZ + 120° = 180° … [From (i)]
∴ m∠XWZ = 180°- 120°
∴ m∠XWZ = 60°

Question 3.
Construct a parallelogram ABCD such that l(BC) = 7 cm, m∠ABC = 40°, l(AB) = 3 cm
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.3 3
Opposite sides of a parallelogram are congruent.
∴ l(AB) = l(CD) = 3cm
l(BC) = l(AD) = 7 cm
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.3 4

Question 4.
Ratio of consecutive angles of a quadrilateral is 1 : 2 : 3 : 4. Find the measure of its each angle. Write with reason, what type of a quadrilateral it is.
Solution:
Let ₹PQRS be the quadrilateral.
Ratio of consecutive angles of a quadrilateral is 1 : 2 : 3 : 4.
Let the common multiple be x.
∴m∠P = x°, m∠Q = 2x°, m∠R = 3x° and m∠S = 4x°
In ₹PQRS,
m∠P + m∠Q + m∠R + m∠S = 360°
…[Sum of the measures of the angles of a quadrilateral is 360°]
∴x° + 2x° + 3x° + 4x° = 360°
∴10 x° = 360°
∴x° = \(\frac { 360 }{ 10 }\)
∴x° = 36°
∴m∠P = x° = 36°
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.3 5
m∠Q = 2x° = 2 × 36° = 72°
m∠R = 3x° = 3 × 36° = 108° and
m∠S = 4x° = 4 × 36° = 144°
∴The measures of the angles of the quadrilateral are 36°, 72°, 108°, 144°.
Here, m∠P + m∠S = 36° + 144° = 180°
Since, interior angles are supplementary,
∴side PQ || side SR
m∠P + m∠Q = 36° + 72° = 108° ≠ 180°
∴side PS is not parallel to side QR.
Since, one pair of opposite sides of the given quadrilateral is parallel.
∴The given quadrilateral is a trapezium.

Question 5.
Construct ₹BARC such that
l(BA) = l(BC) = 4.2 cm, l(AC) = 6.0 cm, l(AR) = l(CR) = 5.6 cm
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.3 6

Question 6.
Construct ₹PQRS, such that l(PQ) = 3.5 cm, l(QR) = 5.6 cm, l(RS) = 3.5 cm, m∠Q = 110°, m∠R = 70°. If it is given that ₹PQRS is a parallelogram, which of the given information is unnecessary?
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.3 7

  1. Since, the opposite sides of a parallelogram are congruent.
    ∴ Either l(PQ) or l(SR) is required.
  2. To construct a parallelogram lengths of adjacent sides and measure of one angle is required.
    ∴ Either l(PQ) and m∠Q or l(SR) and m∠R is the unnecessary information given in the question.

Maharashtra Board Class 8 Maths Chapter 8 Quadrilateral: Constructions and Types Practice Set 8.3 Intext Questions and Activities

Question 1.
Draw a parallelogram PQRS. Take two rulers of different widths, place one ruler horizontally and draw lines along its edges. Now place the other ruler in slant position over the lines drawn and draw lines along its edges. We get a parallelogram. Draw the diagonals of it and name the point of intersection as T.

  1. Measure the opposite angles of the parallelogram.
  2. Measure the lengths of opposite sides.
  3. Measure the lengths of diagonals.
  4. Measure the lengths of parts of the diagonals made by point T. (Textbook pg. no. 47)

Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.3 8

Solution:
[Students should attempt the above activities on their own.]

Question 2.
In the given figure of ₹ABCD, verify with a divider that seg AB ≅ seg CB and seg AD ≅ seg CD. Similarly measure ∠BAD and ∠BCD and verify that they are congruent. (Textbook pg. no. 48)
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.3 9
Solution:
[Students should attempt the above activities on their own.]

Std 8 Maths Digest

Practice Set 8.2 Class 8 Answers Chapter 8 Quadrilateral: Constructions and Types Maharashtra Board

Balbharti Maharashtra State Board Class 8 Maths Solutions covers the Practice Set 8.2 8th Std Maths Answers Solutions Chapter 8 Quadrilateral: Constructions and Types.

Quadrilateral: Constructions and Types Class 8 Maths Chapter 8 Practice Set 8.2 Solutions Maharashtra Board

Std 8 Maths Practice Set 8.2 Chapter 8 Solutions Answers

Question 1.
Draw a rectangle ABCD such that l(AB) = 6.0 cm and l(BC) = 4.5 cm.
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 1

Question 2.
Draw a square WXYZ with side 5.2 cm.
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 2
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 3

Question 3.
Draw a rhombus KLMN such that its side is 4 cm and m∠K = 75°.
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 4

Question 4.
If diagonal of a rectangle is 26 cm and one side is 24 cm, find the other side.
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 5
Let ₹ABCD be the rectangle.
l(BC) = 24cm, l(AC) = 26cm
In ∆ABC,
m∠ABC = 90° …[Angle of a rectangle]
∴[l(AC)]² = [l(AB)]2 + [l(BC)]²
…[Pythagoras theorem]
∴ (26 )² = [l(AB)]² + (24)²
∴(26)² – (24)² = [l(AB)]²
∴(26 + 24) (26 – 24) = [l(AB)]²
…[∵ a² – b² = (a + b)(a – b)]
∴50 x 2 = [l(AB)]²
∴100 = [l(AB)]²
i.e. [l(AB)]² = 100
∴l(AB) = √100
…[Taking square root of both sides]
∴l(AB) =10 cm
∴The length of the other side is 10 cm.

Question 5.
Lengths of diagonals of a rhombus ABCD are 16 cm and 12 cm. Find the side and perimeter of the rhombus.
Solution:
In rhombus ABCD,
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 6
l(AC) = 16 cm and l(BD) = 12 cm.
Let the diagonals of rhombus ABCD intersect at point O.
l(AO) = \(\frac { 1 }{ 2 }\) l(AC)
…[Diagonals of a rhombus bisect each other]
∴l(AO) = \(\frac { 1 }{ 2 }\) × 16
∴l(AO) = 8 cm
Also, l(DO) = \(\frac { 1 }{ 2 }\) l(BD)
…[Diagonals of a rhombus bisect each other]
∴l(DO) = \(\frac { 1 }{ 2 }\) × 12
∴l(DO) = 6 cm
In ∆DOA,
m∠DOA = 90°
..[Diagonals of a rhombus are perpendicular to each other]
[l(AD)]² = [l(AO)]² + [l(DO)]²
…[Pythagoras theorem]
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 7
= (8)² + (6)²
= 64 + 36
∴[l(AD)]² = 100
∴l(AD) = √100
… [Taking square root of both sides]
∴l(AD) = 10 cm
∴l(AB) = l(BC) = l(CD) = l(AD) = 10 cm
…[Sides of a rhombus are congruent]
Perimeter of rhombus ABCD
= l(AB) + l(BC) + l(CD) + l(AD)
= 10+10+10+10
= 40 cm
∴The side and perimeter of the rhombus are 10 cm and 40 cm respectively.

Question 6.
Find the length of diagonal of a square with side 8 cm.
Solution:
Let ₹XYWZ be the square of side 8cm.
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 8
seg XW is a diagonal.
In ∆ XYW,
m∠XYW = 90°
… [Angle of a square]
∴ [l(XW)]² = [l(XY)]² + [l(YW)]²
…[Pythagoras theorem]
= (8)² + (8)²
= 64 + 64
∴ [l(XW)]² = 128
∴ l(XW) = √128
…[Taking square root of both sides]
= √64 × 2
= 8 √2 cm
∴ The length of the diagonal of the square is 8 √2 cm.

Question 7.
Measure of one angle of a rhombus is 50°, find the measures of remaining three angles.
Solution:
Let ₹ABCD be the rhombus.
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 9
m∠A = 50°
m∠C = m∠A
….[Opposite angles of a rhombus are congruent]
∴ m∠C = 50°
Also, m∠D = m∠B …(i)
….[Opposite angles of a rhombus are congruent]
In ₹ABCD,
m∠A + m∠B + m∠C + m∠D = 360°
….[Sum of the measures of the angles of a quadrilateral is 360°]
∴ 50° + m∠B + 50° + m∠D = 360°
∴ m∠B + m∠D + 100° = 360°
∴ m∠B + m∠D = 360° – 100°
∴ m∠B + m∠B = 260° …[From (i)]
∴ 2m∠B = 260°
∴ m∠B = \(\frac { 260 }{ 2 }\)
∴ m∠B = 130°
∴ m∠D = m∠B = 130° …[From (i)]
∴ The measures of the remaining angles of the rhombus are 130°, 50° and 130°.

