Practice Set 20 Class 6 Answers Maths Chapter 7 Symmetry Maharashtra Board

Balbharti Maharashtra State Board Class 6 Maths Solutions covers the Std 6 Maths Chapter 7 Symmetry Class 6 Practice Set 20 Answers Solutions.

Symmetry Class 6 Maths Chapter 7 Practice Set 20 Solutions Maharashtra Board

Std 6 Maths Practice Set 20 Solutions Answers

Question 1.
Draw the axes of symmetry of each of the figures below. Which of them has more than one axis of symmetry?
Maharashtra Board Class 6 Maths Solutions Chapter 7 Symmetry Practice Set 20 1
Solution:
Maharashtra Board Class 6 Maths Solutions Chapter 7 Symmetry Practice Set 20 2
Figures (i), (ii) and (iv) have more than one axis of symmetry.

Question 2.
Write the capital letters of the English alphabet in your notebook. Try to draw their axes of symmetry. Which ones have an axis of symmetry? Which ones have more than one axis of symmetry?
Solution:
Alphabets having axis of symmetry:
Maharashtra Board Class 6 Maths Solutions Chapter 7 Symmetry Practice Set 20 3
Alphabets having more than one axis of symmetry:
Maharashtra Board Class 6 Maths Solutions Chapter 7 Symmetry Practice Set 20 4

Question 3.
Use color, a thread and a folded paper to draw symmetrical shapes.
Solution:
Take any color, a thread and a folded square paper.
Step 1:
Take a folded square paper which is folded along one of its axis of symmetry.
Maharashtra Board Class 6 Maths Solutions Chapter 7 Symmetry Practice Set 20 5

Step 2:
Open the paper. Draw a square in one comer. Place the thread in the square drawn and apply colour on it as shown in the figure.
Maharashtra Board Class 6 Maths Solutions Chapter 7 Symmetry Practice Set 20 6

Step 3:
Remove the thread. You will see a white patch where the thread was.
Maharashtra Board Class 6 Maths Solutions Chapter 7 Symmetry Practice Set 20 7

Step 4:
Fold the paper and press it along the axis of symmetry. When you unfold the paper, you will see an imprint on the other side of the fold which is identical to the color patch you had made earlier.
Maharashtra Board Class 6 Maths Solutions Chapter 7 Symmetry Practice Set 20 8

Question 4.
Observe various commonly seen objects such as tree leaves, birds in flight, pictures of historical buildings, etc. Find symmetrical shapes among them and make a collection of them.
Solution:
Some of the symmetrical objects seen in daily life are shown below:
Maharashtra Board Class 6 Maths Solutions Chapter 7 Symmetry Practice Set 20 9

Maharashtra Board Class 6 Maths Chapter 7 Symmetry Practice Set 20 Intext Questions and Activities

Question 1.
Do you recognize this picture?
Why do you think the letters written on the front of the vehicle are written the way they are? Copy them on a paper. Hold the paper in front of a mirror and read it.
Do you see letters written like this anywhere else?
(Textbook pg. no. 40)
Maharashtra Board Class 6 Maths Solutions Chapter 7 Symmetry Practice Set 20 10
Solution:

  1. The name written in reverse alphabets on the vehicle reads
    as ‘AMBULANCE’ when viewed in the mirror.
    In the case of an emergency, it helps a driver to quickly notice an ambulance by looking into his rear view mirror and read the reverse alphabets which appear perfectly normal in a mirror
  2. Other than ambulance, we see letters written in reverse on school bus.

Std 6 Maths Digest

Practice Set 29 Class 7 Answers Chapter 6 Indices Maharashtra Board

Balbharti Maharashtra State Board Class 7 Maths Solutions covers the 7th Std Maths Practice Set 29 Answers Solutions Chapter 6 Indices.

