Maharashtra Board 9th Class Maths Part 1 Practice Set 3.1 Solutions Chapter 3 Polynomials

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 3.1 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 3 Polynomials.

Practice Set 3.1 Algebra 9th Std Maths Part 1 Answers Chapter 3 Polynomials

Question 1.
State whether the given algebraic expressions are polynomials? Justify.
i. y + \(\frac { 1 }{ y }\)
ii. 2 – 5√x
iii. x2 + 7x + 9
iv. 2m-2 + 7m – 5
v. 10
Answer:
i. No, because power of v in the term 5√x is -1 (negative number).
ii. No, because the power of x in the term 5√x is
i. e. 0.5 (decimal number).
iii. Yes. All the coefficients are real numbers. Also, the power of each term is a whole number.
iv. No, because the power of m in the term 2m-2 is -2 (negative number).
v. Yes, because 10 is a constant polynomial.

Question 2.
Write the coefficient of m3 in each of the given polynomial.
i. m3
ii. \(\sqrt [ -3 ]{ 2 }\) + m – √3m3
iii. \(\sqrt [ -2 ]{ 3 }\)m3 + 5m2 – 7m -1
Answer:
i. 1
ii. -√3
iii. – \(\frac { 2 }{ 3 }\)

Question 3.
Write the polynomial in x using the given information. [1 Mark each]
i. Monomial with degree 7
ii. Binomial with degree 35
iii. Trinomial with degree 8
Answer:
i. 5x7
ii. x35 – 1
iii. 3x8 + 2x6 + x5

Question 4.
Write the degree of the given polynomials.
i. √5
ii. x°
iii. x2
iv. √2m10 – 7
v. 2p – √7
vi. 7y – y3 + y5
vii. xyz +xy-z
viii. m3n7 – 3m5n + mn
Answer:
i. √5 = √5 x°
∴ Degree of the polynomial = 0

ii. x°
∴Degree of the polynomial = 0

iii. x2
∴Degree of the polynomial = 2

iv. √2m10 – 7
Here, the highest power of m is 10.
∴Degree of the polynomial = 10

v. 2p – √7
Here, the highest power of p is 1.
∴ Degree of the polynomial = 1

vi. 7y – y3 + y5
Here, the highest power of y is 5.
∴Degree of the polynomial = 5

vii. xyz + xy – z
Here, the sum of the powers of x, y and z in the term xyz is 1 + 1 + 1= 3,
which is the highest sum of powers in the given polynomial.
∴Degree of the polynomial = 3

viii. m3n7 – 3m5n + mn
Here, the sum of the powers of m and n in the term m3n7 is 3 + 7 = 10,
which is the highest sum of powers in the given polynomial.
∴ Degree of the polynomial = 10

Question 5.
Classify the following polynomials as linear, quadratic and cubic polynomial. [2 Marks]
i. 2x2 + 3x +1
ii. 5p
iii. √2 – \(\frac { 1 }{ 2 }\)
iv. m3 + 7m2 + \(\sqrt [ 5 ]{ 2 }\)m – √7
v. a2
vi. 3r3
Answer:
Linear polynomials: ii, iii
Quadratic polynomials: i, v
Cubic polynomials: iv, vi

Question 6.
Write the following polynomials in standard form.
i. m3 + 3 + 5m
ii. – 7y + y5 + 3y3 – \(\frac { 1 }{ 2 }\)+ 2y4 – y2
Answer:
i. m3 + 5m + 3
ii. y5 + 2y4 + 3y3 – y2 – 7y – \(\frac { 1 }{ 2 }\)

Question 7.
Write the following polynomials in coefficient form.
i. x3 – 2
ii. 5y
iii. 2m4 – 3m2 + 7
iv. – \(\frac { 2 }{ 3 }\)
Answer:
i. x3 – 2 = x3 + 0x2 + 0x – 2
∴ Coefficient form of the given polynomial = (1, 0, 0, -2)

ii. 5y = 5y + 0
∴Coefficient form of the given polynomial = (5,0)

iii. 2m4 – 3m2 + 7
= 2m4 + Om3 – 3m2 + 0m + 7
∴ Coefficient form of the given polynomial = (2, 0, -3, 0, 7)

iv. – \(\frac { 2 }{ 3 }\)
∴Coefficient form of the given polynomial = (- \(\frac { 2 }{ 3 }\))

Question 8.
Write the polynomials in index form.
i. (1, 2, 3)
ii. (5, 0, 0, 0 ,-1)
iii. (-2, 2, -2, 2)
Answer:
i. Number of coefficients = 3
∴ Degree = 3 – 1 = 2
∴ Taking x as variable, the index form is x2 + 2x + 3

ii. Number of coefficients = 5
∴ Degree = 5 – 1=4
∴ Taking x as variable, the index form is 5x4 + 0x3 + 0x2 + 0x – 1

iii. Number of coefficients = 4
∴Degree = 4 – 1 = 3
∴Taking x as variable, the index form is -2x3 + 2x2 – 2x + 2

Question 9.
Write the appropriate polynomials in the boxes.
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.1 1
Answer:
i. Quadratic polynomial: x2; 2x2 + 5x + 10; 3x2 + 5x
ii. Cubic polynomial: x3 + x2 + x + 5; x3 + 9
iii. Linear polynomial: x + 7
iv. Binomial: x + 7; x3 + 9; 3x2 + 5x
v. Trinomial: 2x2 + 5x + 10
vi. Monomial: x2

Question 1.
Write an example of a monomial, a binomial and a trinomial having variable x and degree 5. ( Textbook pg. no. 3)
Answer:
Monomial: x5
Binomial: x5 + x
Trinomial: 2x5 – x2 + 5

Question 2.
Give example of a binomial in two variables having degree 5. (Textbook pg. no. 38)
Answer:
x3y2 + xy

Maharashtra Board 9th Class Maths Part 1 Practice Set 2.3 Solutions Chapter 2 Real Numbers

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 2.3 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 2 Real Numbers.

Practice Set 2.3 Algebra 9th Std Maths Part 1 Answers Chapter 2 Real Numbers

Question 1.
State the order of the surds given below.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 1
Answer:
i. 3, ii. 2, iii. 4, iv. 2, v. 3

Question 2.
State which of the following are surds Justify. [2 Marks each]
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 2
Answer:
i. \(\sqrt [ 3 ]{ 51 }\) is a surd because 51 is a positive rational number, 3 is a positive integer greater than 1 and \(\sqrt [ 3 ]{ 51 }\) is irrational.

ii. \(\sqrt [ 4 ]{ 16 }\) is not a surd because
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 3
= 2, which is not an irrational number.

iii. \(\sqrt [ 5 ]{ 81 }\) is a surd because 81 is a positive rational number, 5 is a positive integer greater than 1 and \(\sqrt [ 5 ]{ 81 }\) is irrational.

iv. \(\sqrt { 256 }\) is not a surd because
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 4
= 16, which is not an irrational number.

v. \(\sqrt [ 3 ]{ 64 }\) is not a surd because
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 5
= 4, which is not an irrational number.

vi. \(\sqrt { \frac { 22 }{ 7 } }\) is a surd because \(\frac { 22 }{ 7 }\) is a positive rational number, 2 is a positive integer greater than 1 and \(\sqrt { \frac { 22 }{ 7 } }\) is irrational.

Question 3.
Classify the given pair of surds into like surds and unlike surds. [2 Marks each]
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 6
Solution:
If the order of the surds and the radicands are same, then the surds are like surds.

Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 7
Here, the order of 2\(\sqrt { 13 }\) and 5\(\sqrt { 13 }\) is same and their radicands are also same.
∴ \(\sqrt { 52 }\) and 5\(\sqrt { 13 }\) are like surds.

Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 8
Here, the order of 2\(\sqrt { 17 }\) and 5\(\sqrt { 3 }\) is same but their radicands are not.
∴ \(\sqrt { 68 }\) and 5\(\sqrt { 3 }\) are unlike surds.

Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 9
Here, the order of 12\(\sqrt { 2 }\) and 7\(\sqrt { 2 }\) is same and their radicands are also same.
∴ 4\(\sqrt { 18 }\) and 7\(\sqrt { 2 }\) are like surds.

Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 10
Here, the order of 38\(\sqrt { 3 }\) and 6\(\sqrt { 3 }\) is same and their radicands are also same.
∴ 19\(\sqrt { 12 }\) and 6\(\sqrt { 3 }\) are like surds.

v. 5\(\sqrt { 22 }\), 7\(\sqrt { 33 }\)
Here, the order of 5\(\sqrt { 22 }\) and 7\(\sqrt { 33 }\) is same but their radicands are not.
∴ 5\(\sqrt { 22 }\) and 7\(\sqrt { 33 }\) are unlike surds.

Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 11
Here, the order of 5√5 and 5√3 is same but their radicands are not.
∴ 5√5 and √75 are unlike surds.

Question 4.
Simplify the following surds.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 12
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 13

Question 5.
Compare the following pair of surds.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 14
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 15
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 16
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 17

Question 6.
Simplify.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 18
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 19

Question 7.
Multiply and write the answer in the simplest form.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 20
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 21

Question 8.
Divide and write form.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 22
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 23

Question 9.
Rationalize the denominator.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 24
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 25
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 26

Question 1.
\(\sqrt { 9+16 }\) ? + \(\sqrt { 9 }\) + \(\sqrt { 16 }\) (Texbookpg. no. 28)
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 27

Question 2.
\(\sqrt { 100+36 }\) ? \(\sqrt { 100 }\) + \(\sqrt { 36 }\) (Textbook pg. no. 28)
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 28

Question 3.
Follow the arrows and complete the chart by doing the operations given. (Textbook pg. no. 34)
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 29
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 30

Question 4.
There are some real numbers written on a card sheet. Use these numbers and construct two examples each of addition, subtraction, multiplication and division. Solve these examples. (Textbook pg. no. 34)
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 31
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.3 32

Maharashtra Board 9th Class Maths Part 1 Practice Set 2.1 Solutions Chapter 2 Real Numbers

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 2.1 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 2 Real Numbers.

Practice Set 2.1 Algebra 9th Std Maths Part 1 Answers Chapter 2 Real Numbers

Question 1.
Classify the decimal form of the given rational numbers into terminating and non-terminating recurring type.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.1 1
Solution:
i. Denominator = 5 = 1 x 5
Since, 5 is the only prime factor denominator.
the decimal form of the rational number \(\frac { 13 }{ 5 }\) will be terminating type.

ii. Denominator = 11 = 1 x 11
Since, the denominator is other than prime factors 2 or 5.
∴ the decimal form of the rational number \(\frac { 2 }{ 11 }\) will be non-terminating recurring type.

iii. Denominator = 16
= 2 x 2 x 2 x 2
Since, 2 is the only prime factor in the denominator.
∴ the decimal form of the rational number \(\frac { 29 }{ 16 }\) will be terminating type.

iv. Denominator = 125
= 5 x 5 x 5
Since, 5 is the only prime factor in the denominator.
the decimal form of the rational number \(\frac { 17 }{ 125 }\) will be terminating type.

v. Denominator = 6
= 2 x 3
Since, the denominator is other than prime factors 2 or 5.
∴ the decimal form of the rational number \(\frac { 11 }{ 6 }\) will be non-terminating recurring type.

Question 2.
Write the following rational numbers in decimal form.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.1 2
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.1 3
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.1 4
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.1 5
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.1 6
Solution:
i. \(\frac { -5 }{ 7 }\)
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.1 7

ii. \(\frac { 9 }{ 11 }\)
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.1 8

iii. √5
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.1 9

iv. \(\frac { 121 }{ 13 }\)
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.1 10

v. \(\frac { 29 }{ 8 }\)
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.1 11

Question 3.
Write the following rational numbers in \(\frac { p }{ q }\) form.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.1 12
Solution:
i. Let x = \(0.\dot { 6 }\) …(i)
∴ x = 0.666…
Since, one number i.e. 6 is repeating after the decimal point.
Thus, multiplying both sides by 10,
10x = 6.666…
∴ 10 x 6.6 …(ii)
Subtracting (i) from (ii),
10x – x = 6.6 – 0.6
∴ 9x = 6
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.1 13

ii. Let x = \(0.\overline { 37 }\)
∴ x = 0.3737…
Since, two numbers i.e. 3 and 7 are repeating after the decimal point.
Thus, multiplying both sides by 100,
100x = 37.3737……
∴ 100x = \(37.\overline { 37 }\) ……(ii)
Subtracting (i) from (ii),
100x – x = \(37.\overline { 37 }\) – \(0.\overline { 37 }\)
∴ 99x = 37
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.1 14

iii. Letx = \(3.\overline { 17 }\) …(i)
∴ x = 3.1717…
Since, two numbers i.e. 1 and 7 are repeating after the decimal point.
Thus, multiplying both sides by 100,
100x = 317.1717…
∴ 100x= 317.17 …(ii)
Subtracting (i) from (ii),
100x – x = \(317.\overline { 17 }\) – \(3.\overline { 17 }\)
∴ 99x = 314
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.1 15

iv. Let x = \(15.\overline { 89 }\) …….. (i)
∴ x = 15.8989…
Since, two numbers i.e. 8 and 9 are repeating after the decimal point.
Thus, multiplying both sides by 100,
100x= 1589.8989…
∴ 100x = \(1589.\overline { 89 }\) …(ii)
Subtracting (i) from (ii),
100x – x = \(1589.\overline { 89 }\) – \(15.\overline { 89 }\)
∴ 99x = 1574
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.1 16

v. Let x = \(2.\overline { 514 }\)
∴ x = 2.514514…
Since, three numbers i.e. 5, 1 and 4 are repeating after the decimal point.
Thus, multiplying both sides by 1000,
1000x = 2514.514514…
1000x = \(2514.\overline { 514 }\) ….(ii)
Subtracting (i) from (ii),
1000x – x = \(2514.\overline { 514 }\) – \(2.\overline { 514 }\)
∴ 999x = 2512
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.1 17

Question 1.
How to convert 2.43 in \(\frac { p }{ q }\) form ? (Textbook pg. no. 20)
Solution:
Let x = 2.43
In 2.43, the number 4 on the right side of the decimal point is not recurring.
So, in order to get only recurring digits on the right side of the decimal point, we will multiply 2.43 by 10.
∴ 10x = 24.3 …(i)
∴ 10x = 24.333…
Here, digit 3 is the only recurring digit. Thus, by multiplying both sides by 10, 100x = 243.333…
∴ 100x= 243.3 …(ii)
Subtracting (i) from (ii),
100x – 10x = 243.3 – 24.3
∴ 90x = 219
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.1 18

Maharashtra Board 9th Class Maths Part 1 Practice Set 1.2 Solutions Chapter 1 Sets

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 1.2 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 1 Sets.

Practice Set 1.2 Algebra 9th Std Maths Part 1 Answers Chapter 1 Sets

Question 1.
Decide which of the following are equal sets and which are not ? Justify your answer.
A= {x | 3x – 1 = 2}
B = {x | x is a natural number but x is neither prime nor composite}
C = {x | x e N, x < 2}
Solution:
A= {x | 3x – 1 = 2}
Here, 3x – 1 = 2
∴ 3x = 3
∴ x = 1
∴ A = {1} …(i)

B = {x | x is a natural number but x is neither prime nor composite}
1 is the only number which is neither prime nor composite,
∴ x = 1
∴ B = {1} …(ii)

C = {x | x G N, x < 2}
1 is the only natural number less than 2.
∴ x = 1
∴ C = {1} …(iii)
∴ The element in sets A, B and C is identical. … [From (i), (ii) and (iii)]
∴ A, B and C are equal sets.

Question 2.
Decide whether set A and B are equal sets. Give reason for your answer.
A = Even prime numbers
B = {x | 7x – 1 = 13}
Solution:
A = Even prime numbers
Since 2 is the only even prime number,
∴ A = {2} …(i)
B= {x | 7x – 1 = 13}
Here, 7x – 1 = 13
∴ 7x = 14
∴ x = 2
∴ B = {2} …(ii)
∴ The element in set A and B is identical. … [From (i) and (ii)]
∴ A and B are equal sets.

