Sequences and Series Class 11 Maths 2 Exercise 2.6 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 2 Sequences and Series Ex 2.6 Questions and Answers.

11th Maths Part 2 Sequences and Series Exercise 2.6 Questions And Answers Maharashtra Board

Question 1.
Find the sum \(\sum_{r=1}^{n}(r+1)(2 r-1)\).
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.6 Q1

Question 2.
Find \(\sum_{r=1}^{n}\left(3 r^{2}-2 r+1\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.6 Q2

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.6

Question 3.
Find \(\sum_{r=1}^{n}\left(\frac{1+2+3 \ldots .+r}{r}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.6 Q3
= \(\frac{n}{4}\) [(n + 1) + 2]
= \(\frac{n}{4}\) (n + 3)

Question 4.
Find \(\sum_{r=1}^{n}\left(\frac{1^{3}+2^{3}+\ldots . .+r^{3}}{r(r+1)}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.6 Q4

Question 5.
Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ….. upto n terms.
Solution:
5 × 7 + 9 × 11 + 13 × 15 + ….. upto n terms
Now, 5, 9, 13, … are in A.P. with
rth term = 5 + (r – 1) (4) = 4r + 1
7, 11, 15, ….. are in A.P. with
rth term = 7 + (r – 1) (4) = 4r + 3
∴ 5 × 7 + 9 × 11 + 13 × 15 + …… upto n terms
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.6 Q5

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.6

Question 6.
Find the sum 22 + 42 + 62 + 82 + ….. upto n terms.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.6 Q6

Question 7.
Find (702 – 692) + (682 – 672) + (662 – 652) + …… + (22 – 12)
Solution:
Let S = (702 – 692) + (682 – 672) + …… + (22 – 12)
∴ S = (22 – 12) + (42 – 32) + ….. + (702 – 692)
Here, 2, 4, 6,…, 70 are in A.P. with rth term = 2r
and 1, 3, 5, …,69 are in A.P. with rth term = 2r – 1
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.6 Q7

Question 8.
Find the sum 1 × 3 × 5 + 3 × 5 × 7 + 5 × 7 × 9 + …… + (2n – 1) (2n + 1) (2n + 3)
Solution:
Let S = 1 × 3 × 5 + 3 × 5 × 7 + ….. upto n terms
Here, 1, 3, 5, 7 … are in A.P. with rth term = 2r – 1,
3, 5, 7, 9,… are in A.P. with rth term = 2r + 1,
5, 7, 9, 11,… are in A.P. with rth term = 2r + 3
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.6 Q8
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.6 Q8.1

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.6

Question 9.
If \(\frac{1 \times 2+2 \times 3+3 \times 4+4 \times 5+\ldots \text { upto } n \text { terms }}{1+2+3+4+\ldots \text { upto } n \text { terms }}\) = \(\frac{100}{3}\), find n.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.6 Q9

Question 10.
If S1, S2 and S3 are the sums of first n natural numbers, their squares and their cubes respectively, then show that 9\(\mathrm{S}_{2}{ }^{2}\) = S3(1 + 8S1).
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.6 Q10
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.6 Q10.1

Class 11 Maharashtra State Board Maths Solution 

Sequences and Series Class 11 Maths 2 Exercise 2.5 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 2 Sequences and Series Ex 2.5 Questions and Answers.

11th Maths Part 2 Sequences and Series Exercise 2.5 Questions And Answers Maharashtra Board

Question 1.
Find Sn of the following arithmetico-geometric sequences.
(i) 2, 4x, 6x2, 8x3, 10x4, ……
Solution:
2, 4x, 6x2, 8x3, 10x4, ……
Here, 2, 4, 6, 8, 10,… are in A.P.
∴ a = 2, d = 2
∴ nth term = a + (n – 1)d
= 2 + (n – 1)(2)
= 2n
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.5 Q1 (i)