Indices Class 7 Maths Chapter 6 Practice Set 29 Solutions Maharashtra Board

Std 7 Maths Practice Set 29 Solutions Answers

Question 1.
Simplify:
i. \(\left[\left(\frac{15}{12}\right)^{3}\right]^{4}\)
ii. (34)-2
iii. \(\left[\left(\frac{1}{7}\right)^{-3}\right]^{4}\)
iv. \(\left[\left(\frac{2}{5}\right)^{-2}\right]^{-3}\)
v. (65)4
vi. \(\left[\left(\frac{6}{7}\right)^{5}\right]^{2}\)
vii. \(\left[\left(\frac{2}{3}\right)^{-4}\right]^{5}\)
viii. \(\left[\left(\frac{5}{8}\right)^{3}\right]^{-2}\)
ix. \(\left[\left(\frac{3}{4}\right)^{6}\right]^{7}\)
x. \(\left[\left(\frac{2}{5}\right)^{-3}\right]^{2}\)
Solution:
i. \(\left[\left(\frac{15}{12}\right)^{3}\right]^{4}\)
\(=\left(\frac{15}{12}\right)^{3 \times 4}=\left(\frac{15}{12}\right)^{12}\)

ii. (34)-2
= 34×(-2)
= 3-8

iii. \(\left[\left(\frac{1}{7}\right)^{-3}\right]^{4}\)
\(=\left(\frac{1}{7}\right)^{(-3) \times 4}=\left(\frac{1}{7}\right)^{-12}\)

iv. \(\left[\left(\frac{2}{5}\right)^{-2}\right]^{-3}\)
\(=\left(\frac{2}{5}\right)^{(-2) \times(-3)}=\left(\frac{2}{5}\right)^{6}\)

v. (65)4
= 65×4
= 620

vi. \(\left[\left(\frac{6}{7}\right)^{5}\right]^{2}\)
\(=\left(\frac{6}{7}\right)^{5 \times 2}=\left(\frac{6}{7}\right)^{10}\)

vii. \(\left[\left(\frac{2}{3}\right)^{-4}\right]^{5}\)
\(=\left(\frac{2}{3}\right)^{(-4) \times 5}=\left(\frac{2}{3}\right)^{-20}\)

viii. \(\left[\left(\frac{5}{8}\right)^{3}\right]^{-2}\)
\(=\left(\frac{5}{8}\right)^{3 \times(-2)}=\left(\frac{5}{8}\right)^{-6}\)

ix. \(\left[\left(\frac{3}{4}\right)^{6}\right]^{7}\)
\(=\left(\frac{3}{4}\right)^{6 \times 1}=\left(\frac{3}{4}\right)^{6}\)

x. \(\left[\left(\frac{2}{5}\right)^{-3}\right]^{2}\)
\(=\left(\frac{2}{5}\right)^{(-3) \times 2}=\left(\frac{2}{5}\right)^{-6}\)

Question 2.
Write the following numbers using positive indices:
i. \(\left(\frac{2}{7}\right)^{-2}\)
ii. \(\left(\frac{11}{3}\right)^{-5}\)
iii. \(\left(\frac{1}{6}\right)^{-3}\)
iv. \((y)^{-4}\)
Solution:
i. \(\left(\frac{7}{2}\right)^{2}\)
ii. \(\left(\frac{3}{11}\right)^{5}\)
iii. \(6^{3}\)
iv. \(\frac{1}{y^{4}}\)

Std 7 Maths Digest

Practice Set 28 Class 7 Answers Chapter 6 Indices Maharashtra Board

Balbharti Maharashtra State Board Class 7 Maths Solutions covers the 7th Std Maths Practice Set 28 Answers Solutions Chapter 6 Indices.

Indices Class 7 Maths Chapter 6 Practice Set 28 Solutions Maharashtra Board

Std 7 Maths Practice Set 28 Solutions Answers

Question 1.
Simplify:
i. a6 ÷ a4
ii. m5 ÷ m8
iii. p3 ÷ p13
iv. x10 ÷ x10
Solution:
i. a6 ÷ a4
= a6-4
= a2

ii. m5 ÷ m8
= m5-8
= m-3

iii. p3 ÷ p13
= p3-13
= p-10

iv. x10 ÷ x10
= x10-10
= x0
= 1

Question 2.
Find the value of:
i. (-7)12 ÷ (-7)12
ii. 75 ÷ 73
iii. \(\left(\frac{4}{5}\right)^{3} \div\left(\frac{4}{5}\right)^{2}\)
iv. 47 ÷ 45
Solution:
i. (-7)12 ÷ (-7)12
= (-7)12-12
= (-7)0
= 1

ii. 75 ÷ 73
= 75-3
= 72
= 49

iii. \(\left(\frac{4}{5}\right)^{3} \div\left(\frac{4}{5}\right)^{2}\)
\(=\left(\frac{4}{5}\right)^{3-2}=\frac{4}{5}\)

iv. 4 ÷ 4
= 47-5
= 42
= 16

Std 7 Maths Digest

Practice Set 40 Class 6 Answers Maths Chapter 17 Geometrical Constructions Maharashtra Board