Maharashtra Board Class 8 Maths Chapter 8 Quadrilateral: Constructions and Types Practice Set 8.2 Intext Questions and Activities

Question 1.
Construct a rectangle PQRS by taking two convenient adjacent sides. Name the point of intersection of diagonals as T. Using divider and ruler, measure the following lengths.
i. lengths of opposite sides, seg QR and seg PS.
ii. lengths of seg PQ and seg SR.
iii. lengths of diagonals PR and QS.
iv. lengths of seg PT and seg TR, which are parts of the diagonal PR.
v. lengths of seg QT and seg TS, which are parts of the diagonal QS.
Observe the measures. Discuss about the measures obtained by your classmates. (Textbook pg. no. 44)
Solution:
Draw a rectangle PQRS such that, l(PQ) = 3 cm and l(QR) = 4 cm.
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 10
Steps of construction:
i. As shown in the rough figure, draw seg QR of length 4 cm.
ii. Placing the centre of the protractor at point Q, draw ray QW making an angle of 90° with seg QR.
iii. By taking a distance of 3 cm on the compass and placing it at point Q, draw an arc on ray QW. Name the point as P.
iv. Draw ray PV and ray RU making an angle of 90° with seg PQ and seg QR respectively.
v. Name the point of intersection of ray PV and ray RU as S.
₹PQRS is the required rectangle.
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 11
From the figure,
i. l(QR) = l(PS) = 4 cm
ii. l(PQ) = l(SR) = 3 cm
iii. l(PR) = l(QS) = 5 cm
iv. l(PT) = l(TR) = 2.5 cm
v. l(QT) = l(TS) = 2.5 cm

From the above measures, we can say that for any rectangle,
i. Opposite sides are congruent.
ii. Diagonals are congruent.
iii. Diagonals bisect each other.

Question 2.
Draw a square by taking convenient length of side. Name the point of intersection of its diagonals as E. Using the apparatus in a compass box, measure the following lengths.
i. lengths of diagonal AC and diagonal BD.
ii. lengths of two parts of each diagonal made by point E.
iii. all the angles made at the point E.
iv. parts of each angle of the square made by each diagonal, (e.g. ∠ADB and ∠CDB).
Observe the measures. Also observe the measures obtained by your classmates and discuss about them. (Textbook pg. no. 44)
Solution:
Draw a square ABCD such that its side is 5cm
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 12
Steps of construction:
i. As shown in the rough figure, draw seg BC of length 5 cm.
ii. Placing the centre of the protractor at point B, draw ray BP making an angle of 90° with seg BC.
iii. By taking a distance of 5 cm on the compass and placing it at point B, draw an arc on ray BP. Name the point as A.
iv. Placing the centre of the protractor at point C, draw ray CQ making an angle of 90° with seg BC.
v. By taking a distance of 5 cm on the compass and placing it at point C, draw an arc on ray CQ. Name the point as D.
vi. Draw seg AD.
₹ABCD is the required square.
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 13
From the figure,
i. l(AC) = l(BD) ≅ 7cm
ii. l(AE) = l(EC) ≅ 3.5cm,
l(BE) = l(ED) ≅ 3.5cm
iii. m∠AED = m∠BEC = m∠CED = m∠BEA = 90°
iv. Angles made by diagonal AC:
m∠BAC = m∠DAC = 45°
m∠BCA = m∠DCA = 45°
Angles made by diagonal BD:
m∠ABD = m∠CBD = 45°
m∠ADB = m∠CDB = 45°

From the above measures, we can say that for any square,
i. Diagonals are congruent.
ii. Diagonals bisect each other.
iii. Diagonals are perpendicular to each other.
iv. Diagonals bisect the opposite angles.

Question 3.
Draw a rhombus EFGH by taking convenient length of side and convenient measure of an angle.
Draw its diagonals and name their point of Intersection as M.
i. Measure the opposite angles of the quadrilateral and angles at the point M.
ii. Measure the two parts of every angle made by the diagonal.
iii. Measure the lengths of both diagonals. Measure the two parts of diagonals made by point M.
Observe the measures. Also observe the measures obtained by your classmates and discuss about them. (Textbook pg. no. 45)
Solution:
Draw a rhombus EFGH such that its side is 5 cm and m∠F = 60°.
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 14
Steps of construction:
i. As shown in the rough figure, draw seg FG of length 5 cm.
ii. Placing the centre of the protractor at point F, draw ray FX making an angle 60° with seg FG.
iii. By taking a distance of 5 cm on the compass and placing it at point F, draw an arc on ray FX. Name the point as E.
iv. By taking a distance of 5 cm on the compass and placing it at point E and point G, draw arcs. Name the point of intersection of arcs as H. ₹EFGH is the required rhombus.
Maharashtra Board Class 8 Maths Solutions Chapter 8 Quadrilateral Constructions and Types Practice Set 8.2 15
From the figure,
i. Opposite angles:
m∠EFG = m∠GHE = 60°,
m∠FEH = m∠HGF = 120°
Angles at the point M:
m∠EMF = m∠FMG = m∠GMH = m∠HME = 90°

ii. Angles made by diagonal FH:
m∠EFH = m∠GFH = 30° m∠EHF = m∠GHF = 30°
Angles made by diagonal EG:
m∠FEG = m∠HEG = 60° m∠FGE = m∠HGE = 60°

iii. l(FH) ≈ 8.6 cm
l(EG) = 5 cm
l(FM) = l(HM) ≈ 4.3 cm
l(EM) = l(GM) ≈ 2.5 cm

From the above measures, we can say that for any rhombus,
i. Opposite angles are congruent.
ii. Diagonals bisect the opposite angles.
iii. Diagonals bisect each other and they are perpendicular to each other.

Std 8 Maths Digest

Practice Set 4.4 Algebra 9th Standard Maths Part 1 Chapter 4 Ratio and Proportion Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 4.4 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 4 Ratio and Proportion.

9th Standard Maths 1 Practice Set 4.4 Chapter 4 Ratio and Proportion Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Practice Set 4.4 Chapter 4 Ratio and Proportion Questions With Answers Maharashtra Board

Question 1.
Fill in the blanks of the following.
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 1
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 2

Question 2.
5m – n = 3m + 4n, then find the values of the following expressions.
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 3
Solution:
5m – n = 3m + 4n … [Given]
∴ 5m – 3m = 4n + n
∴ 2m = 5n
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 4
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 5

Question 3.
Solve:
i. If a(y + z) = b(z + x) = c(x + y) and out of a, b, c no two of them are equal, then show that, \( \frac{y-z}{a(b-c)}=\frac{z-x}{b(c-a)}=\frac{x-y}{c(a-b)}\).
Solution:
Here, no two of a, b and c are equal.
∴ values of (b – c), (c – a) and (a – b) are not zero.
a(y + z) = b(z + x) = c(x + y) … [Given]
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 6
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 7

ii. If \(\frac{x}{3 x-y-z}=\frac{y}{3 y-z-x}=\frac{z}{3 z-x-y}\) and x + y + z ≠ 0, then show that the value of each ratio is equal to 1.
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 8

iii. \(\frac{x}{3 x-y-z}=\frac{y}{3 y-z-x}=\frac{z}{3 z-x-y}\) and x + y + z ≠ 0,then show that \(\frac { a+b }{ 2 }\).
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 9

iv. If \(\frac{y+z}{a}=\frac{z+x}{b}=\frac{x+y}{c}\) , then show that \(\frac{x}{b+c-a}=\frac{y}{c+a-b}=\frac{z}{a+b-c}\).
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 10
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 11

v. If \(\frac{3 x-5 y}{5 z+3 y}=\frac{x+5 z}{y-5 x}=\frac{y-z}{x-z}\) , then show that every ratio = \(\frac { x }{ y }\).
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 12

Ratio And Proportion Class 9 Practice Set 4.4 Question 4.
Solve:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 13
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 14
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 15
∴ 7(4x – 5)3(2x + 3)
∴ 28x – 35 = 6x + 9
∴ 28x – 6x = 9 + 35
∴ 22x = 44
∴ x = 2
∴ x = 2 is the solution of the given equation.

ii. \(\frac{5 y^{2}+40 y-12}{5 y+10 y^{2}-4}=\frac{y+8}{1+2 y}\)
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 16
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.4 17
∴ y + 8 = 3(1 + 2y)
∴ y + 8 = 3 + 6y
∴ 8 – 3 = 6y – y
∴ 5 = 5y
∴ y = 1
∴ y = 1 is the solution of the given equation.