(ii) 1, 4x, 7x2, 10x3, 13x4, ……
Solution:
1, 4x, 7x2, 10x3, 13x4, ……
Here, 1, 4, 7, 10, 13,… are in A.P.
a = 1, d = 3
∴ nth term = a + (n – 1)d
= 1 + (n – 1)(3)
= 3n – 2
Also, 1, x, x2, x3,… are in G.P.
∴ a = 1, r = x,
nth term = arn-1 = xn-1
nth term of arithmetico-geometric sequence is
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.5 Q1 (ii)

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.5

(iii) 1, 2 × 3, 3 × 9, 4 × 27, 5 × 81, ……
Solution:
1, 2 × 3, 3 × 9, 4 × 27, 5 × 81, …..
Here, 1, 2, 3, 4, 5, … are in A.P.
∴ a = 1, d = 1
∴ nth term = a + (n – 1)d
= 1 + (n – 1)1
= n
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.5 Q1 (iii)

(iv) 3, 12, 36, 96, 240, ……
Solution:
3, 12, 36, 96, 240, ……
i.e., 1 × 3, 2 × 6, 3 × 12, 4 × 24, 5 × 48, …….
Here, 1, 2, 3, 4, 5, ….. are in A.P.
∴ nth term = n
Also, 3, 6, 12, 24, 48, ….. are in G.P.
∴ a = 3, r = 2
∴ nth term = arn-1 = 3 . (2n-1)
∴ nth term of arithmetico-geometric sequence is
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.5 Q1 (iv)

Question 2.
Find the sum to infinity of the following arithmetico-geometric sequence.
(i) \(1, \frac{2}{4}, \frac{3}{16}, \frac{4}{64}, \ldots\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.5 Q2 (i)

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.5

(ii) \(3, \frac{6}{5}, \frac{9}{25}, \frac{12}{125}, \frac{15}{625}, \ldots\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.5 Q2 (ii)
∴ \(\frac{4}{5} S=\frac{15}{4}\)
∴ S = \(\frac{75}{16}\)

(iii) \(1, \frac{-4}{3}, \frac{7}{9}, \frac{-10}{27} \ldots\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.5 Q2 (iii)

Class 11 Maharashtra State Board Maths Solution 

Sequences and Series Class 11 Maths 2 Exercise 2.4 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 2 Sequences and Series Ex 2.4 Questions and Answers.

11th Maths Part 2 Sequences and Series Exercise 2.4 Questions And Answers Maharashtra Board

Question 1.
Verify whether the following sequences are H.P.
(i) \(\frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \ldots\)
Solution:
\(\frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \ldots\)
Here, the reciprocal sequence is 3, 5, 7, 9,…
t1 = 3, t2 = 5, t3 = 7, t4 = 9, …..
t2 – t1 = t3 – t2 = t4 – t3 = 2 = constant
∴ The reciprocal sequence is an A.P.
∴ The given sequence is a H.P.

(ii) \(\frac{1}{3}, \frac{1}{6}, \frac{1}{12}, \frac{1}{24}, \ldots\)
Solution:
\(\frac{1}{3}, \frac{1}{6}, \frac{1}{12}, \frac{1}{24}, \ldots\)
Here, the reciprocal sequence is 3, 6, 12, 24,…
t1 = 3, t2 = 6, t3 = 12, ……
t2 – t1 = 3, t3 – t2 = 6
t2 – t1 ≠ t3 – t2
∴ The reciprocal sequence is not an A.P.
∴ The given sequence is not a H.P.

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.4

(iii) \(5, \frac{10}{17}, \frac{10}{32}, \frac{10}{47}, \ldots\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.4 Q1 (iii)
∴ The reciprocal sequence is an A.P.
∴ The given sequence is a H.P.