Balbharti Maharashtra State Board Class 6 Maths Solutions covers the Std 6 Maths Chapter 17 Geometrical Constructions Class 6 Practice Set 40 Answers Solutions.

Geometrical Constructions Class 6 Maths Chapter 17 Practice Set 40 Solutions Maharashtra Board

Std 6 Maths Practice Set 40 Solutions Answers

Question 1.
Draw line l. Take point P anywhere outside the line. Using a set square draw a line PQ perpendicular to line l.
Solution:
Step 1:
Maharashtra Board Class 6 Maths Solutions Chapter 17 Geometrical Constructions Practice Set 40 1

Step 2:
Maharashtra Board Class 6 Maths Solutions Chapter 17 Geometrical Constructions Practice Set 40 2
line PQ ⊥ line l.

Question 2.
Draw line AB. Take point M anywhere outside the line. Using a compass and ruler, draw a line MN perpendicular to line AB.
Solution:
Step 1:
Maharashtra Board Class 6 Maths Solutions Chapter 17 Geometrical Constructions Practice Set 40 3

Step 2:
Maharashtra Board Class 6 Maths Solutions Chapter 17 Geometrical Constructions Practice Set 40 4

Step 3:
Maharashtra Board Class 6 Maths Solutions Chapter 17 Geometrical Constructions Practice Set 40 5
line MN ⊥ line AB.

Question 3.
Draw a line segment AB of length 5.5 cm. Bisect it using a compass and ruler.
Solution:
Step 1:
Maharashtra Board Class 6 Maths Solutions Chapter 17 Geometrical Constructions Practice Set 40 6

Step 2:
Maharashtra Board Class 6 Maths Solutions Chapter 17 Geometrical Constructions Practice Set 40 7
line MN is the perpendicular bisector of seg AB.

Question 4.
Take point R on line XY. Draw a perpendicular to XY at R, using a set square.
Solution:
Step 1:
Maharashtra Board Class 6 Maths Solutions Chapter 17 Geometrical Constructions Practice Set 40 8

Step 2:
Maharashtra Board Class 6 Maths Solutions Chapter 17 Geometrical Constructions Practice Set 40 9
line TR ⊥ line XY.

Maharashtra Board Class 6 Maths Chapter 17 Geometrical Constructions Practice Set 40 Questions and Activities

Question 1.
In the above construction, why must the distance in the compass be kept constant? (Textbook pg. no. 90)
Solution:
The point N is at equal distance from points P and Q.
If we change the distance of the compass while drawing arcs from points P and Q, we will not get a point which is at equal distance from P and Q. Hence, the distance in the compass must be kept constant.

Question 2.
The Perpendicular Bisector. (Textbook pg. no. 90)
Maharashtra Board Class 6 Maths Solutions Chapter 17 Geometrical Constructions Practice Set 40 10

  1. A wooden ‘yoke’ is used for pulling a bullock cart. How is the position of the yoke determined?
  2. To do that, a rope is used to measure equal distances from the spine/midline of the bullock cart. Which geometrical property is used here?
  3. Find out from the craftsmen or from other experienced persons, why this is done.

Solution:

  1. For the bullock cart to be pulled in the correct direction by the yoke, its Centre O should be equidistant from the either sides of the cart.
  2. The property of perpendicular bisector is used to make the point equidistant from both the ends
  3. A rope is used just like a compass to get equal distances from the spine/midline of bullock cart.