Class 9 Maths Digest

Practice Set 4.2 Algebra 9th Standard Maths Part 1 Chapter 4 Ratio and Proportion Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 4.2 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 4 Ratio and Proportion.

9th Standard Maths 1 Practice Set 4.2 Chapter 4 Ratio and Proportion Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Practice Set 4.2 Chapter 4 Ratio and Proportion Questions With Answers Maharashtra Board

Question 1.
Using the property \(\frac { a }{ b }\) = \(\frac { ak }{ bk }\), fill in the blanks by substituting proper numbers in the following.
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 1
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 2
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 3

Question 2.
Find the following ratios.
i. The ratio of radius to circumference of the circle.
ii. The ratio of circumference of circle with radius r to its area.
iii. The ratio of diagonal of a square to its side, if the length of side is 7 cm.
iv. The lengths of sides of a rectangle are 5 cm and 3.5 cm. Find the ratio of numbers denoting its perimeter to area.
Solution:
i. Let the radius of circle be r.
then, its circumference = 2πr
Ratio of radius to circumference of the circle
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 4
The ratio of radius to circumference of the circle is 1 : 2π.

ii. Let the radius of the circle is r.
∴ circumference = 2πr and area = πr2
Ratio of circumference to the area of circle
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 5
∴ The ratio of circumference of circle with radius r to its area is 2 : r.

iii. Length of side of square = 7 cm
∴ Diagonal of square = √2 x side
= √2 x 7
= 7 √2 cm
Ratio of diagonal of a square to its side
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 6
∴ The ratio of diagonal of a square to its side is √2 : 1.

iv. Length of rectangle = (l) = 5 cm,
Breadth of rectangle = (b) = 3.5 cm
Perimeter of the rectangle = 2(l + b)
= 2(5 + 3.5)
= 2 x 8.5
= 17 cm
Area of the rectangle = l x b
= 5 x 3.5
= 17.5 cm2
Ratio of numbers denoting perimeter to the area of rectangle
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 7
∴ Ratio of numbers denoting perimeter to the area of rectangle is 34 : 35.

Question 3.
Compare the following
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 8
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 9
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 10
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 11
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 12

Question 4.
Solve.
ABCD is a parallelogram. The ratio of ∠A and ∠B of this parallelogram is 5 : 4. FInd the measure of ∠B. [2 Marksl
Solution:
Ratio of ∠A and ∠B for given parallelogram is 5 : 4
Let the common multiple be x.
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 13
m∠A = 5x°and m∠B=4x°
Now, m∠A + m∠B = 180° …[Adjacent angles of a parallelogram arc supplementary]
∴ 5x° + 4x°= 180°
∴ 9x° = 180°
∴ x° = 20°
∴ m∠B=4x°= 4 x 20° = 80°
∴ The measure of ∠B is 800.

ii. The ratio of present ages of Albert and Salim is 5 : 9. Five years hence ratio of their ages will be 3 : 5. Find their present ages.
Solution:
The ratio of present ages of Albert and Salim is 5 : 9
Let the common multiple be x.
∴ Present age of Albert = 5x years and
Present age of Salim = 9x years
After 5 years,
Albert’s age = (5x + 5) years and
Salim’s age = (9x + 5) years
According to the given condition,
Five years hence ratio of their ages will be 3 : 5
\(\frac{5 x+5}{9 x+5}=\frac{3}{5}\)
∴ 5(5x + 5) = 3(9x + 5)
∴ 25x + 25 = 27x + 15
∴ 25 – 15 = 27 x – 25 x
∴ 10 = 2x
∴ x = 5
∴ Present age of Albert = 5x = 5 x 5 = 25 years
Present age of Salim = 9x = 9 x 5 = 45 years
∴ The present ages of Albert and Salim are 25 years and 45 years respectively.

iii. The ratio of length and breadth of a rectangle is 3 : 1, and its perimeter is 36 cm. Find the length and breadth of the rectangle.
Solution:
The ratio of length and breadth of a rectangle is 3 : 1
Let the common multiple be x.
Length of the rectangle (l) = 3x cm
and Breadth of the rectangle (b) = x cm
Given, perimeter of the rectangle = 36 cm
Since, Perimeter of the rectangle = 2(l + b)
∴ 36 = 2(3x + x)
∴ 36 = 2(4x)
∴ 36 = 8x
∴ \(x=\frac{36}{8}=\frac{9}{2}=4.5\)
Length of the rectangle = 3x = 3 x 4.5 = 13.5 cm
∴ The length of the rectangle is 13.5 cm and its breadth is 4.5 cm.

iv. The ratio of two numbers is 31 : 23 and their sum is 216. Find these numbers.
Solution:
The ratio of two numbers is 31 : 23
Let the common multiple be x.
∴ First number = 31x and
Second number = 23x
According to the given condition,
Sum of the numbers is 216
∴ 31x + 23x = 216
∴ 54x = 216
∴ x = 4
∴ First number = 31x = 31 x 4 = 124
Second number = 23x = 23 x 4 = 92
∴ The two numbers are 124 and 92.

v. If the product of two numbers is 360 and their ratio is 10 : 9, then find the numbers.
Solution:
Ratio of two numbers is 10 : 9
Let the common multiple be x.
∴ First number = 10x and
Second number = 9x
According to the given condition,
Product of two numbers is 360
∴ (10x) (9x) = 360
∴ 90x2 = 360
∴ x2 = 4
∴ x = 2 …. [Taking positive square root on both sides]
∴ First number = 10x = 10x2 = 20
Second number = 9x = 9x2 = 18
∴ The two numbers are 20 and 18.

Question 5.
If a : b = 3 : 1 and b : c = 5 : 1, then find the value of [3 Marks each]
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 14
Solution:
Given, a : b = 3 : 1
∴ \(\frac { a }{ b }\) = \(\frac { 3 }{ 1 }\)
∴ a = 3b ….(i)
and b : c = 5 : 1
∴ \(\frac { b }{ c }\) = \(\frac { 5 }{ 1 }\)
b = 5c …..(ii)
Substituting (ii) in (i),
we get a = 3(5c)
∴ a = 15c …(iii)
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 15

Ratio and Proportion 9th Class Practice Set 4.1 Question 6. If \(\sqrt{0.04 \times 0.4 \times a}=0.4 \times 0.04 \times \sqrt{b}\) , then find the ratio \(\frac { a }{ b }\).
Solution:
\(\sqrt{0.04 \times 0.4 \times a}=0.4 \times 0.04 \times \sqrt{b}\) … [Given]
∴ 0.04 x 0.4 x a = (0.4)2 x (0.04)2 x b … [Squaring both sides]
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.2 16

9th Algebra Practice Set 4.2 Question 7. (x + 3) : (x + 11) = (x – 2) : (x + 1), then find the value of x.
Solution:
(x + 3) : (x + 11) = (x- 2) : (x+ 1)
\(\quad \frac{x+3}{x+11}=\frac{x-2}{x+1}\)
∴ (x + 3)(x +1) = (x – 2)(x + 11)
∴ x(x +1) + 3(x + 1) = x(x + 11) – 2(x + 11)
∴ x2 + x + 3x + 3 = x2 + 1 lx – 2x – 22
∴ x2 + 4x + 3 = x2 + 9x – 22
∴ 4x + 3 = 9x – 22
∴ 3 + 22 = 9x – 4x
∴ 25 = 5x
∴ x = 5

Class 9 Maths Digest

Practice Set 7.3 Class 8 Answers Chapter 7 Variation Maharashtra Board

Balbharti Maharashtra State Board Class 8 Maths Solutions covers the Practice Set 7.3 8th Std Maths Answers Solutions Chapter 7 Variation.

Variation Class 8 Maths Chapter 7 Practice Set 7.3 Solutions Maharashtra Board

Std 8 Maths Practice Set 7.3 Chapter 7 Solutions Answers

Question 1.
Which of the following statements are of inverse variation?
i. Number of workers on a job and time taken by them to complete the job.
ii. Number of pipes of same size to fill a tank and the time taken by them to fill the tank.
iii. Petrol filled in the tank of a vehicle and its cost.
iv. Area of circle and its radius.
Solution:
i. Let, x represent number of workers on a job, and y represent time taken by workers to complete the job.
As the number of workers increases, the time required to complete the job decreases.
∴ \(x \propto \frac{1}{y}\)

ii. Let, n represent number of pipes of same size to fill a tank and t represent time taken by the pipes to fill the tank.
As the number of pipes increases, the time required to fill the tank decreases.
∴ \(\mathrm{n} \propto \frac{1}{\mathrm{t}}\)

iii. Let, p represent the quantity of petrol filled in a tank and c represent the cost of the petrol.
As the quantity of petrol in the tank increases, its cost increases.
∴ p ∝ c

iv. Let, A represent the area of the circle and r represent its radius.
As the area of circle increases, its radius increases.
∴ A ∝ r
∴ Statements (i) and (ii) are examples of inverse variation.