Question 2.
Find the nth term and hence find the 8th term of the following HPs.
(i) \(\frac{1}{2}, \frac{1}{5}, \frac{1}{8}, \frac{1}{11}, \ldots\)
Solution:
\(\frac{1}{2}, \frac{1}{5}, \frac{1}{8}, \frac{1}{11}, \ldots\) are in H.P.
∴ 2, 5, 8, 11,… are in A.P.
∴ a = 2, d = 3
tn = a + (n – 1)d
= 2 + (n – 1)(3)
= 3n – 1
∴ nth term of H.P. = \(\frac{1}{3 n-1}\)
∴ 8th term of H.P. = \(\frac{1}{3(8)-1}\) = \(\frac{1}{23}\)

(ii) \(\frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \frac{1}{10}, \ldots\)
Solution:
\(\frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \frac{1}{10}, \ldots\) are in H.P.
∴ 4, 6, 8, 10, … are in A.P.
∴ a = 4, d = 2
tn = a + (n – 1)d
= 4 + (n – 1) (2)
= 2n + 2
∴ nth term of H.P. = \(\frac{1}{2 n+2}\)
∴ 8th term of H.P. = \(\frac{1}{2(8)+2}\) = \(\frac{1}{18}\)

(iii) \(\frac{1}{5}, \frac{1}{10}, \frac{1}{15}, \frac{1}{20}, \ldots\)
Solution:
\(\frac{1}{5}, \frac{1}{10}, \frac{1}{15}, \frac{1}{20}, \ldots\) are in H.P.
∴ 5, 10, 15, 20, … are in A.P.
∴ a = 5, d = 5
tn = a + (n – 1)d
= 5 + (n – 1) (5)
= 5n
∴ nth term of H.P. = \(\frac{1}{5 n}\)
∴ 8th term of H.P. = \(\frac{1}{5(8)}\) = \(\frac{1}{40}\)

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.4

Question 3.
Find A.M. of two positive numbers whose G.M. and H.M. are 4 and \(\frac{16}{5}\) respectively.
Solution:
G.M. = 4, H.M. = \(\frac{16}{5}\)
Now, (G.M.)2 = (A.M.) (H.M.)
∴ 42 = A.M. × \(\frac{16}{5}\)
∴ A.M. = 16 × \(\frac{5}{16}\)
∴ A.M. = 5

Question 4.
Find H.M. of two positive numbers whose A.M. and G.M. are \(\frac{15}{2}\) and 6.
Solution:
A.M. = \(\frac{15}{2}\), G.M. = 6
Now, (G.M.)2 = (A.M.) (H.M.)
∴ 62 = \(\frac{15}{2}\) × H.M.
∴ H.M. = 36 × \(\frac{2}{15}\)
∴ H.M. = \(\frac{24}{5}\)

Question 5.
Find G.M. of two positive numbers whose A.M. and H.M. are 75 and 48.
Solution:
A.M. = 75, H.M. = 48
Now, (G.M.)2 = (A.M.) (H.M.)
∴ (G.M.)2 = 75 × 48
∴ (G.M.)2 = 25 × 3 × 16 × 3
∴ (G.M.)2 = 52 × 42 × 32
∴ G.M. = 5 × 4 × 3
∴ G.M. = 60

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.4

Question 6.
Insert two numbers between \(\frac{1}{4}\) and \(\frac{1}{3}\) so that the resulting sequence is a H.P.
Solution:
Let the required numbers be \(\frac{1}{\mathrm{H}_{1}}\) and \(\frac{1}{\mathrm{H}_{2}}\).
∴ \(\frac{1}{4}, \frac{1}{\mathrm{H}_{1}}, \frac{1}{\mathrm{H}_{2}}, \frac{1}{3}\) are in H.P.
∴ 4, H1, H2, 3 are in A.P.
t1 = 4, t2 = H1, t3 = H2, t4 = 3
∴ t1 = a = 4, t4 = 3
tn = a + (n – 1)d
t4 = 4 + (4 – 1)d
3 = 4 + 3d
3d = -1
∴ d = \(\frac{-1}{3}\)
H1 = t2 = a + d = 4 – \(\frac{1}{3}\) = \(\frac{11}{3}\)
H2 = t3 = a + 2d = 4 – \(\frac{2}{3}\) = \(\frac{10}{3}\)
∴ For resulting sequence to be H.P. we need to insert numbers \(\frac{3}{11}\) and \(\frac{3}{10}\).