Question 3.
Take a rectangular sheet of paper. Fold the paper so that the lower edge of the paper falls on its top edge, and fold it over again from right to left. Observe the two folds that have formed on the . paper. Verify that each fold is a perpendicular bisector of the other. Then measure the following distances. (Textbook pg. no. 91)
i. l(XP)
ii. l(XA)
iii. l(XB)
iv. l(YP)
v. l(YA)
Maharashtra Board Class 6 Maths Solutions Chapter 17 Geometrical Constructions Practice Set 40 11
You will observe that l(XP) = l(YP), l(XA) = l(YA) and l(XB) = l(YB)
Therefore we can conclude that all points on the vertical fold (perpendicular bisector) are equidistant from the endpoints of the horizontal fold.
Solution:
[Note: Students should attempt this activity on their own.]

Std 6 Maths Digest

Practice Set 19 Class 6 Answers Maths Chapter 6 Bar Graphs Maharashtra Board

Balbharti Maharashtra State Board Class 6 Maths Solutions covers the Std 6 Maths Chapter 6 Bar Graphs Class 6 Practice Set 19 Answers Solutions.

Bar Graphs Class 6 Maths Chapter 6 Practice Set 19 Solutions Maharashtra Board

Std 19 Maths Practice Set 18 Solutions Answers

Question 1.
The names of the heads of some families in a village and the quantity of drinking water their family consumes in one day are given below. Draw a bar graph for this data.
(Scale: On Y axis. 1 cm = 10 liters of water)

Name Ramesh Shobha Ayub Julie Rahul
Liters of water Used 30 L 60 L 40 L 50L 55 L

Solution:
Maharashtra Board Class 6 Maths Solutions Chapter 6 Bar Graphs Practice Set 19 1

Question 2.
The names and numbers of animals in a certain zoo are given below. Use the data to make a bar graph. (Scale: On Y axis, 1 cm = 4 animals).

Animals Deer Tiger Monkey Rabbit Peacock
Number 20 4 12 16 8

Solution:
Maharashtra Board Class 6 Maths Solutions Chapter 6 Bar Graphs Practice Set 19 2

Question 3.
The table below gives the number of children who took part in the various items of the talent show as part of the annual school gathering. Make a bar graph to show this data.
(Scale: On Y-axis, 1 cm = 4 children)

Programme Theater Dance Vocal music Instrumental music One-act plays
Number of Children 24 40 16 8 4

Solution:
Maharashtra Board Class 6 Maths Solutions Chapter 6 Bar Graphs Practice Set 19 3

Question 4.
The number of customers who came to a juice centre during one week is given in the table below. Make two different bar graphs to show this data.
(On Y-axis, 1 cm = 10 customers, 1 cm = 5 customers)

Type of juice Orange Pineapple Apple Mango Pomegranate
Number of customers 50 30 25 65 10

Solution:
Maharashtra Board Class 6 Maths Solutions Chapter 6 Bar Graphs Practice Set 19 4
Maharashtra Board Class 6 Maths Solutions Chapter 6 Bar Graphs Practice Set 19 5

Question 5.
Students planted trees in 5 villages of Sangli district. Make a bar graph of this data. (Scale: On Y-axis, 1 cm = 100 trees).

Name of Place Dudhgaon Bagni Samdoli Ashta Kavathepiran
Number of Trees Planted 500 350 600 420 540

Solution:
Maharashtra Board Class 6 Maths Solutions Chapter 6 Bar Graphs Practice Set 19 6

Question 6.
Yashwant gives different amounts of time as shown below, to different exercises he does during the week. Draw a bar graph to show the details of his schedule using an appropriate scale.

Type of exercise Running Yogasanas Cycling Mountaineering Badminton
Time 35 minutes 50 minutes 1 hr 10 min \(1\frac { 1 }{ 2 }\) hours 45 minutes

Solution:
1 hour = 60 minutes
∴ 1 hour 10 minutes = 1 hour + 10 minutes = 60 minutes +10 minutes = 70 minutes
and \(1\frac { 1 }{ 2 }\) hours = 1 hour + \(\frac { 1 }{ 2 }\) hour = 60 minutes + 30 minutes = 90 minutes
The given table can be written as follows:

Type of Exercise Running Yogasanas Cycling Moutaineering Badminton
Time 35 minutes 50 minutes 70 minutes 90 minutes 45 minutes

Maharashtra Board Class 6 Maths Solutions Chapter 6 Bar Graphs Practice Set 19 7

Question 7.
Write the names of four of your classmates. Beside each name, write his/her weight in kilograms. Enter this data in a table like the above and make a bar graph.
Solution:

Name of classmates Weight (kg)
Rohan 32
Laxmi 28
Rakesh 40
Riya 36

Scale: On Y-axis, 1 cm = 4 kg [Note: Students can take their own examples]
Maharashtra Board Class 6 Maths Solutions Chapter 6 Bar Graphs Practice Set 19 8

Maharashtra Board Class 6 Maths Chapter 6 Bar Graphs Practice Set 19 Intext Questions and Activities

Question 1.
Collect bar graphs from newspapers or periodicals showing a variety of data. (Textbook pg. no. 38)
Solution:
(Student should attempt the activities on their own.)