Question 2.
If 15 workers can build a wall in 48 hours, how many workers will be required to do the same work in 30 hours?
Solution:
Let, n represent the number of workers building the wall and t represent the time required.
Since, the number of workers varies inversely with the time required to build the wall.
∴ \(\mathrm{n} \propto \frac{1}{\mathrm{t}}\)
∴ \(\mathrm{n}=\mathrm{k} \times \frac{1}{\mathrm{t}}\)
where k is the constant of variation
∴ n × t = k …(i)
15 workers can build a wall in 48 hours,
i.e., when n = 15, t = 48
∴ Substituting n = 15 and t = 48 in (i), we get
n × t = k
∴ 15 × 48 = k
∴ k = 720
Substituting k = 720 in (i), we get
n × t = k
∴ n × t = 720 …(ii)
This is the equation of variation.
Now, we have to find number of workers required to do the same work in 30 hours.
i.e., when t = 30, n = ?
∴ Substituting t = 30 in (ii), we get
n × t = 720
∴ n × 30 = 720
∴ n = \(\frac { 720 }{ 30 }\)
∴ n = 24
∴ 24 workers will be required to build the wall in 30 hours.

Question 3.
120 bags of half litre milk can be filled by a machine within 3 minutes find the time to fill such 1800 bags?
Solution:
Let b represent the number of bags of half litre milk and t represent the time required to fill the bags.
Since, the number of bags and time required to fill the bags varies directly.
∴ b ∝ t
∴ b = kt …(i)
where k is the constant of variation.
Since, 120 bags can be filled in 3 minutes
i.e., when b = 120, t = 3
∴ Substituting b = 120 and t = 3 in (i), we get
b = kt
∴ 120 = k × 3
∴ k = \(\frac { 120 }{ 3 }\)
∴ k = 40
Substituting k = 40 in (i), we get
b = kt
∴ b = 40 t …(ii)
This is the equation of variation.
Now, we have to find time required to fill 1800 bags
∴ Substituting b = 1800 in (ii), we get
b = 40 t
∴ 1800 = 40 t
∴ t = \(\frac { 1800 }{ 40 }\)
∴ t = 45
∴ 1800 bags of half litre milk can be filled by the machine in 45 minutes.

Question 4.
A car with speed 60 km/hr takes 8 hours to travel some distance. What should be the increase in the speed if the same distance is
to be covered in \(7\frac { 1 }{ 2 }\) hours?
Solution:
Let v represent the speed of car in km/hr and t represent the time required.
Since, speed of a car varies inversely as the time required to cover a distance.
∴ \(v \propto \frac{1}{t}\)
∴ \(\mathbf{v}=\mathbf{k} \times \frac{1}{\mathbf{t}}\)
where, k is the constant of variation.
∴ v × t = k …(i)
Since, a car with speed 60 km/hr takes 8 hours to travel some distance.
i.e., when v = 60, t = 8
∴ Substituting v = 60 and t = 8 in (i), we get
v × t = k
∴ 60 × 8 = t
∴ k = 480
Substituting k = 480 in (i), we get
v × t = k
∴ v × t = 480 …(ii)
This is the equation of variation.
Now, we have to find speed of car if the same distance is to be covered in \(7\frac { 1 }{ 2 }\) hours.
i.e., when t = \(7\frac { 1 }{ 2 }\) = 7.5 , v = ?
∴ Substituting, t = 7.5 in (ii), we get
v × t = 480
∴ v × 7.5 = 480
\(v=\frac{480}{7.5}=\frac{4800}{75}\)
∴ v = 64
The speed of vehicle should be 64 km/hr to cover the same distance in 7.5 hours.
∴ The increase in speed = 64 – 60
= 4km/hr
∴ The increase in speed of the car is 4 km/hr.

Std 8 Maths Digest

Practice Set 4.1 Algebra 9th Standard Maths Part 1 Chapter 4 Ratio and Proportion Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 4.1 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 4 Ratio and Proportion.

9th Standard Maths 1 Practice Set 4.1 Chapter 4 Ratio and Proportion Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Practice Set 4.1 Chapter 4 Ratio and Proportion Questions With Answers Maharashtra Board

Question 1.
From the following pairs of numbers, find the reduced form of ratio of first number to second number.
i. 72,60
ii. 38,57
iii. 52,78
Solution:
i. 72, 60
\(\text { Ratio }=\frac{72}{60}=\frac{12 \times 6}{12 \times 5}=\frac{6}{5}=6 : 5\)

ii. 38, 57
\(\text { Ratio }=\frac{38}{57}=\frac{19 \times 2}{19 \times 3}=\frac{2}{3}=2 : 3\)

iii. 52, 78
\(\text { Ratio }=\frac{52}{78}=\frac{26 \times 2}{26 \times 3}=\frac{2}{3}=2 : 3\)

Question 2.
Find the reduced form of the ratio of the first quantity to second quantity.
i. ₹ 700, ₹ 308
ii. ₹ 14, ₹ 12 and 40 paise
iii. 5 litres, 2500 ml
iv. 3 years 4 months, 5 years 8 months
v. 3.8 kg, 1900 gm
vi. 7 minutes 20 seconds, 5 minutes 6 seconds
Solution:
i. ₹ 700, ₹ 308
\( \text { Ratio }=\frac{700}{308}=\frac{28 \times 25}{28 \times 11}=\frac{25}{11}=25 : 11\)

ii. ₹ 14, ₹12 and 40 paise
₹ 14 = 14 x 100 paise = 1400 paise
₹ 12 and 40 paise = 12 x 100 paise + 40 paise
= (1200 + 40) paise
= 1240 paise
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.1 1

iii. 5 litres, 2500 ml
5 litres = 5 x 1000 ml = 5000ml
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.1 2

iv. 3 years 4 months, 5 years 8 months
3 years 4 months = 3×12 months + 4 months
= (36 + 4) months
= 40 months
5 years 8 months = 5 x 12 months + 8 months
= (60 + 8) months
= 68 months
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.1 3

v. 3.8 kg, 1900 gm
3.8 kg = 3.8 x 1000 gm = 3800 gm
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.1 4

vi. 7 minutes 20 seconds, 5 minutes 6 seconds
7 minutes 20 seconds = 7 x 60 seconds + 20 seconds
= (420 + 20) seconds
= 440 seconds
5 minutes 6 seconds = 5 x 60 seconds + 6 seconds
= (300 + 6) seconds
= 306 seconds
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.1 5

Question 3.
Express the following percentages as ratios
i. 75 : 100
ii. 44 : 100
iii. 6.25%
iv. 52: 100
v. 0.64%
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.1 6

Question 4.
Three persons can build a small house in 8 days. To build the same house in 6 days, how many persons are required?
Solution:
Let the persons required to build a house in 6 days be x.
Days required to build a house and number of persons are in inverse proportion.
∴ 6 × x = 8 × 3
∴ 6 x = 24
∴ x = 4
∴ 4 persons are required to build the house in 6 days.

Question 5.
Convert the following ratios into percentages.
i. 15 : 25
ii. 47 : 50
iii. \(\frac { 7 }{ 10 }\)
iv. \(\frac { 546 }{ 600 }\)
v. \(\frac { 7 }{ 16 }\)
Solution:
Let 15 : 25 = x %
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.1 7
∴ 15 : 25 = 60 %

ii. Let 47 : 50 = x%
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.1 8
∴ 47 : 50 = 94 %

iii. Let \(\frac { 7 }{ 10 }\) = x %
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.1 9

iv. Let \(\frac { 546 }{ 600 }\) = x %
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.1 10

v. Let \(\frac { 7 }{ 16 }\) = x %
Maharashtra Board Class 9 Maths Solutions Chapter 4 Ratio and Proportion Practice Set 4.1 11

Question 6.
The ratio of ages of Abha and her mother is 2 : 5. At the time of Abha’s birth her mothers age was 27 years. Find the present ages of Abha and her mother.
Solution:
The ratio of ages of Abha and her mother is 2 : 5.
Let the common multiple be x.
∴ Present age of Abha = 2x years and
Present age of Abha’s mother = 5x years
According to the given condition, the age of Abha’s mother at the time of Abha’s birth = 27 years
∴ 5x – 2x = 27
∴ 3x = 27
∴ x = 9
∴ Present age of Abha = 2x = 2 x 9 = 18 years
∴ Present age of Abha’s mother = 5x =5 x 9 = 45 years
The present ages of Abha and her mother are 18 years and 45 years respectively.