Question 7.
Insert two numbers between 1 and -27 so that the resulting sequence is a G.P.
Solution:
Let the required numbers be G1 and G2.
∴ 1, G1, G2, -27 are in G.P.
t1 = 1, t2 = G1, t3 = G2, t4 = -27
∴ t1 = a = 1
tn = arn-1
t4 = (1) r4-1
-27 = r3
r3 = (-3)3
∴ r = -3
∴ G1 = t2 = ar = 1(-3) = -3
G2 = t3 = ar2 = 1(-3)2 = 9
∴ For resulting sequence to be G.P. we need to insert numbers -3 and 9.

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.4

Question 8.
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by \(\frac{18}{5}\), find the numbers.
Solution:
Let a and b be the two numbers.
A = \(\frac{a+b}{2}\), G = \(\sqrt{a b}\), H = \(\frac{2 a b}{a+b}\)
According to the given conditions,
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.4 Q8
Consider, G = A – 2 = 10 – 2 = 8
\(\sqrt{a b}\) = 8
ab = 64
a(20 – a) = 64 …..[From (i)]
a2 – 20a + 64 = 0
(a – 4)(a – 16) = 0
∴ a = 4 or a = 16
When a = 4, b = 20 – 4 = 16
When a = 16, b = 20 – 16 = 4
∴ The two numbers are 4 and 16.

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.4

Question 9.
Find two numbers whose A.M. exceeds their G.M. by \(\frac{1}{2}\) and their H.M. by \(\frac{25}{26}\).
Solution:
Let a and b be the two numbers.
A = \(\frac{a+b}{2}\), G = \(\sqrt{a b}\), H = \(\frac{2 a b}{a+b}\)
According to the given conditions,
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.4 Q9
\(\sqrt{a b}\) = 6
ab = 36
a(13 – a) = 36 ……[From (i)]
a2 – 13a + 36 = 0
(a – 4)(a – 9) = 0
∴ a = 4 or a = 9
When a = 4, b = 13 – 4 = 9
When a = 9, b = 13 – 9 = 4
∴ The two numbers are 4 and 9.

Class 11 Maharashtra State Board Maths Solution 

Sequences and Series Class 11 Maths 2 Exercise 2.3 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 2 Sequences and Series Ex 2.3 Questions and Answers.

11th Maths Part 2 Sequences and Series Exercise 2.3 Questions And Answers Maharashtra Board

Question 1.
Determine whether the sum to infinity of the following G.P.s exist, if exists find them.
(i) \(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3 Q1 (i)

(ii) \(2, \frac{4}{3}, \frac{8}{9}, \frac{16}{27}, \ldots\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3 Q1 (ii)

(iii) \(-3,1, \frac{-1}{3}, \frac{1}{9}, \ldots\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3 Q1 (iii)

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3

(iv) \(\frac{1}{5}, \frac{-2}{5}, \frac{4}{5}, \frac{-8}{5}, \frac{16}{5}, \ldots\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3 Q1 (iv)

(v) 9, 8.1, 7.29, ……
Solution:
9, 8.1, 7.29, …..
Here, a = 9, r = \(\frac{8.1}{9}\) = 0.9, |r| < 1
∴ Sum to infinity exists.
∴ Sum to infinity = \(\frac{\mathrm{a}}{1-\mathrm{r}}\)
= \(\frac{9}{1-0.9}\)
= \(\frac{9}{0.1}\)
= 90

Question 2.
Express the following recurring decimals as rational numbers.
(i) \(0 . \overline{7}\)
(ii) \(2 . \overline{4}\)
(iii) \(2.3 \overline{5}\)
(iv) \(51.0 \overline{2}\)
Solution:
(i) \(0 . \overline{7}\) = 0.7777… = 0.7 + 0.07 + 0.007 + ….
The terms 0.7, 0.07, 0.007,… are in G.P.
∴ a = 0.7, r = \(\frac{0.07}{0.7}\) = 0.1, |r| = |0.1| < 1
∴ Sum to infinity exists.
∴ Sum to infinity
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3 Q2 (i)