Std 6 Maths Digest

Practice Set 27 Class 7 Answers Chapter 6 Indices Maharashtra Board

Balbharti Maharashtra State Board Class 7 Maths Solutions covers the 7th Std Maths Practice Set 27 Answers Solutions Chapter 6 Indices.

Indices Class 7 Maths Chapter 6 Practice Set 27 Solutions Maharashtra Board

Std 7 Maths Practice Set 27 Solutions Answers

Question 1.
Simplify:
i. 74 × 72
ii. (-11)5 × (-11)2
iii. \(\left(\frac{6}{7}\right)^{3} \times\left(\frac{6}{7}\right)^{5}\)
iv. \(\left(-\frac{3}{2}\right)^{5} \times\left(-\frac{3}{2}\right)^{3}\)
v. a16 × a7
vi. \(\left(\frac{\mathrm{P}}{5}\right)^{3} \times\left(\frac{\mathrm{P}}{5}\right)^{7}\)
Solution:
i. 74 × 72
= 74+2
= 76

ii. (-11)5 × (-11)2
= (-11)5+2
= (-11)7

iii. \(\left(\frac{6}{7}\right)^{3} \times\left(\frac{6}{7}\right)^{5}\)
\(=\left(\frac{6}{7}\right)^{3+5}=\left(\frac{6}{7}\right)^{8}\)

iv. \(\left(-\frac{3}{2}\right)^{5} \times\left(-\frac{3}{2}\right)^{3}\)
\(=\left(-\frac{3}{2}\right)^{5+3}=\left(-\frac{3}{2}\right)^{8}\)

v. a16 × a7
= a16+7
= a23

vi. \(\left(\frac{\mathrm{P}}{5}\right)^{3} \times\left(\frac{\mathrm{P}}{5}\right)^{7}\)
\(=\left(\frac{\mathrm{P}}{5}\right)^{3+7}=\left(\frac{\mathrm{P}}{5}\right)^{10}\)

Std 7 Maths Digest

Practice Set 6 Class 6 Answers Maths Chapter 3 Integers Maharashtra Board

Balbharti Maharashtra State Board Class 6 Maths Solutions covers the Std 6 Maths Chapter 3 Integers Class 6 Practice Set 6 Answers Solutions.

Integers Class 6 Maths Chapter 3 Practice Set 6 Solutions Maharashtra Board

Std 6 Maths Practice Set 6 Solutions Answers

Question 1.
Write the opposite number of each of the numbers given below.

Number 47 +52 -33 -84 -21 +16 -26 80
Opposite number

Solution:

Number 47 +52 -33 -84 -21 +16 -26 80
Opposite number -47 -52 +33 +84 +21 -16 +26 -80

Std 6 Maths Digest

Practice Set 28 Class 6 Answers Maths Chapter 11 Ratio-Proportion Maharashtra Board

Balbharti Maharashtra State Board Class 6 Maths Solutions covers the Std 6 Maths Chapter 11 Ratio-Proportion Class 6 Practice Set 28 Answers Solutions.