Question 3.
Which of the following are empty sets? Why?
i. A = {a | a is a natural number smaller than zero}
ii. B = {x | x2 = 0}
iii. C = {x | 5x – 2 = 0, x ∈N}
Solution:
i. A = {a| a is a natural number smaller than zero}
Natural numbers begin from 1.
∴ A = { }
∴ A is an empty set.

ii. B = {x | x2 = 0}
Here, x2 = 0
∴ x = 0 … [Taking square root on both sides]
∴ B = {0}
∴B is not an empty set.

iii. C = {x | 5x – 2 = 0, x ∈ N}
Here, 5x – 2 = 0
∴ 5x = 2
∴ x = \(\frac { 2 }{ 5 }\)
Given, x ∈ N
But, x = \(\frac { 2 }{ 5 }\) is not a natural number.
∴ C = { }
∴ C is an empty set.

Question 4.
Write with reasons, which of the following sets are finite or infinite.
i. A = {x | x<10, xisa natural number}
ii. B = {y | y < -1, y is an integer}
iii. C = Set of students of class 9 from your school.
iv. Set of people from your village.
v. Set of apparatus in laboratory
vi. Set of whole numbers
vii. Set of rational number
Solution:
i. A={x| x < 10, x is a natural number}
∴ A = {1,2, 3,4, 5,6, 7, 8, 9}
The number of elements in A are limited and can be counted.
∴A is a finite set.

ii. B = (y | y < -1, y is an integer}
∴ B = { …,-4, -3, -2}
The number of elements in B are unlimited and uncountable.
∴ B is an infinite set.

iii. C = Set of students of class 9 from your school.
The number of students in a class is limited and can be counted.
∴ C is a finite set.

iv. Set of people from your village.
The number of people in a village is limited and can be counted.
∴ Given set is a finite set.

v. Set of apparatus in laboratory
The number of apparatus in the laboratory are limited and can be counted.
∴ Given set is a finite set.

vi. Set of whole numbers
The number of elements in the set of whole numbers are unlimited and uncountable.
∴ Given set is an infinite set.

vii. Set of rational number
The number of elements in the set of rational numbers are unlimited and uncountable.
∴ Given set is an infinite set.

Question 1.
If A = {1, 2, 3} and B = {1, 2, 3, 4}, then A ≠ B verify it. (Textbook pg. no. 6)
Answer:
Here, 4 ∈ B but 4 ∉ A
∴ A and B are not equal sets,
i.e. A ≠ B

Question 2.
A = {x | x is prime number and 10 < x < 20} and B = {11,13,17,19}. Here A = B. Verify. (Textbook pg. no. 6)
Answer:
A = {x | x is prime number and 10 < x < 20}
∴ A = {11, 13, 17, 19}
B = {11, 13, 17, 19}
∴ All the elements in set A and B are identical.
∴ A and B are equal sets, i.e. A = B

Maharashtra Board 9th Class Maths Part 1 Practice Set 1.4 Solutions Chapter 1 Sets

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 1.4 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 1 Sets.

Practice Set 1.4 Algebra 9th Std Maths Part 1 Answers Chapter 1 Sets

Question 1.
If n(A) = 15, n(A ∪ B) = 29, n(A ∩ B) = 7, then n(B) = ?
Solution:
Here, n(A) = 15, n(A ∪ B) = 29, n(A ∩ B) = 7
n(A ∪ B) = n(A) + n(B) – n(A ∩ B)
∴ 29 = 15 + n(B) – 7
∴ 29 – 15 + 7 = n(B)
∴ n(B) = 21

Question 2.
In a hostel there are 125 students, out of which 80 drink tea, 60 drink coffee and 20 drink tea and coffee both. Find the number of students who do not drink tea or coffee.
Solution:
i. Let U be the set of students in the hostel, T be the set of students who drink tea and C be the set of students who drink coffee.
n(U) = 125, n(T) = 80, n(C) = 60,
number of students who drink Tea and Coffee = n(T ∩ C) = 20

ii. n(T ∪ C) = n(T) + n(C) – n(T ∩ C)
= 80 + 60 – 20
∴ n(T ∪ C) = 120
∴ 120 students drink tea or coffee
Also, there are 125 students in the hostel.

iii. Number of students who do not drink tea or coffee = n(U) – n(T ∪ C)
= 125 – 120
= 5
∴ 5 students do not drink tea or coffee.

Alternate Method:
Let U be the set of students in the hostel, T be the set of students who drink tea and C be the set of students who drink coffee.
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.4 1
From Venn diagram,
Student who drinks tea or coffee = n(T ∪ C) = 60 + 20 + 40 = 120
∴ The number of students who do not drink tea or coffee = n(U) – n(T ∪ C)
= 125 – 120 = 5
∴ 5 students do not drink tea or coffee.

Question 3.
In a competitive exam 50 students passed in English, 60 students passed in Mathematics and 40 students passed in both the subjects. None of them failed in both the subjects. Find the number of students who passed at least in one of the subjects ?
Solution:
Let U be the set of students who appeared for the exam,
E be the set of students who passed in English and
M be the set of students who passed in Maths.
∴ n(E) = 50, n(M) = 60,
40 students passed in both the subjects
∴ n(M ∩ E) = 40
Since, none of the students failed in both subjects
∴ Total students = n(E ∪M)
= n(E) + n(M) – n(E ∩ M)
= 50 + 60 – 40
= 70
∴ The number of students who passed at least in one of the subjects is 70.

Alternate Method:
Let U be the set of students who appeared for the exam,
E be the set of students who passed in English and M be the set of students who passed in Maths.
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.4 2
Since, none of the students failed in both subjects
∴ Total student = n(E ∪M)
= 10 + 40 + 20
= 70
∴ The number of students who passed at least in one of the subjects is 70.

Question 4.
A survey was conducted to know the hobby of 220 students of class IX. Out of which 130 students informed about their hobby as ’rock climbing and 180 students informed about their hobby as sky watching. There are 110 students who follow both the hobbies. Then how many students do not have any of the two hobbies? How many of them follow the hobby of rock climbing only? How many students follow the hobby of sky watching only?
Solution:
i. Let U be the set of students of class IX,
R be the set of students who follow the hobby of rock climbing and
S be the set of students who follow the hobby of sky watching.
∴ n (U) = 220, n (R) = 130, n (S) = 180,
110 students follow both the hobbies
∴ n (R ∩ S) = 110

ii. n(R ∪ S)=n (R) + n (S) – n (R ∩ S)
= 130 + 180 – 110
∴n (R ∪ S) = 200
∴ 200 students follow the hobby of rock climbing or sky watching.

iii. Total number of students = 220.
Number of students who do not follow the hobby of rock climbing or sky watching
= n (U) – n (R ∪ S)
= 220 – 200
= 20

iv. Number of students who follow the hobby of rock climbing only
= n (R) – n(R ∩ S)
= 130 – 110
= 20

v. Number of students who follow the hobby of sky watching only
= n (S) – n (R ∩ S)
= 180 – 110
= 70

Alternate Method:
Let U be the set of students of class IX,
R be the set of students who follow the hobby of rock climbing and
S be the set of students who follow the hobby of sky watching.
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.4 3

From the Venn diagram
i. Students who follow the hobby of rock climbing or sky watching
= n(R ∪ S)
= 20 + 110 + 70
= 200

ii. Number of students who do not follow the hobby of rock climbing or sky watching
= n (U) – n(R ∪S)
= 220 – 200
= 20

iii. Number of students who follow the hobby of rock climbing only
= n (R) – n(R ∩S)
= 130 – 110
= 20

iv. Number of students who follow the hobby of sky watching only
= n (S) – n (R ∩ S)
= 180 – 110
= 70

Question 5.
Observe the given Venn diagram and write the following sets.
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.4 4
i. A
ii. B
iii. A ∪ B
iv. U
v. A’
vi. B’
vii. (A ∪B )’
Ans:
i. A = {x, y, z, m, n}
ii. B = {p, q, r, m, n}
iii. A ∪ B = {x, y, z, m, n, p, q, r }
iv. U = {x, y, z, m, n, p, q, r, s, t}
v. A’ = {p, q, r, s, t}
vi. B’ = {x, y, z, s, t}
vii. (A ∪ B )’ = {s, t}