(ii) \(2 . \overline{4}\) = 2.444 … = 2 + 0.4 + 0.04 + 0.004 + …
The terms 0.4, 0.04, 0.004,… are in G.P.
∴ a = 0.4, r = \(\frac{0.07}{0.7}\) = 0.1, |r| = 10.11 < 1
∴ Sum to infinity exists.
∴ Sum to infinity
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3 Q2 (ii)

(iii) \(2.3 \overline{5}\) = 2.3555… = 2.3 + 0.05 + 0.005 + 0.0005 + …
The terms 0.05,0.005,0.0005,… are in G.P.
∴ a = 0.05, r = \(\frac{0.005}{0.05}\) = 0.1, |r| = |0.1| < 1
∴ Sum to infinity exists.
∴ Sum to infinity
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3 Q2 (iii)

(iv) \(51.0 \overline{2}\) = 51.0222 …. = 51 + 0.02 + 0.002 + 0.0002 + …..
The terms 0.02, 0.002, 0.0002,… are in G.P.
∴ a = 0.02, r = \(\frac{0.002}{0.02}\) = 0.1, |r| = |0.1| < 1
∴ Sum to infinity exists.
∴ Sum to infinity
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3 Q2 (iv)

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3

Question 3.
If the common ratio of a G.P. is \(\frac{2}{3}\) and the sum to infinity is 12, find the first term.
Solution:
r = \(\frac{2}{3}\), sum to infinity = 12 ….. [Given]
Sum to infinity = \(\frac{\mathrm{a}}{1-\mathrm{r}}\)
12 = \(\frac{a}{1-\frac{2}{3}}\)
a = 12 × \(\frac{1}{3}\)
∴ a = 4

Question 4.
If the first term of the G.P. is 6 and its sum to infinity is \(\frac{96}{17}\), find the common ratio.
Solution:
a = 6, sum to infinity = \(\frac{96}{17}\) …..[Given]
Sum to infinity = \(\frac{\mathrm{a}}{1-\mathrm{r}}\)
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3 Q4

Question 5.
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15, find the G.P.
Solution:
Let the required G.P. be a, ar, ar2, ar3, …..
Sum to infinity of this G.P. = 5
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3 Q5

Question 6.
Find
(i) \(\sum_{r=1}^{\infty} 4(0.5)^{r}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3 Q6 (i)

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3

(ii) \(\sum_{r=1}^{\infty}\left(-\frac{1}{3}\right)^{r}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3 Q6 (ii)
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3 Q6 (ii).1

(iii) \(\sum_{r=0}^{\infty}(-8)\left(-\frac{1}{2}\right)^{r}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3 Q6 (iii)

(iv) \(\sum_{n=1}^{\infty} 0.4^{n}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3 Q6 (iv)

Question 7.
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of
(i) the areas of all the squares.
(ii) the perimeters of all the squares.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3 Q7
(i) Area of the 1st square = 12
Area of the 2nd square = \(\left(\frac{1}{\sqrt{2}}\right)^{2}\)
Area of the 3rd square = \(\left(\frac{1}{2}\right)^{2}\)
and so on.
∴ Sum of the areas of all the squares
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3 Q7.1
∴ Sum to infinity exists.
∴ Sum of the areas of all the squares = \(\frac{1}{1-\frac{1}{2}}\) = 2

(ii) Perimeter of 1st square = 4
Perimeter of 2nd square = 4\(\left(\frac{1}{\sqrt{2}}\right)\)
Perimeter of 3rd square = 4\(\left(\frac{1}{2}\right)\)
and so on.
Sum of the perimeters of all the squares
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3 Q7.2

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3

Question 8.
A ball is dropped from a height of 10 m. It bounces to a height of 6m, then 3.6 m, and so on. Find the total distance travelled by the ball.
Solution:
Here, on the first bounce, the ball will go 6 m and it will return 6 m.
On the second bounce, the ball will go 3.6 m and it will return 3.6 m, and so on.
Given that, a ball is dropped from a height of 10 m.
∴ Total distance travelled by the ball is = 10 + 2[6 + 3.6 + …]
The terms 6, 3.6 … are in G.P.
a = 6, r = 0.6, |r| = |0.6| < 1
∴ Sum to infinity exists.
∴ Total distance travelled by the ball
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.3 Q8

Class 11 Maharashtra State Board Maths Solution 

Sequences and Series Class 11 Maths 2 Exercise 2.2 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 2 Sequences and Series Ex 2.2 Questions and Answers.