Ratio-Proportion Class 6 Maths Chapter 11 Practice Set 28 Solutions Maharashtra Board

Std 6 Maths Practice Set 28 Solutions Answers

6th Standard Maths Practice Set 28 Question 1.
In each example below, find the ratio of the first number to the second:
i. 24, 56
ii. 63,49
iii. 52, 65
iv. 84, 60
v. 35, 65
vi. 121, 99
Solution:
i. 24, 56
\(\frac{24}{56}=\frac{24 \div 8}{56 \div 8}=\frac{3}{7}\)
= 3:7

ii. 63,49
\(\frac{63}{49}=\frac{63 \div 7}{49 \div 7}=\frac{9}{7}\)
= 9:7

iii. 52, 65
\(\frac{52}{65}=\frac{52 \div 13}{65 \div 13}=\frac{4}{5}\)
= 4:5

iv. 84, 60
\(\frac{84}{60}=\frac{84 \div 12}{60 \div 12}=\frac{7}{5}\)
= 7:5

v. 35, 65
\(\frac{35}{65}=\frac{35 \div 5}{65 \div 5}=\frac{7}{13}\)
= 7:13

vi. 121, 99
\(\frac{121}{99}=\frac{121 \div 11}{99 \div 11}=\frac{11}{9}\)
= 11:9

6th Maths Practice Set 28 Question 2.
Find the ratio of the first quantity to the second.
i. 25 beads, 40 beads
ii. Rs 40, Rs 120
iii. 15 minutes, 1 hour
iv. 30 litres, 24 litres
v. 99 kg, 44000 grams
vi. 1 litre, 250 ml
vii. 60 paise, 1 rupee
viii. 750 grams, \(\frac { 1 }{ 2 }\) kg
ix. 125 cm, 1 metre
Solution:
i. Required Ratio = \(\frac{25}{40}=\frac{25 \div 5}{40 \div 5}=\frac{5}{8}\)

ii. Required Ratio = \(\frac{40}{120}=\frac{40 \div 40}{120 \div 40}=\frac{1}{3}\)

iii. 1 hour = 60 minutes
Required Ratio = \(\frac{15}{60}=\frac{15 \div 15}{60 \div 15}=\frac{1}{4}\)

iv. Required Ratio = \(\frac{30}{24}=\frac{30 \div 6}{24 \div 6}=\frac{5}{4}\)

v. 99 kg = 99 x 1000 grams = 99000 grams
Required Ratio = \(\frac{99000}{44000}=\frac{99000 \div 1000}{44000 \div 1000}=\frac{99}{44}\)
= \(\frac{99}{44}=\frac{99 \div 11}{44 \div 11}=\frac{9}{4}\)

vi. 1 litre, 250 ml
1 litre = 1000 ml
Required Ratio = \(\frac{1000}{250}=\frac{1000 \div 10}{250 \div 10}=\frac{100}{25}\)
= \(\frac{100}{25}=\frac{100 \div 25}{25 \div 25}=\frac{4}{1}\)

viii. 750 grams, \(\frac { 1 }{ 2 }\) kg
\(\frac { 1 }{ 2 }\) kg = \(\frac { 1000 }{ 2 }\) grams = 500 grams
Required Ratio = \(\frac{750}{500}=\frac{750 \div 10}{500 \div 10}=\frac{75}{50}\)
= \(\frac{75}{50}=\frac{75 \div 25}{50 \div 25}=\frac{3}{2}\)

ix. 125 cm, 1 metre
1 metre = 100 cm
Required Ratio = \(\frac{125}{100}=\frac{125 \div 25}{100 \div 25}=\frac{5}{4}\)

6th Std Maths Practice Set 28 Question 3.
Reema has 24 notebooks and 18 books. Find the ratio of notebooks to books.
Solution:
Ratio of notebooks to books
Maharashtra Board Class 6 Maths Solutions Chapter 11 Ratio-Proportion Practice Set 28 1
∴ The ratio of notebooks to books with Reema is \(\frac { 4 }{ 3 }\)

Practice Set 28 Question 4.
30 cricket players and 20 kho-kho players are training on a field. What is the ratio of cricket players to the total number of players?
Solution:
Total number of players = Cricket players + Kho-kho players
= 30 + 20 = 50
Ratio of cricket players to the total number of players
Maharashtra Board Class 6 Maths Solutions Chapter 11 Ratio-Proportion Practice Set 28 2
∴ The ratio of cricket players to the total number of players is \(\frac { 3 }{ 5 }\).