Question 7.
Present ages of Vatsala and Sara are 14 years and 10 years respectively. After how many years the ratio of their ages will become 5 : 4?
Solution:
Present age of Vatsala = 14 years
Present age of Sara = 10 years
After x years,
Vatsala’s age = (14 + x) years
Sara’s age = (10 + x) years
According to the given condition,
After x years the ratio of their ages will become 5 : 4
∴ \(\frac { 14 + x }{ 10 + x }\) = \(\frac { 5 }{ 4 }\)
∴ 4(14 + x) = 5(10 + x)
∴ 56 + 4x = 50 + 5x
∴ 56 – 50 = 5x – 4x
∴ 6 = x
∴ x = 6
∴ After 6 years, the ratio of their ages will become 5 : 4.

Question 8.
The ratio of present ages of Rehana and her mother is 2 : 7. After 2 years, the ratio of their ages will be 1 : 3. What is Rehana’s present age ?
Solution:
The ratio of present ages of Rehana and her mother is 2 : 7
Let the common multiple be x.
∴ Present age of Rehana = 2x years and Present age of Rehana’s mother = 7x years
After 2 years,
Rehana’s age = (2x + 2) years
Age of Rehana’s mother = (7x + 2) years
According to the given condition,
After 2 years, the ratio of their ages will be 1 : 3
∴ \(\frac { 2x + 2 }{ 7x + 2 }\) = \(\frac { 1 }{ 3 }\)
∴ 3(2x + 2) = 1(7x + 2)
∴ 6x + 6 = 7x + 2
∴ 6 – 2 = 7x – 6x
∴ 4 = x
∴ x = 4
∴ Rehana’s present age = 2x = 2 x 4 = 8 years
∴ Rehana’s present age is 8 years.

Class 9 Maths Digest

Practice Set 7.2 Class 8 Answers Chapter 7 Variation Maharashtra Board

Balbharti Maharashtra State Board Class 8 Maths Solutions covers the Practice Set 7.2 8th Std Maths Answers Solutions Chapter 7 Variation.

Variation Class 8 Maths Chapter 7 Practice Set 7.2 Solutions Maharashtra Board

Std 8 Maths Practice Set 7.2 Chapter 7 Solutions Answers

Question 1.
The information about number of workers and number of days to complete a work is given in the following table. Complete the table.

Number of workers 30 20 __ 10 __
Days 6 9 12 36

Solution:
Let, n represent the number of workers and d represent the number of days required to complete a work.
Since, number of workers and number of days to complete a work are in inverse poportion.
∴ \(\mathbf{n} \propto \frac{1}{\mathrm{d}}\)
∴ \(\mathrm{n}=\mathrm{k} \times \frac{1}{\mathrm{d}}\)
where k is the constant of variation.
∴ n × d = k …(i)

i. When n = 30, d = 6
∴ Substituting n = 30 and d = 6 in (i), we get
n × d = k
∴ 30 × 6 = k
∴ k = 180
Substituting k = 180 in (i), we get
∴ n × d = k
∴ n × d = 180 …(ii)
This is the equation of variation

ii. When d = 12, n = 7
∴ Substituting d = 12 in (ii), we get
n × d = 180
∴ n × 12 = 180
∴ n = \(\frac { 180 }{ 12 }\)
∴ n = 15

iii. When n = 10, d = ?
∴ Substituting n = 10 in (ii), we get
n × d = 180
10 × d = 180
∴ d = \(\frac { 180 }{ 10 }\)
∴ d = 18

iv. When d = 36, n = ?
∴ Substituting d = 36 in (ii), we get
n × d = 180
∴ n × 36 = 180
∴ n = \(\frac { 180 }{ 36 }\)
∴ n = 5

Number of workers 30 20 15 10 5
Days 6 9 12 18 36

Question 2.
Find constant of variation and write equation of variation for every example given below:
i. \(p \propto \frac{1}{q}\) ; if p = 15 then q = 4.
ii. \(z \propto \frac{1}{w}\) ; when z = 2.5 then w = 24.
iii. \(s \propto \frac{1}{t^{2}}\) ; if s = 4 then t = 5.
iv. \(x \propto \frac{1}{\sqrt{y}}\) ; if x = 15 then y = 9.
Solution:
i. \(p \propto \frac{1}{q}\) …[Given]
∴ p = k × \(\frac { 1 }{ q }\)
where, k is the constant of variation.
∴ p × q = k …(i)
When p = 15, q = 4
∴ Substituting p = 15 and q = 4 in (i), we get
p × q = k
∴ 15 × 4 = k
∴ k = 60
Substituting k = 60 in (i), we get
p × q = k
∴ p × q = 60
This is the equation of variation.
∴ The constant of variation is 60 and the equation of variation is pq = 60.

ii. \(z \propto \frac{1}{w}\) …[Given]
∴ z = k × \(\frac { 1 }{ w }\)
where, k is the constant of variation,
∴ z × w = k …(i)
When z = 2.5, w = 24
∴ Substituting z = 2.5 and w = 24 in (i), we get
z × w = k
∴ 2.5 × 24 = k
∴ k = 60
Substituting k = 60 in (i), we get
z × w = k
∴ z × w = 60
This is the equation of variation.
∴ The constant of variation is 60 and the equation of variation is zw = 60.

iii. \(s \propto \frac{1}{t^{2}}\) …[Given]
∴ \(s=k \times \frac{1}{t^{2}}\)
where, k is the constant of variation,
∴ s × t² = k …(i)
When s = 4, t = 5
∴ Substituting, s = 4 and t = 5 in (i), we get
s × t² = k
∴ 4 × (5)² = k
∴ k = 4 × 25
∴ k = 100
Substituting k = 100 in (i), we get
s × t² = k
∴ s × t² = 100
This is the equation of variation.
∴ The constant of variation is 100 and the equation of variation is st² = 100.

iv. \(x \propto \frac{1}{\sqrt{y}}\) …[Given]
∴ \(x=\mathrm{k} \times \frac{1}{\sqrt{y}}\)
where, k is the constant of variation,
∴ x × √y = k …(i)
When x = 15, y = 9
∴ Substituting x = 15 and y = 9 in (i), we get
x × √y = k
∴ 15 × √9 = k
∴ k = 15 × 3
∴ k = 45
Substituting k = 45 in (i), we get
x × √y = k
∴ x × √y = 45 .
This is the equation of variation.
∴ The constant of variation is k = 45 and the equation of variation is x√y = 45.

Question 3.
The boxes are to be filled with apples in a heap. If 24 apples are put in a box then 27 boxes are needed. If 36 apples are filled in a box how many boxes will be needed?
Solution:
Let x represent the number of apples in each box and y represent the total number of boxes required.
The number of apples in each box are varying inversely with the total number of boxes.
∴ \(x \infty \frac{1}{y}\)
∴ \(x=k \times \frac{1}{y}\)
where, k is the constant of variation,
∴ x × y = k …(i)
If 24 apples are put in a box then 27 boxes are needed.
i.e., when x = 24, y = 27
∴ Substituting x = 24 and y = 27 in (i), we get
x × y = k
∴ 24 × 27 = k
∴ k = 648
Substituting k = 648 in (i), we get
x × y = k
∴ x × y = 648 …(ii)
This is the equation of variation.
Now, we have to find number of boxes needed
when, 36 apples are filled in each box.
i.e., when x = 36,y = ?
∴ Substituting x = 36 in (ii), we get
x × y = 648
∴ 36 × y = 648
∴ y = \(\frac { 648 }{ 36 }\)
∴ y = 18
∴ If 36 apples are filled in a box then 18 boxes are required.

Question 4.
Write the following statements using symbol of variation.

  1. The wavelength of sound (l) and its frequency (f) are in inverse variation.
  2. The intensity (I) of light varies inversely with the square of the distance (d) of a screen from the lamp.

