# Maharashtra Board Class 5 Maths Solutions Chapter 5 Fractions Problem Set 20

Balbharti Maharashtra Board Class 5 Maths Solutions Chapter 5 Fractions Problem Set 20 Textbook Exercise Important Questions and Answers.

## Maharashtra State Board Class 5 Maths Solutions Chapter 5 Fractions Problem Set 20

Question 1.
$$\text { (1) } \frac{1}{5}+\frac{3}{5}$$
$$\frac{1}{5}+\frac{3}{5}=\frac{1+3}{5}=\frac{4}{5}$$ $$\text { (2) } \frac{2}{7}+\frac{4}{7}$$
$$\frac{2}{7}+\frac{4}{7}=\frac{2+4}{7}=\frac{6}{7}$$

$$\text { (3) } \frac{7}{12}+\frac{2}{12}$$
$$\frac{7}{12}+\frac{2}{12}=\frac{7+2}{12}=\frac{9}{12}$$

$$\text { (4) } \frac{2}{9}+\frac{7}{9}$$
$$\frac{2}{9}+\frac{7}{9}=\frac{2+7}{9}=\frac{9}{9}=1$$

$$\text { (5) } \frac{3}{15}+\frac{4}{15}$$
$$\frac{3}{15}+\frac{4}{15}=\frac{3+4}{15}=\frac{7}{15}$$

$$\text { (6) } \frac{2}{7}+\frac{1}{7}+\frac{3}{7}$$
$$\frac{2}{7}+\frac{1}{7}+\frac{3}{7}=\frac{2+1+3}{7}=\frac{6}{7}$$

$$\text { (7) } \frac{2}{10}+\frac{4}{10}+\frac{3}{10}$$
$$\frac{2}{10}+\frac{4}{10}+\frac{3}{10}=\frac{2+4+3}{10}=\frac{9}{10}$$ $$\text { (8) } \frac{4}{9}+\frac{1}{9}$$
$$\frac{4}{9}+\frac{1}{9}=\frac{4+1}{9}=\frac{5}{9}$$

$$\text { (9) } \frac{5}{8}+\frac{3}{8}$$
$$\frac{5}{8}+\frac{3}{8}=\frac{5+3}{8}=\frac{8}{8}=1$$

Question 2.
Mother gave $$\frac{3}{8}$$ of one guava to Meena and $$\frac{2}{8}$$ of the guava to Geeta. What part of the guava did she give them altogether?
Solution:
$$\frac{3}{8}+\frac{2}{8}=\frac{3+2}{8}=\frac{5}{8}$$ given altogether
$$\frac{5}{8}$$ part of guava given altogether

Question 3.
The girls of Std V cleaned $$\frac{3}{4}$$ of a field while the boys cleaned $$\frac{1}{4}$$. What part of the field was cleaned altogether?
Solution:
Girls cleaned + Boys cleaned
$$\frac{3}{4}+\frac{1}{4}=\frac{3+1}{4}=\frac{4}{4}=1$$
Full whole field cleaned altogether. Subtraction of like fractions

A figure is divided into 5 equal parts and 4 of them are colored. That is, $$\frac{4}{5}$$ part of the figure is coloured.

Now, we remove the colour from one of the coloured parts. That is, we subtract $$\frac{1}{5}$$ from $$\frac{4}{5}$$. The remaining coloured part is $$\frac{3}{5}$$. Therefore, $$\frac{4}{5}$$ – $$\frac{1}{5}$$ = $$\frac{4-1}{5}$$ = $$\frac{3}{5}$$.

When subtracting a fraction from another like fraction, we write the difference between the numerators in the numerator and the common denominator in the denominator.

Example (1) Subtract : $$\frac{7}{13}$$ – $$\frac{5}{13}$$

These two fractions have a common denominator. So, we shall subtract the second numerator from the first and write the denominator as it is.
$$\frac{7}{13}-\frac{5}{13}=\frac{7-5}{13}=\frac{2}{13}$$

Example (2) If Raju got $$\frac{5}{12}$$ part of a sugarcane and Sanju got $$\frac{3}{12}$$ part, how much was the extra part that Raju got?

To find out the difference, we must subtract.
$$\frac{5}{12}-\frac{3}{12}=\frac{5-3}{12}=\frac{2}{12}$$. Thus, Raju got $$\frac{2}{12}$$ extra. $$\text { (1) } \frac{3}{6}+\frac{2}{6}+\frac{1}{6}$$
$$\frac{3}{6}+\frac{2}{6}+\frac{1}{6}=\frac{3+2+1}{6}=\frac{6}{6}=1$$

$$\text { (2) } \frac{4}{10}+\frac{1}{10}+\frac{3}{10}+\frac{2}{10}$$
$$\frac{4}{10}+\frac{1}{10}+\frac{3}{10}+\frac{2}{10}=\frac{4+1+3+2}{10}=\frac{10}{10}=1$$

$$\text { (3) } \frac{1}{2}+\frac{1}{2}$$
$$\frac{1}{2}+\frac{1}{2}=\frac{1+1}{2}=\frac{2}{2}=1$$ $$\frac{3}{5}+\frac{2}{5}=\frac{3+2}{5}=\frac{5}{5}=1$$