Question 1.
Take different examples of sets and verify the above mentioned properties. (Textbook pg.no. 12)
Solution:
i. Let A = {3, 5}, B= {3, 5, 8, 9, 10}
A ∩ B = B ∩ A = {3, 5}

ii. Let A = {3, 5}, B = {3, 5, 8, 9, 10}
Since, all elements of set A are present in set B.
∴ A ⊆ B
Also, A ∩ B = {3, 5} = A
∴ If A ⊆ B, then A ∩B = A.

iii. Let A = {2, 3, 8, 10}, B = {3,8}
A ∩ B = {3, 8} = B
Also, all the elements of set B are present in set A
∴ B ⊆ A
∴ If A ∩ B = B, then B ⊆ A.

iv. Let A = {2, 3, 8, 10}, B = {3, 8}, A ∩B = {3, 8}
Since, all the elements of set A n B are present in set A and B
A ∩ B ⊆ A and A ∩B ⊆B

v. Let U= {3, 4, 6, 8}, A = {6, 4}
∴ A’ = {3, 8}
∴ A ∩ A’= { } = φ

vi. A ∩ φ = { } = φ

vii. Let A = {6, 4}
∴ A ∩ A = {6, 4}
∴ A ∩ A = A

Question 2.
Observe the set A, B, C given by Venn diagrams and write which of these are disjoint sets. (Textbook pg. no. 12)
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.4 5
Solution:
Here, A = {1, 2, 3, 4, 5, 6, 7}
B = {3, 6, 8, 9, 10, 11, 12}
C = {10, 11, 12}
Now, A ∩ C = φ
∴ A and C are disjoint sets.

Question 3.
Let the set of English alphabets be the Universal set. The letters of the word ‘LAUGH’ is one set and the letter of the word ‘CRY’ is another set. Can we say that these are two disjoint sets? Observe that intersection of these two sets is empty. (Textbook pg. no. 13)
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.4 6
Solution:
Let A = {L, A, U, G, H}
B = {C, R, Y}
Now, A ∩ B = φ
∴ A and B are disjoint sets.

Question 4.
Fill in the blanks with elements of that set.
U = {1, 3, 5, 8, 9, 10, 11, 12, 13, 15}
A = {1,11, 13}
B = {8,5, 10, 11, 15}
A’ = { }
B’ = { }
A ∩ B = { }
A’ ∩ B’ = { }
A ∪ B = { }
A’ ∪ B’= { }
(A ∩ B)’ = { }
(A ∪ B)’ = { }
Verify: (A ∩ B)’ = A’ u B’, (A u B)’ = A’ ∩ B’ (Textbook pg. no, 18)
Solution:
U = {1, 3, 5, 8, 9, 10, 11, 12, 13, 15}
A = {1, 11, 13}
B = {8, 5, 10, 11, 15}
A’ = {3, 5, 8, 9, 10, 12, 15}
B’ = {1, 3, 9, 12, 13}
A∩ B= {11}
A’ ∩ B’= {3, 9, 12} …(i)
A ∪ B = {1, 5, 8, 10, 11, 13, 15}
A’ ∪ B’ = { 1, 3, 5, 8, 9, 10, 12, 13, 15} …(ii)
(A ∩ B)’= { 1, 3, 5, 8, 9, 10, 12, 13,15} …(iii)
(A ∪ B)’ = {3, 9, 12} ,..(iv)
(A ∩ B)’ = A’ ∪ B’ … [From (ii) and (iii)]
(A ∪ B)’ = A’ ∩ B’ … [From (i) and (iv)]

Question 5.
A = {1,2,3, 5, 7,9,11,13}
B = {1,2,4, 6, 8,12,13}
Verify the above rule for the given set A and set B. (Textbook pg. no. 14)
Solution:
A = {1, 2, 3, 5, 7, 9, 11, 13}
B = {1, 2, 4, 6, 8, 12, 13}
A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13}
A ∩ B= {1, 2, 13}
n(A) = 8, n(B) = 7,
n(A ∪ B) = 12, n(A ∩ B) = 3
n(A ∩ B) = 12 …(i)
n(A) + n(B) – n(A ∩ B) = 8 + 7 – 3 = 12 …(ii)
∴ n(A ∪ B) = n(A) + n(B) – n(A ∩ B) … [From (i) and (ii)]

Question 6.
Verify the above rule for the given Venn diagram. (Textbook pg. no. 14)
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.4 7
Solution:
n(A) = 5 , n(B) = 6
n(A ∪ B) = 9 , n(A ∩ B) = 2
Now, n(A ∪ B) = 9 …(i)
n(A) + n(B) – n(A ∩ B) = 5 + 6 – 2 = 9 …(ii)
∴ n(A ∪ B) = n(A) + n(B) – n(A ∩ B). …[From (i) and (ii)]

Maharashtra Board 9th Class Maths Part 1 Practice Set 1.1 Solutions Chapter 1 Sets

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 1.1 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 1 Sets.

Practice Set 1.1 Algebra 9th Std Maths Part 1 Answers Chapter 1 Sets

Question 1.
Write the following sets in roster form.
i. Set of even natural numbers
ii. Set of even prime numbers from 1 to 50
iii. Set of negative integers
iv. Seven basic sounds of a sargam (sur)
Answer:
i. A = { 2, 4, 6, 8,….}
ii. 2 is the only even prime number
∴ B = { 2 }
iii. C = {-1, -2, -3,….}
iv. D = {sa, re, ga, ma, pa, dha, ni}

Question 2.
Write the following symbolic statements in words.
i. \(\frac { 4 }{ 3 }\) ∈ Q
ii. -2 ∉ N
iii. P = {p | p is an odd number}
Answer:
i. \(\frac { 4 }{ 3 }\) is an element of set Q.
ii. -2 is not an element of set N.
iii. Set P is a set of all p’s such that p is an odd number.

Question 3.
Write any two sets by listing method and by rule method.
Answer:
i. A is a set of even natural numbers less than 10.
Listing method: A = {2, 4, 6, 8}
Rule method: A = {x | x = 2n, n e N, n < 5}

ii. B is a set of letters of the word ‘SCIENCE’. Listing method : B = {S, C, I, E, N}
Rule method: B = {x \ x is a letter of the word ‘SCIENCE’}

Question 4.
Write the following sets using listing method.
i. All months in the Indian solar year.
ii. Letters in the word ‘COMPLEMENT’.
iii. Set of human sensory organs.
iv. Set of prime numbers from 1 to 20.
v. Names of continents of the world.
Answer:
i. A = {Chaitra, Vaishakh, Jyestha, Aashadha, Shravana, Bhadrapada, Ashwina, Kartika, Margashirsha, Paush, Magha, Falguna}
ii. X = {C, O, M, P, L, E, N, T}
iii. Y = {Nose, Ears, Eyes, Tongue, Skin}
iv. Z = {2, 3, 5, 7, 11, 13, 17, 19}
v. E = {Asia, Africa, Europe, Australia, Antarctica, South America, North America}

Question 5.
Write the following sets using rule method.
i. A = {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}
ii. B= {6, 12, 18,24, 30,36,42,48}
iii. C = {S, M, I, L, E}
iv. D = {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday}
v. X = {a, e, t}
Answer:
i. A = {x | v = n², n e N, n < 10}
ii. B = {x j x = 6n, n e N, n < 9}
iii. C = {y j y is a letter of the word ‘SMILE’} [Other possible words: ‘SLIME’, ‘MILES’, ‘MISSILE’ etc.]
iv. D = {z | z is a day of the week}
v. X = {y | y is a letter of the word ‘eat’}
[Other possible words: ‘tea’ or ‘ate’]

Question 1.
Fill in the blanks given in the following table. (Textbook pg. no. 3)
Answer:
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.1 1

Maharashtra Board 9th Class Maths Part 2 Practice Set 9 Solutions Chapter 9 Surface Area and Volume

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 9 Geometry 9th Class Maths Part 2 Answers Solutions Chapter 9 Surface Area and Volume.