11th Maths Part 2 Sequences and Series Exercise 2.2 Questions And Answers Maharashtra Board

Question 1.
For the following G.P.s, find Sn.
(i) 3, 6, 12, 24, ……..
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q1 (i)

(ii) p, q, \(\frac{\mathbf{q}^{2}}{\mathbf{p}}, \frac{\mathbf{q}^{3}}{\mathbf{p}^{2}}, \ldots\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q1 (ii)

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2

(iii) 0.7, 0.07, 0.007, …….
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q1 (iii)

(iv) √5, -5, 5√5, -25, …….
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q1 (iv)

Question 2.
For a G.P.
(i) a = 2, r = \(-\frac{2}{3}\), find S6.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q2 (i)

(ii) If S5 = 1023, r = 4, find a.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q2 (ii)

Question 3.
For a G.P.
(i) If a = 2, r = 3, Sn = 242, find n.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q3 (i)

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2

(ii) For a G.P. sum of the first 3 terms is 125 and the sum of the next 3 terms is 27, find the value of r.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q3 (ii)

Question 4.
For a G.P.
(i) If t3 = 20, t6 = 160, find S7.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q4 (i)
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q4 (i).1

(ii) If t4 = 16, t9 = 512, find S10.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q4 (ii)

Question 5.
Find the sum to n terms
(i) 3 + 33 + 333 + 3333 + …..
Solution:
Sn = 3 + 33 + 333 +….. upto n terms
= 3(1 + 11 + 111 +….. upto n terms)
= \(\frac{3}{9}\)(9 + 99 + 999 + ….. upto n terms)
= \(\frac{3}{9}\)[(10 – 1) + (100 – 1) + (1000 – 1) +… upto n terms]
= \(\frac{3}{9}\)[(10 + 100 + 1000 + … upto nterms) – (1 + 1 + 1 + ….. n times)]
But 10, 100, 1000, ….. n terms are in G.P. with
a = 10, r = \(\frac{100}{10}\) = 10
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q5 (i)

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2

(ii) 8 + 88 + 888 + 8888 + …..
Solution:
Sn = 8 + 88 + 888 + … upto n terms
= 8(1 + 11 + 111 + … upto n terms)
= \(\frac{8}{9}\)(9 + 99 + 999 + … upto n terms)
= \(\frac{8}{9}\)[(10 – 1) + (100 – 1) + (1000 – 1) +… upto n terms]
= \(\frac{8}{9}\)[(10 + 100 + 1000 + … upto n terms) – (1 + 1 + 1 + … n times)]
But 10, 100, 1000, … n terms are in G.P. with
a = 10, r = \(\frac{100}{10}\) = 10
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q5 (ii)

Question 6.
Find the sum to n terms
(i) 0.4 + 0.44 + 0.444 + …..
Solution:
Sn = 0.4 + 0.44 + 0.444 + ….. upto n terms
= 4(0.1 + 0.11 +0.111 + …. upto n terms)
= \(\frac{4}{9}\)(0.9 + 0.99 + 0.999 + … upto n terms)
= \(\frac{4}{9}\)[(1 – 0.1) + (1 – 0.01) + (1 – 0.001) … upto n terms]
= \(\frac{4}{9}\)[(1 + 1 + 1 + …n times) – (0.1 + 0.01 + 0.001 +… upto n terms)]
But 0.1, 0.01, 0.001, … n terms are in G.P. with
a = 0.1, r = \(\frac{0.01}{0.1}\) = 0.1
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q6 (i)