Solution:

  1. \(l \propto \frac{1}{\mathrm{f}}\)
  2. \(\mathrm{I} \propto \frac{1}{\mathrm{d}^{2}}\)

Question 5.
\(x \propto \frac{1}{\sqrt{y}}\) and when x = 40 then y = 16. If x = 10, find y.
Solution:
\(x \propto \frac{1}{\sqrt{y}}\)
∴ \(x=\mathrm{k} \times \frac{1}{\sqrt{y}}\)
where, k is the constant of variation.
∴ x × √y = k …(i)
When x = 40, y = 16
∴ Substituting x = 40 andy = 16 in (i), we get
x × √y = k
∴ 40 × √16 = k
∴ k = 40 × 4
∴ k = 160
Substituting k = 160 in (i), we get
x × √y = k
∴ x × √y = 160 …(ii)
This is the equation of variation.
When x = 10,y = ?
∴ Substituting, x = 10 in (ii), we get
x × √y = 160
∴ 10 × √y = 160
∴ √y = \(\frac { 160 }{ 10 }\)
∴ √y = 16
∴ y = 256 … [Squaring both sides]

Question 6.
x varies inversely as y, when x = 15 then y = 10, if x = 20, then y = ?
Solution:
Given that,
\(x \propto \frac{1}{\sqrt{y}}\)
∴ \(x=\mathrm{k} \times \frac{1}{\sqrt{y}}\)
where, k is the constant of variation.
∴ x × y = k …(i)
When x = 15, y = 10
∴ Substituting, x = 15 and y = 10 in (i), we get
x × y = k
∴ 15 × 10 = k
∴ k = 150
Substituting, k = 150 in (i), we get
x × y = k
∴ x × y = 150 …(ii)
This is the equation of variation.
When x = 20, y = ?
∴ substituting x = 20 in (ii), we get
x × y = 150
∴ 20 × y = 150
∴ y = \(\frac { 150 }{ 20 }\)
∴ y = 7.5

Std 8 Maths Digest

Problem Set 3 Algebra 9th Standard Maths Part 1 Chapter 3 Polynomials Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Problem Set 3 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 3 Polynomials.

9th Standard Maths 1 Problem Set 3 Chapter 3 Polynomials Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Problem Set 3 Chapter 3 Polynomials Questions With Answers Maharashtra Board

Question 1.
Write the correct alternative answer for each of the following questions.

i. Which of the following is a polynomial?
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Problem Set 3 1
Answer:
(D) √2x² + \(\frac { 1 }{ 2 }\)

ii. What is the degree of the polynomial √7 ?
(A) \(\frac { 1 }{ 2 }\)
(B) 5
(C) 2
(D) 0
Answer:
(D) 0

iii. What is the degree of the polynomial ?
(A) 0
(B) 1
(C) undefined
(D) any real number
Answer:
(C) undefined

iv. What is the degree of the polynomial 2x2 + 5xsup>3 + 7?
(A) 3
(B) 2
(C) 5
(D) 7
Answer:
(A) 3

v. What is the coefficient form of x3 – 1 ?
(A) (1, -1)
(B) (3, -1)
(C) (1, 0, 0, -1)
(D) (1, 3, -1)
Answer:
(C) (1, 0, 0, -1)

vi. p(x) = x2 – x + 3, then p (7√7) = ?
(A) 3
(B) 7√7
(C) 42√7+3
(D) 49√7
Answer:
(D) 49√7

vii. When x = – 1, what is the value of the polynomial 2x3 + 2x ?
(A) 4
(B) 2
(C) -2
(D) -4
Answer:
(A) 4

viii. If x – 1 is a factor of the polynomial 3x2 + mx, then find the value of m.
(A) 2
(B) -2
(C) -3
(D) 3
Answer:
(C) -3

ix. Multiply (x2 – 3) (2x – 7x3 + 4) and write the degree of the product.
(A) 5
(B) 3
(C) 2
(D) 0
Answer:
(A) 5

x. Which is the following is a linear polynomials?
(A)  x + 5
(B)  x2 + 5
(C) x3 + 5
(D) x4 + 5
Answer:
(A)  x + 5

Hints:
v. x3 – 1 = x3 + 0x2 + 0x – 1

vi. p(7√ 7) = (7√ 7)2 (7√ 7) (7√ 7) + 3
= 3

vii. p(-1) = 2(-1)3 + 2(-1)
= -2 – 2 = -4

vii. p(1) = 0
∴ 3(1)2 + m(1) = 0
∴ 3 + m =0
∴ m = -3

ix. Here, degree of first polynomial = 2 and
degree of second polynomial 3
∴ Degree of polynomial obtained by multiplication = 2 + 3 = 5

Question 2.
Write the degree of the polynomial for each of the following.
i. 5 + 3x4
ii. 7
iii. ax7 + bx9 (a, b are constants)
Answer:
i. 5 + 3x4
Here, the highest power of x is 4.
∴Degree of the polynomial = 4

ii. 7 = 7x°
∴ Degree of the polynomial = 0

iii. ax7 + bx9
Here, the highest power ofx is 9.
∴Degree of the polynomial = 9

Question 3.
Write the following polynomials in standard form. [1 Mark each]
i. 4x2 + 7x4 – x3 – x + 9
ii. p + 2p3 + 10p2 + 5p4 – 8
Answer:
i. 7x4 – x3 + 4x2 – x + 9
ii. 5p4 + 2p3 + 10p2 + p – 8

Question 4.
Write the following polynomial in coefficient form.
i. x4 + 16
ii. m5 + 2m2 + 3m+15
Answer:
i. x4 + 16
Index form = x4 + 0x3 + 0x2 + 0x + 16
∴ Coefficient form of the polynomial = (1,0,0,0,16)

ii. m5 + 2m2 + 3m + 15
Index form = m5 + 0m4 + 0m3 + 2m2 + 3m + 15
∴ Coefficient form of the polynomial = (1, 0, 0, 2, 3, 15)

Question 5.
Write the index form of the polynomial using variable x from its coefficient form.
i. (3, -2, 0, 7, 18)
ii. (6, 1, 0, 7)
iii. (4, 5, -3, 0)
Answer:
i. Number of coefficients = 5
∴ Degree = 5 – 1 = 4
∴Index form = 3x4 – 2x3 + 0x2 + 7x + 18

ii. Number of coefficients = 4
∴Degree = 4 – 1 = 3
∴ Index form = 6x3 + x2 + 0x + 7

iii. Number of coefficients = 4
∴ Degree = 4 – 1 = 3
∴ Index form = 4x3 + 5x2 – 3x + 0

Question 6.
Add the following polynomials.
i. 7x4 – 2x3 + x + 10;
3x4 + 15x3 + 9x2 – 8x + 2
ii. 3p3q + 2p2q + 7;
2p2q + 4pq – 2p3q
Solution:
i. (7x4 – 2x3 + x + 10) + (3x4 + 15x3 + 9x2 – 8x + 2)
= 7x4 – 2x3 + x + 10 + 3x4 + 15x3 + 9x2 – 8x + 2
= 7x4 + 3x4 – 2x3 + 1 5x3 + 9x2 + x – 8x + 10 + 2
= 10x4 + 13x3 + 9x2 – 7x + 12

ii. (3p3q + 2p2q + 7) + (2p2q + 4pq – 2p3q)
= 3p3q + 2p2q + 7 + 2p2q + 4pq – 2p3q
= 3p3q – 2p3q + 2p2q + 2p2q + 4pq + 7
= p3q + 4p2q + 4pq + 7

Question 7.
Subtract the second polynomial from the first.
i. 5x2 – 2y + 9 ; 3x2 + 5y – 7
ii. 2x2 + 3x + 5 ; x2 – 2x + 3
Solution:
i. (5x2 – 2y + 9) – (3x2 + 5y – 7)
= 5x2 – 2y+ 9 – 3x2 – 5y + 1
= 5x2 – 3x2 – 2y – 5y + 9 + 7
= 2x2 – 1y + 16

ii. (2x2+ 3x + 5) – (x2 – 2x + 3)
= 2x2 + 3x + 5 – x2 + 2x – 3
= 2x2 – x2 + 3x + 2x + 5 – 3
= x2 + 5x + 2

Question 8.
Multiply the following polynomials.
i. (m3 – 2m + 3) (m4 – 2m2 + 3m + 2)
ii. (5m3 – 2) (m2 – m + 3)
Solution:
i. (m3 – 2m + 3) (m4 – 2m2 + 3m + 2)
= m3(m4 – 2m2 + 3m + 2) – 2m(m4 – 2m2 + 3m + 2) + 3(m4 – 2m2 + 3m + 2)
= m7 – 2m5 + 3m4 + 2m3 – 2m5 + 4m3 – 6m2 – 4m + 3m4 – 6m2 + 9m + 6
= m7 – 2m5 – 2m5 + 3m4 + 3m4 + 2m3 + 4m3 – 6m2 – 6m2 – 4m + 9m + 6
= m7 – 4m5 + 6m4 + 6m3 – 12m2 + 5m + 6

ii. (5m3 – 2) (m2 – m + 3)
= 5m3(m2 – m + 3) – 2(m2 – m + 3)
= 5m5 – 5m4 + 15m3 – 2m2 + 2m – 6