Practice Set 9 Geometry 9th Std Maths Part 2 Answers Chapter 9 Surface Area and Volume

Question 1.
If diameter of a road roller is 0.9 m and its length is 1.4 m, how much area of a field will be pressed in its 500 rotations? ( π = \(\frac { 22 }{ 7 }\))
Given: For road roller,
diameter (d) = 0.9 m, length (h) = 1.4 m
To find: Area of a field pressed in 500 rotations
Solution:
i. Since, area of field pressed in 1 rotation of road roller = curved surface area of road roller
∴ Curved surface area of the road roller = 2πrh
= πdh ,..[∵ d = 2r]
= \(\frac { 22 }{ 7 }\) x 0.9 x 1.4 7
= 22 x 0.9 x 0.2
= 3.96 sq.m.

ii. Area of land pressed in 1 rotation = 3.96 sq.m.
∴Area of land pressed in 500 rotations = 500 x 3.96
= 1980 sq.m.
∴ 1980 sq.m, land will be pressed in 500 rotations of the road roller.

Question 2.
To make an open fish tank, a glass sheet of 2 mm gauge is used. The outer length, breadth and height of the tank are 60.4 cm, 40.4 cm and 40.2 cm respectively. How much maximum volume of water will be contained in it ?
Given: Thickness of the glass = 2 mm,
outer length of the tank = 60.4 cm,
outer breadth of the tank = 40.4 cm,
outer height of the tank = 40.2 cm
To find: Volume of water fish tank contains
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 9 Surface Area and Volume Practice Set 9 1
i. Thickness oldie glass = 2 mm.
= \(\frac { 2 }{ 10 }\) cm
= 0.2 cm
Outerlengthofthetank = 60.4 cm
∴ Inner length oldie tank (l) = Outer length – thickness oldie glass on both sides
= 60.4 – 0.2 – 0.2
= 60cm
Outer breadth oldie tank = 40.4 cm
∴ Inner breadth of the tank (b) = 40.4 – 0.2 – 0.2
= 40 cm
Outer height of the tank = 40.2 cm
∴Inner height of the tank (h) = 40.2 – 0.2
= 40 cm

ii. Maximum volume of water that can be contained in the tank = volume of the tank
= l x b x h
= 60 x 40 x 40
= 96000 cubic cm.
∴ The fishtank can contain maximum of 96000 cubic cm. water in it.

Question 3.
If the ratio of radius of base and height of a cone is 5 : 12 and its volume is 314 cubic metre. Find its perpendicular height and slant height (π = 3.14).
Given: Ratio of radius of base and height of a cone = 5 : 12,
Volume = 314 cubic metre
To find: Perpendicular height (h) and slant height (l)
Solution:
i. The ratio of radius and height of cone is 5 : 12
Let the common multiple be x.
∴ Radius of base (r) = 5x
Perpendicular height (h) = 12x
Maharashtra Board Class 9 Maths Solutions Chapter 9 Surface Area and Volume Practice Set 9 2
∴ x3 = 1
∴ x = 1 … [Taking cube root on both sides]
∴ r = 5x = 5(1) = 5m
h = 12x = 12(1) = 12 m

ii. Now, l2 = r2 + h2
= 52 + 122
= 25 + 144
∴l2 = 169
∴ l = \(\sqrt { 169 }\) … [Taking square root on both sides]
= 13 m
The perpendicular height and slant height of the cone are 12 m and 13 m respectively.

Question 4.
Find the radius of a sphere if its volume is 904.32 cubic cm. (π = 3.14)
Given: Volume of sphere = 904.32 cubic cm.
To find: Radius of a sphere
Solution:
Volume of sphere = \(\frac { 4 }{ 3 }\) πr3
∴ 904.32 = \(\frac { 4 }{ 3 }\) x 3.14 x r3
Maharashtra Board Class 9 Maths Solutions Chapter 9 Surface Area and Volume Practice Set 9 3
= 216
∴ r = \(\sqrt [ 3 ]{ 216 }\) … [Taking cube root on both sides]
= 6 cm
∴ The radius of the sphere is 6 cm.

Question 5.
Total surface area of a cube is 864 sq.cm. Find its volume.
Given: Total surface area of cube = 864 sq. cm
To find: Volume of cube
Solution:
i. Total surface area of cube = 6l2
∴ 864 = 6l2
∴ l2= \(\sqrt [ 864 ]{ 6 }\)
∴ l2 = 144
∴ l = \(\sqrt { 144 }\) … [Taking square root on both sides]
= 12 cm

ii. Volume of cube = l2
= 123
= 1728 cubic cm.
∴ The volume of cube is 1728 cubic cm.

Question 6.
Find the volume of a sphere, if its surface area is 154 sq.cm.
Given: Surface area of sphere = 154 sq. cm.
To find: Volume of sphere
Solution:
i. Surface area of sphere = 4πr2
Maharashtra Board Class 9 Maths Solutions Chapter 9 Surface Area and Volume Practice Set 9 4
Maharashtra Board Class 9 Maths Solutions Chapter 9 Surface Area and Volume Practice Set 9 5
∴ The volume of sphere is 179.67 cubic cm.

Question 7.
Total surface area of a cone is 616 sq.cm. If the slant ‘height of the cone Is three times the radius of its base, find its slant height.
Given: Total surface area of a cone = 616 sq.cm., slant height of the cone is three times the radius of its base
To find: Slant height (l)
Solution:
i. Let the radius of base be r cm.
∴ Slant height (l) = 3r cm
Total surface area of cone = πr (l + r)
∴ 616 = πr(l + r)
∴ 616 = \(\sqrt [ 22 ]{ 7 }\) x r x (3r + r)
∴ 616 = \(\sqrt [ 22 ]{ 7 }\) x 4r2
Maharashtra Board Class 9 Maths Solutions Chapter 9 Surface Area and Volume Practice Set 9 6
∴ r2 = 49
∴ r = \(\sqrt { 49 }\) … [Taking square root on both sides]
= 7

ii. Slant height (l) = 3r = 3 x 7 = 21 cm
∴ The slant height of the cone is 21 cm.

Question 8.
The inner diameter of a well is 4.20 metre and its depth is 10 metre. Find the inner surface area of the well. Find the cost of plastering it from inside at the rate ₹ 52 per sq.m.
Given: Inner diameter (d) = 4.2 m,
To find: depth (h) = 10 m,
rate of plastering = ₹ 52 per sq.m.
Inner surface area and total cost of plastering
Solution:
i. Inner curved surface area of the well = 2πrh
= πdh …[∵ d = 2r]
= \(\sqrt [ 22 ]{ 7 }\) x 4.2 x 10
= \(\sqrt [ 22 ]{ 7 }\) x 42
= 22 x 6
= 132 sq.m.

ii. Rate of plastering = ₹52 per sq.m.
∴ Total cost = Curved surface area x Rate of plastering
= 132 x 52 = ₹6864
∴ The cost of plastering the well from inside is ₹6864.

Question 9.
The length of a road roller is 2.1 m and its diameter is 1.4 m. For levelling a ground 500 rotations of the road roller were required. How much area of ground was levelled by the road roller? Find the cost of levelling at the rate of ₹ 7 per sq.m.
Given: For road roller,
diameter (d) = 1.4 m,
length (h) = 2.1 m
number of rotations required for levelling the ground = 500,
rate of levelling = ₹ 7 per sq. m.
To find: Area of ground leveled by the road roller and cost of levelling
Solution:
i. Since, area of ground levelled in 1 rotation of road roller = curved surface area of road roller
∴Curved surface area of the road roller = 2πrh
= πdh …[∵ d = 2r]
= \(\frac { 22 }{ 7 }\) x 1.4 x 2.1
= 22 x 0.2 x 2.1
= 9.24 sq.m.

ii. Area of ground levelled in 1 rotation = 9.24 sq.m.
∴Area of ground levelled in 500 rotations = 9.24 x 500
= 4620 sq.m.

iii. Rate of levelling ₹ 7 per sq.m.
∴Total cost = Area of ground levelled x Rate of levelling
= 4620 x 7
= ₹32340
∴ The road roller levels 4620 sq.m. land in 500 rotation, and the cost of levelling is ₹32340.