(ii) 0.7 + 0.77 + 0.777 + ……
Solution:
Sn = 0.7 + 0.77 + 0.777 + … upto n terms
= 7(0.1 + 0.11 + 0.111 + … upton terms)
= \(\frac{7}{9}\)(0.9 + 0.99 + 0.999 + … upto n terms)
= \(\frac{7}{9}\)[(1 – 0.1) + (1 – 0.01) + (1 – 0.001) +… upto n terms]
= \(\frac{7}{9}\)[(1 + 1 + 1 +… n times) – (0.1 + 0.01 + 0.001 +… upto n terms )]
But 0.1, 0.01, 0.001, … n terms are in G.P. with
a = 0.1, r = \(\frac{0.01}{0.1}\) = 0.1
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q6 (ii)

Question 7.
Find the sum to n terms of the sequence
(i) 0.5, 0.05, 0.005, …..
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q7 (i)

(ii) 0.2, 0.02, 0.002, ……
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q7 (ii)
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q7 (ii).1

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2

Question 8.
For a sequence, if Sn = 2(3n – 1), find the nth term, hence showing that the sequence is a G.P.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q8

Question 9.
If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P, respectively, then verify that \(\left[\frac{S}{R}\right]^{n}\) = P2.
Solution:
Let a be the 1st term and r be the common ratio of the G.P.
∴ the G.P. is a, ar, ar2, ar3, …, arn-1
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q9
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q9.1

Question 10.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn(S3n – S2n) = (S2n – Sn)2.
Solution:
Let a and r be the 1st term and common ratio of the G.P. respectively.
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q10
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q10.1

Question 11.
Find
(i) \(\sum_{r=1}^{10}\left(3 \times 2^{r}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q11 (i)

(ii) \(\sum_{r=1}^{10} 5 \times 3^{r}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2 Q11 (ii)

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.2

Question 12.
The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is Rs. 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]
Solution:
The value of a house is Rs. 15 Lac.
Appreciation rate = 5% = \(\frac{5}{100}\) = 0.05
Value of house after 1st year = 15(1 + 0.05) = 15(1.05)
Value of house after 6 years = 15(1.05) (1.05)5
= 15(1.05)6
= 15(1.34)
= 20.1 lac.

Question 13.
If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]
Solution:
Amount invested = Rs. 10000
Interest rate = \(\frac{8}{100}\) = 0.08
amount after 1st year = 10000(1 + 0.08) = 10000(1.08)
Value of the amount after n years
= 10000(1.08) × (1.08)n-1
= 10000(1.08)n
= 20000
∴ (1.08)n = 2
∴ (1.08)5 = 1.47 …..[Given]
∴ n = 10 years, (approximately)

Class 11 Maharashtra State Board Maths Solution 

Sequences and Series Class 11 Maths 2 Exercise 2.1 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 2 Sequences and Series Ex 2.1 Questions and Answers.

11th Maths Part 2 Sequences and Series Exercise 2.1 Questions And Answers Maharashtra Board

Question 1.
Check whether the following sequences are G.P. If so, write tn.
(i) 2, 6, 18, 54, ……
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q1 (i)

(ii) 1, -5, 25, -125, ………
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q1 (ii)

(iii) \(\sqrt{5}, \frac{1}{\sqrt{5}}, \frac{1}{5 \sqrt{5}}, \frac{1}{25 \sqrt{5}}, \cdots\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q1 (iii)

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1

(iv) 3, 4, 5, 6, ……
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q1 (iv)

(v) 7, 14, 21, 28, ……
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q1 (v)

Question 2.
For the G.P.
(i) If r = \(\frac{1}{3}\), a = 9, find t7.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q2 (i)

(ii) If a = \(\frac{7}{243}\), r = 3, find t6.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q2 (ii)

(iii) If r = -3 and t6 = 1701, find a.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q2 (iii)

(iv) If a = \(\frac{2}{3}\), t6 = 162, find r.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q2 (iv)

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1

Question 3.
Which term of the G. P. 5, 25, 125, 625, …… is 510?
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q3

Question 4.
For what values of x, the terms \(\frac{4}{3}\), x, \(\frac{4}{27}\) are in G. P.?
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q4

Question 5.
If for a sequence, \(\mathrm{t}_{\mathrm{n}}=\frac{5^{n-3}}{2^{n-3}}\), show that the sequence is a G. P. Find its first term and the common ratio.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q5
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q5.1

Question 6.
Find three numbers in G. P. such that their sum is 21 and the sum of their squares is 189.
Solution:
Let the three numbers in G. P. be \(\frac{a}{r}\), a, ar.
According to the given conditions,
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q6
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q6.1
When a = 6, r = 2,
\(\frac{a}{r}\) = 3, a = 6, ar = 12
Hence, the three numbers in G.P. are 12, 6, 3 or 3, 6, 12.