Question 9.
Divide polynomial 3x3 – 8x2 + x + 7 by x – 3 using synthetic method and write the quotient and remainder.
Solution:
Dividend = 3x3 – 8x2 + x + 7
∴ Coefficient form of dividend = (3, – 8, 1,7)
Divisor = x – 3
∴ Opposite of – 3 is 3
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Problem Set 3 2
Coefficient form of quotient = (3, 1,4)
∴ Quotient = 3x2 + x + 4 and
Remainder =19

Question 10.
For which value of m, x + 3 is the factor of the polynomial x3 – 2mx + 21?
Solution:
Here, p(x) = x3 – 2mx + 21
(x + 3) is a factor of x3 – 2mx + 21.
∴ By factor theorem,
Remainder = 0
∴ P(- 3) = 0
p(x) = x3 – 2mx + 21
∴ p(-3) = (-3)3 – 2(m)(-3) + 21
∴ 0 = – 27 + 6m + 21
∴ 6 + 6m = 0
∴ 6m = 6
∴ m = 1
∴ x + 3 is the factor of x3 – 2mx + 21 for m = 1.

Question 11.
At the end of the year 2016, the population of villages Kovad, Varud, Chikhali is 5x2 – 3y2, 7y2 + 2xy and 9x2 + 4xy respectively. At the beginning of the year 2017, x2 + xy – y2, 5xy and 3x2 + xy persons from each of the three villages respectively went to another village for education, then what is the remaining total population of these three villages ?
Solution:
Total population of villages at the end of 2016 = (5x2 – 3y2) + (7y2 + 2xy) + (9x2 + 4xy)
= 5x2 + 9x2 – 3y2 + 7y2 + 2xy + 4xy
= 14x2 + 4y2 + 6xy …….(i)
Total number of persons who went to other village at the beginning of 2017 = (x2 + xy – y2) + (5xy) + (3x2 + xy)
= x2 + 3x2 – y2 + xy + 5xy + xy
= 4x2 – y2 + 7xy … (ii)
Remaining total population of villages = Total population at the end of 2016 – total number of persons who went to other village at the beginning of 2017
= 14x2 + 4y2 + 6xy – (4x2 – y2 + 7xy) … [From (i) and (ii)]
= 14x2 + 4y2 + 6xy – 4x2 + y2 – 7xy
= 14x2 – 4x2 + 4y2 + y2 + 6xy – 7xy = 1
= 10x2 + 5y2 – xy
∴ The remaining total population of the three villages is 10x2 + 5y2 – xy.

Question 12.
Polynomials bx2 + x + 5 and bx3 – 2x + 5 are divided by polynomial x – 3 and the remainders are m and n respectively. If m – n = 0, then find the value of b.
Solution:
When polynomial bx2 + x + 5 is divided by (x – 3), the remainder is m.
∴ By remainder theorem,
Remainder = p(3) = m
p(x) = bx2 + x + 5
∴ p(3) = b(3)2 + 3 + 5
∴m = b(9) + 8
m = 9b + 8 …(i)
When polynomial bx3 – 2x + 5 is divided by x – 3 the remainder is n
∴ remainder = p(3) = n
p(x) = bx3 – 2x + 5
∴ P(3)= b(3)3 – 2(3) + 5
∴ n = b(27) – 6 + 5
∴ n = 27b – 1 …(ii)
Now, m – n = 0 …[Given]
∴ m = n
∴ 9b + 8 = 27b – 1 …[From (i) and (ii)]
∴ 8 + 1 = 27b – 9b
∴ 9 = 18b
∴ b = \(\frac { 1 }{ 2 }\)

Question 13.
Simplify.
(8m2 + 3m – 6) – (9m – 7) + (3m2 – 2m + 4)
Solution:
(8m2 + 3m – 6) – (9m – 7) + (3m2 – 2m + 4)
= 8m2 + 3m – 6 – 9m + 7 + 3m2 – 2m + 4
= 8m2 + 3m2 + 3m – 9m – 2m – 6 + 7 + 4
= 11m2 – 8m + 5

Question 14.
Which polynomial is to be subtracted from x2 + 13x + 7 to get the polynomial 3x2 + 5x – 4?
Solution:
Let the required polynomial be A.
∴ (x2 + 13x + 7) – A = 3x2 + 5x – 4
∴ A = (x2 + 13x + 7) – (3x2 + 5x – 4)
= x2 + 13x + 7 – 3x2 – 5x + 4
= x2 – 3x2 + 13x – 5x + 7+4
= -2x2 + 8x + 11
∴ – 2x2 + 8x + 11 must be subtracted from x2 + 13x + 7 to get 3x2 + 5x – 4.

Question 15.
Which polynomial is to be added to 4m + 2n + 3 to get the polynomial 6m + 3n + 10?
Solution:
Let the required polynomial be A.
∴ (4m + 2n + 3) + A = 6m + 3n + 10
∴ A = 6m + 3n + 10 – (4m + 2n + 3)
= 6m + 3n + 10 – 4m – 2n – 3
= 6m – 4m + 3n – 2n + 10 – 3
= 2m + n + 7
∴ 2m + n + 7 must be added to 4m + 2n + 3 to get 6m + 3n + 10.

Question 1.
Read the following passage, write the appropriate amount in the boxes and discuss.
Govind, who is a dry land farmer from Shiralas has a 5 acre field. His family includes his wife, two children and his old mother. He borrowed one lakh twenty five thousand rupees from the bank for one year as agricultural loan at 10 p.c.p.a. He cultivated soyabean in x acres and cotton and tur in y acres. The expenditure he incurred was as follows :
He spent ₹10,000 on seeds. The expenses for fertilizers and pesticides for the soyabean crop was ₹ 2000x and ₹ 4000x2 were spent on wages and cultivation of land. He spent ₹ 8000y on fertilizers and pesticides and ₹ 9000y2 for wages and cultivation of land for the cotton and tur crops.

Let us write the total expenditure on all the crops by using variables x and y.
₹ 10000 + 2000x + 4000×2 + 8000y + 9000y2
He harvested 5x2 quintals soyabean and sold it at ₹ 2800 per quintal. The cotton crop yield was \(\frac { 5 }{ 3 }\) y2 quintals which fetched ₹ 5000 per quintal.
The tur crop yield was 4y quintals and was sold at ₹ 4000 per quintal. Write the total income in rupees that was obtained by selling the entire farm produce, with the help of an expression using variables x and y. (Textbook pg. no. 44)
Answer:
Total income = income on soyabean crop + income on cotton crop + income on tur crop
= ₹ (5x2 x 2800) + ₹(\(\frac { 5 }{ 3 }\) y2 x 5000) + ₹ (4y x 4000)
= ₹ ( 14000x2 + \(\frac { 25000 }{ 3 }\)y2 + 16000y)

Question 2.
We have seen the example of expenditure and income (in terms of polynomials) of Govind who is a dry land farmer. He has borrowed rupees one lakh twenty-five thousand from the bank as an agriculture loan and repaid the said loan at 10 p.c.p.a. He had spent ₹ 10,000 on seeds. The expenses on soyabean crop was ₹ 2000x for fertilizers and pesticides and ₹ 4000x2 was spent on wages and cultivation. He spent ₹ 8000y on fertilizers and pesticides and ₹9000y2 on cultivation and wages for cotton and tur crop.
His total income was
₹ (14000x2 + \(\frac { 25000 }{ 3 }\)y2 + 16000y)
By taking x = 2, y = 3 write the income expenditure account of Govind’s farming. (Textbook pg. no. 52)
Solution:
–           Credit (Income)
₹ 1,25,000   Bank loan
₹ 56000      Income from soyabean
₹ 75000      Income from cotton
₹ 48000      Income from tur
₹ 304000     Total income

–                     Debit (Expenses)
₹ 1,37,000       loan paid with interest for seeds
₹ 10000          For seeds
₹ 4000            Fertilizers and pesticides for soyabean
₹ 16000         Wages and cultivation charges for soyabean
₹ 24000          Fertilizers and pesticides for cotton & tur
₹ 81000         Wages and cultivation charges for cotton & tur
₹ 272000       Total expenditure

Class 9 Maths Digest

Practice Set 7.1 Class 8 Answers Chapter 7 Variation Maharashtra Board

Balbharti Maharashtra State Board Class 8 Maths Solutions covers the Practice Set 7.1 8th Std Maths Answers Solutions Chapter 7 Variation.