Maharashtra Board Class 9 Maths Chapter 9 Surface Area and Volume Practice Set 9 Intext Questions and Activities

Question 1.
Curved surface area of cone. (Textbook pg. no. 116)
Maharashtra Board Class 9 Maths Solutions Chapter 9 Surface Area and Volume Practice Set 9 7
Circumference of base of the cone = 2πr
As shown in the figure (c), make pieces of the net as small as possible. Join them as shown in the figure (d),. By joining the small pieces of net of the cone, we get a rectangle ABCD approximately.
Total length of AB and CD is 2πr.
∴ length of side AB of rectangle ABCD is πr and length of side CD is also πr.
Length of side BC of rectangle = slant height of cone = l.
Curved surface area of cone is equal to the area of the rectangle.
∴ curved surface area of cone = Area of rectangle = AB x BC = πr x l = πrl

Question 2.
Prepare a cylinder of a card sheet, keeping one of its faces open. Prepare an open cone of card sheet which will have the same base-radius and the same height as that of the cylinder. Pour fine sand in the cone till it just fills up the cone. Empty the cone in the cylinder. Repeat the procedure till the cylinder is just filled up with sand. Note how many coneful of sand is required to fill up the cylinder. (Textbook pg, no 117)
Maharashtra Board Class 9 Maths Solutions Chapter 9 Surface Area and Volume Practice Set 9 8
Answer:
To fill the cylinder, three coneful of sand is required.

Question 3.
Finding total surface area of sphere. (Textbook pg, no 120)

i. Take a sweet lime (Mosambe), Cut it into two equal parts.
Maharashtra Board Class 9 Maths Solutions Chapter 9 Surface Area and Volume Practice Set 9 9

ii. Take one of the parts. Place its circular face on a paper. Draw its circular border. Copy three more such circles. Again, cut each half of the sweet lime into two equal parts.
Maharashtra Board Class 9 Maths Solutions Chapter 9 Surface Area and Volume Practice Set 9 10

iii. Now you get 4 quarters of sweet lime. Separate the peel of a quarter part. Cut it into pieces as small as possible. Try to cover one o’f the circles drawn, by the small pieces. Observe that the circle gets nearly covered.
The activity suggests that,
Curved surface area of a sphere = 4πr2
Maharashtra Board Class 9 Maths Solutions Chapter 9 Surface Area and Volume Practice Set 9 11
∴ Curved surface area of a sphere = 4 x Area of a circle

Question 4.
Make a cone and a hemisphere of cardsheet such that radii of cone and hemisphere are equal and height of cone is equal to radius of the hemisphere.
Fill the cone with fine sand. Pour the sand in the hemisphere. How many cones are required to fill the hemisphere completely ? (Textbook pg. no. 121)
Maharashtra Board Class 9 Maths Solutions Chapter 9 Surface Area and Volume Practice Set 9 12
Answer:
To fill the hemisphere, two coneful of sand is required.

Maharashtra Board 9th Class Maths Part 2 Problem Set 8 Solutions Chapter 8 Trigonometry

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Problem Set 8 Geometry 9th Class Maths Part 2 Answers Solutions Chapter 8 Trigonometry.

Problem Set 8 Geometry 9th Std Maths Part 2 Answers Chapter 8 Trigonometry

Question 1.
Choose the correct alternative answer for the following multiple choice questions.

i. Which of the following statements is true?
(A) sin θ = cos (90 – θ)
(B) cos θ = tan (90 – θ)
(C) sin θ = tan (90 – θ)
(D) tan θ = tan (90 – θ)
Answer:
(A) sin θ = cos (90 – θ)

ii. Which of the following is the value of sin 90°?
(A) \( \frac { \sqrt { 3 } }{ 2 }\)
(B) 0
(C) \(\frac { 1 }{ 2 }\)
(D) 1
Answer:
(D) 1

iii. 2 tan 45° + cos 45° – sin 45° = ?
(A) 0
(B) 1
(C) 2
(D) 3
Answer:
2 tan 45° + cos 45° – sin
\( =2(1)+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=2\)
(C) 2

iv. \( \frac{\cos 28^{\circ}}{\sin 62^{\circ}}\) =?
(A) 2
(B) -1
(C) 0
(D) 1
Answer:
\( \frac{\cos 28^{\circ}}{\sin 62^{\circ}}\)
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Problem Set 8 1
(D) 1

Question 2.
In right angled ∆TSU, TS = 5, ∠S = 90°, SU = 12, then find sin T, cos T, tan T. Similarly find sin U, cos U, tan U.
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Problem Set 8 2
Solution:
i. TS = 5, SU = 12 …[Given]
In ∆TSU, ∠S = 90° … [Given]
∴ TU2 = TS2 + SU2 …[Pythagoras theorem]
= 52 + 122 = 25 + 144 = 169
∴ TU = \(\sqrt { 169 }\) .. .[Taking square root of both sides]
= 13
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Problem Set 8 3

Question 3.
In right angled ∆YXZ, ∠X = 90°, XZ = 8 cm, YZ = 17 cm, find sin Y, cos Y, tan Y, sin Z, cos Z, tan Z.
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Problem Set 8 4
Solution:
i. XZ = 8 cm, YZ = 17 cm …[Given]
In ∆YXZ, ∠X = 90° … [Given]
∴ YZ2 = XY2 + XZ2 .. .[Pythagoras theorem]
∴ 172 = XY2 + 82
∴ 289 = XY2 + 64
∴ XY2 = 289 – 64
= 225
∴ x = \(\sqrt { 225 }\) .. .[Taking square root of both sides]
= 15
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Problem Set 8 5

Question 4.
In right angled ∆LMN, if ∠N = θ, ∠M = 90°, cos θ = \(\frac { 24 }{ 25 }\), find sin θ and tan θ. Similarly, find (sin2θ) and (cos2θ).
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Problem Set 8 6
Solution:
i. cos θ = \(\frac { 24 }{ 25 }\)
In ∆LMN, ∠M = 90°, ∠N = θ
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Problem Set 8 7
Let the common multiple be k.
∴ MN = 24k and LN = 25k
Now, LN2= LM2 + MN2 … [Pythagoras theorem]
∴ (25k)2 = LM2 + (24k)2
∴ 625 k2 = LM2 + 576k2
∴ LM2 = 625k2 – 576k2
∴ LM2 = 49k2
∴ LM = \(\sqrt { 49{ k }^{ 2 } }\) .. .[Taking square root of both sides]
= 7k

Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Problem Set 8 8

Question 5.
Fill in the blanks.
i. sin 20° = cos Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Problem Set 8 9
ii. tan 30° x tan Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Problem Set 8 10 = 1
iii. cos 40° = sin Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Problem Set 8 11
Solution:
i. sin 20° = cos (90° – 20°) …..[∵ sin θ = cos (90 – θ)]
= cos 70°

ii. tan θ x tan (90 – θ) = 1
Substituting θ = 30°,
tan 30° x tan (90 – 30)° = 1
∴ tan 30° x tan 60° = 1

iii. cos 40° = sin (90° – 40°) …[∵ COS θ = sin (90 – θ)]
= sin 50°

Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Problem Set 8

Question 1.
Measuring height of a tree using trigonometric ratios. (Textbook pg. no. 101)
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Problem Set 8 12
This experiment can be conducted on a clear sunny day. Look at the figure given above. Height of the tree is QR, height of the stick is BC.
Thrust a stick in the ground as shown in the figure. Measure its height and length of its shadow. Also measure the length of the shadow of the tree. Using these values, how will you determine the height of the tree?
Solution:
Rays of sunlight are parallel.
So, ∆PQR and ∆ABC are equiangular i.e., similar triangles.
Sides of similar triangles are proportional.
∴ \(\frac { QR }{BC }\) = \(\frac { PR }{ AC }\)
∴ Height of the tree (QR) = \(\frac { BC }{ AC }\) x PR
Substituting the values of PR, BC and AC in the above equation, we can get length of QR i.e., the height of the tree.