Question 5.
Snehal has a red ribbon that is 80 cm long and a blue ribbon 2.20 m long. What is the ratio of the length of the red ribbon to that of the blue ribbon?
Solution:
1 metre =100 cm
Length of the red ribbon = 80 cm
Length of the blue ribbon = 2.20 m = 2.20 x 100 cm
\(=\frac{220}{100} \times \frac{100}{1}=\frac{220 \times 100}{100 \times 1}\)
= 220 cm
∴ Ratio of length of the red ribbon to that of the blue ribbon
Maharashtra Board Class 6 Maths Solutions Chapter 11 Ratio-Proportion Practice Set 28 3
∴ The ratio of the length of the red ribbon to that of the blue ribbon is \(\frac { 4 }{ 11 }\).

11 Ratio Question 6.
Shubham’s age today is 12 years and his father’s is 42 years. Shubham’s mother is younger than his father by 6 years. Find the following ratios.
i. Ratio of Shubham’s age today to his mother’s age today.
ii. Ratio of Shubham’s mother’s age today to his father’s age today.
iii. The ratio of Shubham’s age to his mother’s age when Shubham was 10 years old.
Solution:
Shubham’s age today = 12 years
Shubham’s father’s age = 42 years
Shubham’s mother age = Shubham’s father’s age – 6 years
= 42 years – 6 years = 36 years

i. Ratio of Shubham’s age today to his mother’s age today
Maharashtra Board Class 6 Maths Solutions Chapter 11 Ratio-Proportion Practice Set 28 4
∴ The ratio of Shubham’s age today to his mother’s age today is \(\frac { 1 }{ 3 }\).

ii. Ratio of Shubham’s mother age today to his father’s age today
Maharashtra Board Class 6 Maths Solutions Chapter 11 Ratio-Proportion Practice Set 28 5
∴ The ratio of Shubham’s mother’s age today to his father’s age today is \(\frac { 6 }{ 7 }\).

iii. Shubham’s age today is 12 years and his mothers age is 36 years.
Hence when Shubham’s age was 10 years, his mother’s age was 34 years (i.e. 36 – 2 years).
Ratio of Shubham’s age to his mother’s age when Shubham was 10 years old
Maharashtra Board Class 6 Maths Solutions Chapter 11 Ratio-Proportion Practice Set 28 6
∴ The ratio of Shubham’s age to his mother’s age when Shubham was 10 years old is \(\frac { 5 }{ 17 }\)

Maharashtra Board Class 6 Maths Chapter 11 Ratio-Proportion Practice Set 28 Intext Questions and Activities

Question 1.
In the figure, colour some squares with any colour you like and leave some blank. (Textbook pg. no. 57)
Maharashtra Board Class 6 Maths Solutions Chapter 11 Ratio-Proportion Practice Set 28 7
i. Count all the boxes and write the number.
ii. Count the colored ones and write the number.
iii. Count the blank ones and write the number.
iv. Find the ratio of the colored boxes to the blank ones.
v. Find the ratio of the colored boxes to the total boxes.
vi. Find the ratio of the blank boxes to the total boxes.
Solution:
i. The number of all boxes is 16.
ii. The number of colored boxes is 7.
iii. The number of blank boxes is 9.
iv. Ratio of the colored boxes to the blank ones
Maharashtra Board Class 6 Maths Solutions Chapter 11 Ratio-Proportion Practice Set 28 8
v. Ratio of the colored boxes to the total boxes
Maharashtra Board Class 6 Maths Solutions Chapter 11 Ratio-Proportion Practice Set 28 9
vi. Ratio of the blank boxes to the total boxes
Maharashtra Board Class 6 Maths Solutions Chapter 11 Ratio-Proportion Practice Set 28 10

Std 6 Maths Digest

Practice Set 26 Class 7 Answers Chapter 6 Indices Maharashtra Board

Balbharti Maharashtra State Board Class 7 Maths Solutions covers the 7th Std Maths Practice Set 26 Answers Solutions Chapter 6 Indices.

Indices Class 7 Maths Chapter 6 Practice Set 26 Solutions Maharashtra Board

Std 7 Maths Practice Set 26 Solutions Answers

Question 1.
Complete the table below:

Sr. No. Indices (Numbers in index form) Base Index Multiplication form Value
i. 34 3 4 3 x 3 x 3 x 3 81
ii. 163
iii. (-8) 2

iv.