Variation Class 8 Maths Chapter 7 Practice Set 7.1 Solutions Maharashtra Board

Std 8 Maths Practice Set 7.1 Chapter 7 Solutions Answers

Question 1.
Write the following statements using the symbol of variation.

  1. Circumference (c) of a circle is directly proportional to its radius (r).
  2. Consumption of petrol (l) in a car and distance traveled by that car (d) are in direct variation.

Solution:

  1. c ∝ r
  2. l ∝ d

Question 2.
Complete the following table considering that the cost of apples and their number are in direct variation.

Number of apples (x) 1 4 __ 12 __
Cost of apples (y) 8 32 56 __ 160

Solution:
The cost of apples (y) and their number (x) are in direct variation.
∴y ∝ x
∴y = kx …(i)
where k is the constant of variation

i. When, x = 1, y = 8
∴ Substituting, x = 1 and y = 8 in (i), we get y = kx
∴ 8 = k × 1
∴ k = 8
Substituting k = 8 in (i), we get
y = kx
∴ y = 8x …(ii)
This the equation of variation

ii. When,y = 56, x = ?
∴ Substituting y = 56 in (ii), we get
y = 8x
∴ 56 = 8x
∴ x = \(\frac { 56 }{ 8 }\)
∴ x = 7

iii. When, x = 12, y = ?
∴ Substituting x = 12 in (ii), we get
y = 8x
∴ y = 8 × 12
∴ y = 96

iv. When, y = 160, x = ?
∴ Substituting y = 160 in (ii), we get
y = 8x
∴ 160 = 8x
∴ x = \(\frac { 160 }{ 8 }\)
∴ x = 20

Number of apples (x) 1 4 7 12 20
Cost of apples (y) 8 32 56 96 160

Question 3.
If m ∝ n and when m = 154, n = 7. Find the value of m, when n = 14.
Solution:
Given that,
m ∝ n
∴ m = kn …(i)
where k is constant of variation.
When m = 154, n = 7
∴ Substituting m = 154 and n = 7 in (i), we get
m = kn
∴ 154 = k × 7
∴ \(k=\frac { 154 }{ 7 }\)
∴ k = 22
Substituting k = 22 in (i), we get
m = kn
∴ m = 22n …(ii)
This is the equation of variation.
When n = 14, m = ?
∴ Substituting n = 14 in (ii), we get
m = 22n
∴ m = 22 × 14
∴ m = 308

Question 4.
If n varies directly as m, complete the following table.

m 3 5 6.5 __ 1.25
n 12 20 __ 28 __

Solution:
Given, n varies directly as m
∴ n ∝ m
∴ n = km …(i)
where, k is the constant of variation

i. When m = 3, n = 12
∴ Substituting m = 3 and n = 12 in (i), we get
n = km
∴ 12 = k × 3
∴ \(k=\frac { 12 }{ 3 }\)
∴ k = 4
Substituting, k = 4 in (i), we get
n = km
∴ n = 4m …(ii)
This is the equation of variation.

ii. When m = 6.5, n = ?
∴ Substituting, m = 6.5 in (ii), we get
n = 4m
∴ n = 4 × 6.5
∴ n = 26

iii. When n = 28, m = ?
∴ Substituting, n = 28 in (ii), we get
n = 4m
∴ 28 = 4m
∴ 28 = 4m
∴ \(m=\frac { 28 }{ 4 }\)
∴ m = 7

iv. When m = 1.25, n = ?
∴ Substituting m = 1.25 in (ii), we get
n = 4m
∴ n = 4 × 1.25
∴ n = 5

m 3 5 6.5 7 1.25
n 12 20 26 28 5

Question 5.
y varies directly as square root of x. When x = 16, y = 24. Find the constant of variation and equation of variation.
Solution:
Given, y varies directly as square root of x.
∴ y ∝ √4x
∴ y = k √x …(i)
where, k is the constant of variation.
When x = 16 ,y = 24.
∴ Substituting, x = 16 and y = 24 in (i), we get
y = k√x
∴24 = k√16
∴24 = 4k
∴ \(k=\frac { 24 }{ 4 }\)
∴ k = 6
Substituting k = 6 in (i), we get
y = k√x
∴ y = 6√x
This is the equation of variation
∴ The constant of variation is 6 and the equation of variation is y = 6√x .

Question 6.
The total remuneration paid to laborers, employed to harvest soybean is in direct variation with the number of laborers. If remuneration of 4 laborers is Rs 1000, find the remuneration of 17 laborers.
Solution:
Let, m represent total remuneration paid to laborers and n represent number of laborers employed to harvest soybean.
Since, the total remuneration paid to laborers, is in direct variation with the number of laborers.
∴ m ∝ n
∴ m = kn …(i)
where, k = constant of variation
Remuneration of 4 laborers is Rs 1000.
i. e., when n = 4, m = Rs 1000
∴ Substituting, n = 4 and m = 1000 in (i), we get m = kn
∴ 1000 = k × 4
∴ \(k=\frac { 1000 }{ 4 }\)
∴ k = 250
Substituting, k = 250 in (i), we get
m = kn
∴ m = 250 n …(ii)
This is the equation of variation
Now, we have to find remuneration of 17 laborers.
i. e., when n = 17, m = ?
∴ Substituting n = 17 in (ii), we get
m = 250 n
∴ m = 250 × 17
∴ m = 4250
∴ The remuneration of 17 laborers is Rs 4250.

Maharashtra Board Class 8 Maths Chapter 7 Variation Practice Set 7.1 Intext Questions and Activities

Question 1.
If the rate of notebooks is Rs 240 per dozen, what is the cost of 3 notebooks?
Also find the cost of 9 notebooks, 24 notebooks and 50 notebooks and complete the following table. (Textbook pg. no. 35)

Number of notebooks (x) 12 3 9 24 50 1
Cost (In Rupees) (y) 240 __ __ __ __ 20

Solution:
As the number of notebooks increases their cost also increases.
∴ Number of notebooks and cost of notebooks are in direct proportion.

i.
Maharashtra Board Class 8 Maths Solutions Chapter 7 Variation Practice Set 7.1 1
∴ y = 3 × 20
∴ y = 60

ii.
Maharashtra Board Class 8 Maths Solutions Chapter 7 Variation Practice Set 7.1 2
∴ y = 9 × 20
∴ y = 180

iii.
Maharashtra Board Class 8 Maths Solutions Chapter 7 Variation Practice Set 7.1 3
∴ y = 24 × 20
∴ y = 480

iv.
Maharashtra Board Class 8 Maths Solutions Chapter 7 Variation Practice Set 7.1 4
∴ y = 50 × 20
∴ y = 1000

Number of notebooks (x) 12 3 9 24 50 1
Cost (In Rupees) (y) 240 60 180 480 1000 20

Std 8 Maths Digest

Practice Set 2.5 Algebra 9th Standard Maths Part 1 Chapter 2 Real Numbers Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 2.5 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 2 Real Numbers.

9th Standard Maths 1 Practice Set 2.5 Chapter 2 Real Numbers Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Practice Set 2.5 Chapter 2 Real Numbers Questions With Answers Maharashtra Board

Question 1.
Find the value.
i. | 15 – 2|
ii. | 4 – 9|
iii. | 7| x | -4|
Solution:
i. |15 – 2| = |13| = 13
ii. |4 – 9| = |-5| = 5
iii. |7| x |- 4| = 7 x 4 = 28

Question 2.
Solve.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.5 1
Solution:
i. |3x – 5| = 1
∴ 3x – 5 = 1 or 3x – 5 = -1
∴ 3x = 1 + 5 or 3x = -1 + 5
∴ 3x = 6 or 3x = 4
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.5 2

ii. |7 – 2x| = 5
∴ 7 – 2x = 5 or 7 – 2x = -5
∴ 7 – 5 = 2x or 7 + 5 = 2x
∴ 2x = 2 or 2x = 12
∴ x = \(\frac { 2 }{ 2 }\) or x = \(\frac { 12 }{ 2 }\)
∴ x = 1 or x = 6

Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.5 3
∴ 8 – x = 10 or 8 – x = -10 .. [Multiplying both the sides by 2]
∴ 8 – 10 = x or 8 + 10 = x
∴ x = -2 or x = 18

Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.5 4

Class 9 Maths Digest