Question 2.
It is convenient to do the above experiment between 11:30 am and 1:30 pm instead of doing it in the morning at 8’O clock. Can you tell why? (Textbook pg. no. 101)
Solution:
At 8’O clock in the morning, the sunlight is not very bright. At the same time, the sun is on the horizon and the shadow would by very long. It would be extremely difficult to measure shadow in that case.
Between 11:30 am and 1:30 pm, the sun is overhead and it would be easier to measure the length of shadow.

Question 3.
Conduct the above discussed activity and find the height of a tall tree in your surrounding. If there is no tree in the premises, then find the height of a pole. (Textbook pg. no. 101)
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Problem Set 8 13

Maharashtra Board 9th Class Maths Part 2 Problem Set 7 Solutions Chapter 7 Co-ordinate Geometry

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Problem Set 7.2 Geometry 9th Class Maths Part 2 Answers Solutions Chapter 7 Co-ordinate Geometry.

Problem Set 7.2 Geometry 9th Std Maths Part 2 Answers Chapter 7 Co-ordinate Geometry

Question 1.
Choose the correct alternative answer for the following questions.

i. What is the form of co-ordinates of a point on the X-axis?
(A) (b,b)
(B) (0, b)
(C) (a, 0)
(D) (a, a)
Answer:
(C) (a, 0)

ii. Any point on the line y = x is of the form _____.
(A) (a, a)
(B) (0, a)
(C) (a, 0)
(D) (a, -a)
Answer:
(A) (a, a)

iii. What is the equation of the X-axis ?
(A) x = 0
(B) y = 0
(C) x + y = 0
(D) x = y
Answer:
(B) y = 0

iv. In which quadrant does the point (-4, -3) lie ?
(A) First
(B) Second
(C) Third
(D) Fourth
Answer:
(C) Third

v. What is the nature of the line which includes the points (-5, 5), (6, 5), (-3, 5), (0, 5)?
(A) Passes through the origin
(B) Parallel to Y-axis
(C) Parallel to X-axis
(D) None of these
Answer:
The y co-ordinate of all the points is the same.
∴ The line which passes through the given points is parallel to X-axis.
(C) Parallel to X-axis

vi. Which of the points P(-1, 1), Q(3, -4), R( -1, -1), S(-2, -3), T (-4, 4) lie in the fourth quadrant?
(A) P and T
(B) Q and R
(C) only S
(D) P and R
Answer:
(B) Q and R

Question 2.
Some points are shown in the adjoining figure. With the help of it answer the following questions :
Maharashtra Board Class 9 Maths Solutions Chapter 7 Co-ordinate Geometry Problem Set 7 1
i. Write the co-ordinates of the points Q and R.
ii. Write the co-ordinates of the points T and M.
iii. Which point lies in the third quadrant ?
iv. Which are the points whose x and y co-ordinates are equal ?
Solution:
i. Q(-2, 2) and R(4, -1)
ii. T(0, -1) and M(3, 0)
iii. Point S lies in the third quadrant.
iv. The x and y co-ordinates of point O are equal.

Question 3.
Without plotting the points on a graph, state in which quadrant or on which axis do the following points lie.
i. (5, -3)
ii. (-7, -12)
iii. (-23, 4)
iv. (-9, 5)
v. (0, -3)
vi. (-6, 0)
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 7 Co-ordinate Geometry Problem Set 7 2

Question 4.
Plot the following points on one and the same co-ordinate system.
A(1, 3), B(-3, -1), C(1, -4), D(-2, 3), E(0, -8), F(1, 0)
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 7 Co-ordinate Geometry Problem Set 7 3

Question 5.
In the graph alongside, line LM is parallel to the Y-axis.
Maharashtra Board Class 9 Maths Solutions Chapter 7 Co-ordinate Geometry Problem Set 7 4
i. What is the distance of line LM from the Y-axis?
ii. Write the co-ordinates of the points P, Q and R.
iii. What is the difference between the x co-ordinates of the points L and M?
Solution:
i. Distance of line LM from the Y-axis is 3 units.
ii. P(3, 2), Q (3, -1), R(3, 0)
iii. x co-ordinate of point L = 3
x co-ordinate of point M = 3
∴ Difference between the x co-ordinates of the points L and M = 3 – 3
= 0

Question 6.
How many lines are there which are parallel to X-axis and having a distance 5 units?
Solution:
The equation of a line parallel to the X-axis is y = b.
There are 2 lines which are parallel to X-axis and at a distance of 5 units.
Their equations are y = 5 and y = -5.
Maharashtra Board Class 9 Maths Solutions Chapter 7 Co-ordinate Geometry Problem Set 7 5

Question 7.
If ‘a’ is a real number, what is the distance between the Y-axis and the line x = a?
Solution:
Equation of Y-axis is x = 0.
Since, ‘a’ is a real number, there are two possibilities.
Case I: a > 0
Case II: a < 0 ∴ Distance between the Y-axis and the line x = a = a-0 = a Since, |a| = a, a > 0
= – a, a < 0
∴ Distance between the Y-axis and the line x = a is |a|.

Maharashtra Board Class 9 Maths Chapter 7 Co-ordinate Geometry Problem Set 7 Intext Questions and Activities

Question 1.
As shown in the adjoining figure, ask girls to sit in lines so as to form the X-axis and Y-axis.
i. Ask some boys to sit at the positions marked by the coloured dots in the four quadrants.
i. Now, call the students turn by turn using the initial letter of each student’s name. As his or her initial is called, the student stands and gives his or her own co-ordinates. For example Rajendra (2, 2) and Kirti (-1, 0)
iii. Even as they have fun during this field activity, the students will leam how to state the position of a point in a plane. (Textbook pg. no. 92)
Maharashtra Board Class 9 Maths Solutions Chapter 7 Co-ordinate Geometry Problem Set 7 6

Maharashtra Board 9th Class Maths Part 2 Problem Set 6 Solutions Chapter 6 Circle

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Problem Set 6 Geometry 9th Class Maths Part 2 Answers Solutions Chapter 6 Circle.

Problem Set 6 Geometry 9th Std Maths Part 2 Answers Chapter 6 Circle

Question 1.
Choose correct alternative answer and fill in the blanks.

i. Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence, the length of the chord is ____.
(A) 16 cm
(B) 8 cm
(C) 12 cm
(D) 32 cm
Answer:
Maharashtra Board Class 9 Maths Solutions Chapter 6 Circle Problem Set 6 1
∴ OA2 = AC2 + OC2
∴ 102 = AC2 + 62
∴ AC2 = 64
∴ AC = 8 cm
∴ AB = 2(AC)= 16 cm
(A) 16 cm

ii. The point of concurrence of all angle bisectors of a triangle is called the ____.
(A) centroid
(B) circumcentre
(C) incentre
(D) orthocentre
Answer:
(C) incentre

iii. The circle which passes through all the vertices of a triangle is called ____.
(A) circumcircle
(B) incircle
(C) congruent circle
(D) concentric circle
Answer:
(A) circumcircle

iv. Length of a chord of a circle is 24 cm. If distance of the chord from the centre is 5 cm, then the radius of that circle is ____.
(A) 12 cm
(B) 13 cm
(C) 14 cm
(D) 15 cm
Answer:
Maharashtra Board Class 9 Maths Solutions Chapter 6 Circle Problem Set 6 2
OA2 = AC2 + OC2
∴ OA2 = 122 + 52
∴ OA2 = 169
∴ OA = 13 cm
(B) 13 cm

v. The length of the longest chord of the circle with radius 2.9 cm is ____.
(A) 3.5 cm
(B) 7 cm
(C) 10 cm
(D) 5.8 cm
Answer:
Longest chord of the circle = diameter = 2 x radius = 2 x 2.9 = 5.8 cm
(D) 5.8 cm

vi. Radius of a circle with centre O is 4 cm. If l(OP) = 4.2 cm, say where point P will lie ____.
(A) on the centre
(B) inside the circle
(C) outside the circle
(D) on the circle
Answer:
l(OP) > radius
∴Point P lies in the exterior of the circle.
(C) outside the circle

vii. The lengths of parallel chords which are on opposite sides of the centre of a circle are 6 cm and 8 cm. If radius of the circle is 5 cm, then the distance between these chords is _____.
(A) 2 cm
(B) 1 cm
(C) 8 cm
(D) 7 cm
Answer:
Maharashtra Board Class 9 Maths Solutions Chapter 6 Circle Problem Set 6 3
PQ = 8 cm, MN = 6 cm
∴ AQ = 4 cm, BN = 3 cm
∴ OQ2 = OA2 + AQ2
∴ 52 = OA2 + 42
∴ OA2 = 25 – 16 = 9
∴ OA = 3 cm
Also, ON2 = OB2 + BN2
∴ 52 = OB2 + 32
∴ OB = 4 cm
Now, AB = OA + OB = 3 + 4 = 7 cm