\(\frac{3}{7} \times \frac{3}{7} \times \frac{3}{7} \times \frac{3}{7}\) \(\frac { 81 }{ 2401 }\)
v. (-13)4

Solution:

Sr. No. Indices (Numbers in index form) Base Index Multiplication form Value
i. 34 3 4 3 x 3 x 3 x 3 81
ii. 163  16 3 16 x 16 x 16 4096
iii. (-8)² (-8) 2 -8 x -8 64

iv.

\(\left(\frac{3}{7}\right)^{4}\) \(\frac { 7 }{ 7 }\) 4 \(\frac{3}{7} \times \frac{3}{7} \times \frac{3}{7} \times \frac{3}{7}\) \(\frac { 81 }{ 2401 }\)
v. (-13)4  -13 4 (-13) x (-13) x (-13) x (-13) 28561

Question 2.
Find the value of.
i. 210
ii. 53
iii. (-7)4
iv. (-6)3
v. 93
vi. 81
vii. \(\left(\frac{4}{5}\right)^{3}\)
viii. \(\left(-\frac{1}{2}\right)^{4}\)
Solution:
i. 210
= 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2
= 1024

ii. 53
= 5 × 5 × 5
= 125

iii. (-7)4
= (-7) × (-7) × (-7) × (-7)
= 2401

iv. (-6)3
= (-6) × (-6) × (-6)
= -216

v. 93
= 9 × 9 × 9
= 729

vi. 81
= 8

vii. \(\left(\frac{4}{5}\right)^{3}\)
\(=\frac{4}{5} \times \frac{4}{5} \times \frac{4}{5}=\frac{64}{125}\)

viii. \(\left(-\frac{1}{2}\right)^{4}\)
\(=\left(-\frac{1}{2}\right) \times\left(-\frac{1}{2}\right) \times\left(-\frac{1}{2}\right) \times\left(-\frac{1}{2}\right)=\frac{1}{16}\)

Std 7 Maths Digest

Practice Set 25 Class 7 Answers Chapter 5 Operations on Rational Numbers Maharashtra Board

Balbharti Maharashtra State Board Class 7 Maths Solutions covers the 7th Std Maths Practice Set 25 Answers Solutions Chapter 5 Operations on Rational Numbers.

Operations on Rational Numbers Class 7 Maths Chapter 5 Practice Set 25 Solutions Maharashtra Board

Std 7 Maths Practice Set 25 Solutions Answers

Question 1.
Simplify the following expressions.
i. 50 x 5 ÷ 2 + 24
ii. (13 x 4) ÷ 2 – 26
iii. 140 ÷ [(-11) x (-3) – (-42) ÷ 14 – 1)]
iv. {(220 – 140) + [10 x 9 + (-2 x 5) ]} – 100
v. \(\frac{3}{5}+\frac{3}{8} \div \frac{6}{4}\)
Solution:
i. 50 x 5 ÷ 2 + 24 = 250 ÷ 2 + 24
= 125 + 24
= 149

ii. (13 x 4) = 2 – 26
= 52 ÷ 2 – 26
= 26 – 26
= 0

iii. 140 ÷ [(-11) x (-3) – (-42) ÷ 14 – 1)]
= 140 ÷ [33 + 42 ÷ 14 – 1]
= 140 ÷ [33 + 3 – 1]
= 140 ÷ 35
= 4

iv. {(220 – 140) + [10 x 9 + (-2 x 5) ]} – 100
= {80 + [90 – 10]} – 100
= {80 + 80} – 100
= 160 – 100
= 60

v. \(\frac{3}{5}+\frac{3}{8} \div \frac{6}{4}\)
\(=\frac{3}{5}+\frac{3}{8} \times \frac{4}{6}\)
\(=\frac{3}{5}+\frac{1}{4}\)
\(=\frac{12}{20}+\frac{5}{20}=\frac{12+5}{20}=\frac{17}{20}\)

Maharashtra Board Class 7 Maths Chapter 5 Operations on Rational Numbers Practice Set 25 Intext Questions and Activities

Question 1.
Use the signs and numbers in the boxes and form an expression such that its value will be 112. (Textbook pg. no. 42)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[+ x ÷ -]
Solution:
{3 + (6 x 7) + (9 ÷ 3)} + {- 8 + 8 x 9}
Note: The above problem has many solutions. Students may write solution other than the one given.

Std 7 Maths Digest