Question 2.
Construct incircle and circumcircle of an equilateral ADSP with side 7.5 cm. Measure the radii of both the circles and find the ratio of radius of circumcircle to the radius of incircle.
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 6 Circle Problem Set 6 4
Maharashtra Board Class 9 Maths Solutions Chapter 6 Circle Problem Set 6 5
Steps of construction:
i. Construct ∆DPS of the given measurement.
ii. Draw the perpendicular bisectors of side DP and side PS of the triangle.
iii. Name the point of intersection of the perpendicular bisectors as point C.
iv. With C as centre and CM as radius, draw a circle which touches all the three sides of the triangle.
v. With C as centre and CP as radius, draw a circle which passes through the three vertices of the triangle.

Radius of incircle = 2.2 cm and Radius of circumcircle = 4.4 cm
Maharashtra Board Class 9 Maths Solutions Chapter 6 Circle Problem Set 6 6

Question 3.
Construct ∆NTS where NT = 5.7 cm. TS = 7.5 cm and ∠NTS = 110° and draw incircle and circumcircle of it.
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 6 Circle Problem Set 6 7
Maharashtra Board Class 9 Maths Solutions Chapter 6 Circle Problem Set 6 8
Steps of construction:
For incircle:
i. Construct ∆NTS of the given measurement.
ii. Draw the bisectors of ∠T and ∠S. Let these bisectors intersect at point I.
iii. Draw a perpendicular IM on side TS. Point M is the foot of the perpendicular.
iv. With I as centre and IM as radius, draw a circle which touches all the three sides of the triangle.
For circumcircle:
i. Draw the perpendicular bisectors of side NT and side TS of the triangle.
ii. Name the point of intersection of the perpendicular bisectors as point C.
iii. Join seg CN
iv. With C as centre and CN as radius, draw a circle which passes through the three vertices of the triangle.

Question 4.
In the adjoining figure, C is the centre of the circle, seg QT is a diameter, CT = 13, CP = 5. Find the length of chord RS.
Maharashtra Board Class 9 Maths Solutions Chapter 6 Circle Problem Set 6 9
Given: In a circle with centre C, QT is a diameter, CT = 13 units, CP = 5 units
To find: Length of chord RS
Construction: Join points R and C.
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 6 Circle Problem Set 6 10
i. CR = CT= 13 units …..(i) [Radii of the same circle]
In ∆CPR, ∠CPR = 90°
∴ CR2 = CP2 + RP2 [Pythagoras theorem]
∴ 132 = 52 + RP2 [From (i)]
∴ 169 = 25 + RP2 [From (i)]
∴ RP2 = 169 – 25 = 144
∴ RP = \(\sqrt { 144 }\) [Taking square root on both sides]
∴ RP = 12 cm ….(ii)

ii. Now, seg CP _L chord RS [Given]
∴ RP = \(\frac { 1 }{ 2 }\) RS [Perpendicular drawn from the centre of the circle to the chord bisects the chord.]
∴ 12 = \(\frac { 1 }{ 2 }\) RS [From (ii)]
∴ RS = 2 x 12 = 24
∴ The length of chord RS is 24 units.

Question 5.
In the adjoining figure, P is the centre of the circle. Chord AB and chord CD intersect on the diameter at the point E. If ∠AEP ≅ ∠DEP, then prove that AB = CD.
Maharashtra Board Class 9 Maths Solutions Chapter 6 Circle Problem Set 6 11
Given: P is the centre of the circle.
Chord AB and chord CD intersect on the diameter at the point E. ∠AEP ≅ ∠DEP
To prove: AB = CD
Construction: Draw seg PM ⊥ chord AB, A-M-B
seg PN ⊥ chord CD, C-N-D
Proof:
Maharashtra Board Class 9 Maths Solutions Chapter 6 Circle Problem Set 6 12
∠AEP ≅ ∠DEP [Given]
∴ Seg ES is the bisector of ∠AED.
PoInt P is on the bisector of ∠AED.
∴ PM = PN [Every point on the bisector of an angle is equidistant from the sides of the angle.]
∴ chord AB ≅ chord CD [Chords which are equidistant from the centre are congruent.]
∴ AB = CD [Length of congruent segments]

Question 6.
In the adjoining figure, CD is a diameter of the circle with centre O. Diameter CD is perpendicular to chord AB at point E. Show that ∆ABC is an isosceles triangle.
Maharashtra Board Class 9 Maths Solutions Chapter 6 Circle Problem Set 6 13
Given: O is the centre of the circle.
diameter CD ⊥ chord AB, A-E-B
To prove: ∆ABC is an isosceles triangle.
Proof:
diameter CD ⊥ chord AB [Given]
∴ seg OE ⊥ chord AB [C-O-E, O-E-D]
∴ seg AE ≅ seg BE ……(i) [Perpendicular drawn from the centre of the circle to the chord bisects the chord]
In ∆CEA and ∆CEB,
∠CEA ≅ ∠CEB [Each is of 90°]
seg AE ≅ seg BE [From (i)]
seg CE ≅ seg CE [Common side]
∴ ∆CEA ≅ ∆CEB [SAS test]
∴ seg AC ≅ seg BC [c. s. c. t.]
∴ ∆ABC is an isosceles triangle.

Maharashtra Board Class 9 Maths Chapter 6 Circle Problem Set 6 Intext Questions and Activities

Question 1.
Every student in the group should do this activity. Draw a circle in your notebook. Draw any chord of that circle. Draw perpendicular to the chord through the centre of the circle. Measure the lengths of the two parts of the chord. Group leader should prepare a table as shown below and ask other students to write their observations in it. Write the property which you have observed. (Textbook pg. no. 77)
Maharashtra Board Class 9 Maths Solutions Chapter 6 Circle Problem Set 6 14
Maharashtra Board Class 9 Maths Solutions Chapter 6 Circle Problem Set 6 15
Answer:
On completing the above table, you will observe that the perpendicular drawn from the centre of a circle on its chord bisects the chord.

Question 2.
Every student from the group should do this activity. Draw a circle in your notebook. Draw a chord of the circle. Join the midpoint of the chord and centre of the circle. Measure the angles made by the segment with the chord.
Discuss about the measures of the angles with your friends. Which property do the observations suggest ? (Textbook pg. no. 77)
Maharashtra Board Class 9 Maths Solutions Chapter 6 Circle Problem Set 6 16
Answer:
The meausure of the angles made by the drawn segment with the chord is 90°. Thus, we can conclude that, the segment joining the centre of a circle and the midpoint of its chord is perpendicular to the chord.

Question 3.
Draw circles of convenient radii. Draw two equal chords in each circle. Draw perpendicular to each chord from the centre. Measure the distance of each chord from the centre. What do you observe? (Textbook pg. no. 79)
Answer:
Congruent chords of a circle are equidistant from the centre.

Question 4.
Measure the lengths of the perpendiculars on chords in the following figures.
Maharashtra Board Class 9 Maths Solutions Chapter 6 Circle Problem Set 6 17
Did you find OL = OM in fig (i), PN = PT in fig (ii) and MA = MB in fig (iii)?
Write the property which you have noticed from this activity. (Textbook pg. no. 80)
Answer:
In each figure, the chords are equidistant from the centre. Also, we can see that the measures of the chords in each circle are equal.
Thus, we can conclude that chords of a circle equidistant from the centre of a circle are congruent.

Question 5.
Draw different triangles of different measures and draw in circles and circumcircles of them. Complete the table of observations and discuss. (Textbook pg. no. 85)
Answer:
Maharashtra Board Class 9 Maths Solutions Chapter 6 Circle Problem Set 6 18