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1

Check:
If sum of the three numbers is 21 and sum of their squares is 189, then our answer is correct.
Sum of the numbers = 12 + 6 + 3 = 21
Sum of the squares of the numbers = 122 + 62 + 32
= 144 + 36 + 9
= 189
Thus, our answer is correct.

Question 7.
Find four numbers in G. P. such that the sum of the middle two numbers is \(\frac{10}{3}\) and their product is 1.
Solution:
Let the four numbers in G.P. be \(\frac{a}{r^{3}}, \frac{a}{r}, a r, a r^{3}\)
According to the given conditions,
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q7
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q7.1

Question 8.
Find five numbers in G. P. such that their product is 1024 and the fifth term is square of the third term.
Solution:
Let the five numbers in G. P. be
\(\frac{a}{r^{2}}, \frac{a}{r}, a, a r, a r^{2}\)
According to the given conditions,
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q8
Hence, the five numbers in G.P. are
1, 2, 4, 8, 16 or 1, -2, 4, -8, 16.

Question 9.
The fifth term of a G. P. is x, the eighth term of a G.P. is y and the eleventh term of a G.P. is z, verify whether y2 = xz.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q9

Question 10.
If p, q, r, s are in G.P., show that p + q, q + r, r + s are also in G. P.
Solution:
p, q, r, s are in G.P.
∴ \(\frac{\mathrm{q}}{\mathrm{p}}=\frac{\mathrm{r}}{\mathrm{q}}=\frac{\mathrm{s}}{\mathrm{r}}\)
Let \(\frac{\mathrm{q}}{\mathrm{p}}=\frac{\mathrm{r}}{\mathrm{q}}=\frac{\mathrm{s}}{\mathrm{r}}\) = k
∴ q = pk, r = qk, s = rk
We have to prove that p + q, q + r, r + s are in G.P.
i.e., to prove that \(\frac{\mathrm{q}+\mathrm{r}}{\mathrm{p}+\mathrm{q}}=\frac{\mathrm{r}+\mathrm{s}}{\mathrm{q}+\mathrm{r}}\)
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q10
∴ p + q, q + r, r + s are in G.P.

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1

Question 11.
The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of the 5th hour?
Solution:
Since the number of bacteria in culture doubles every hour, increase in number of bacteria after every hour is in G.P.
∴ a = 50, r = \(\frac{100}{50}\) = 2
tn = arn-1
To find the number of bacteria at the end of the 5th hour.
(i.e., to find the number of bacteria at the beginning of the 6th hour, i.e., to find t6.)
∴ t6 = ar5
= 50 × (25)
= 50 × 32
= 1600

Question 12.
A ball is dropped from a height of 80 ft. The ball is such that it rebounds \(\left(\frac{3}{4}\right)^{\text {th }}\) of the height it has fallen. How high does the ball rebound on the 6th bounce? How high does the ball rebound on the nth bounce?
Solution:
Since the ball rebounds \(\left(\frac{3}{4}\right)^{\text {th }}\) of the height it has fallen, the height in successive bounce is in G.P.
1st height in the bounce = 80 × \(\frac{3}{4}\)
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q12

Question 13.
The numbers 3, x and x + 6 are in G. P. Find
(i) x
(ii) 20th term
(iii) nth term.
Solution:
(i) 3, x and x + 6 are in G. P.
\(\frac{x}{3}=\frac{x+6}{x}\)
x2 = 3x + 18
x2 – 3x – 18 = 0
(x – 6) (x + 3) = 0
x = 6, -3
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q13

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1

Question 14.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning, write down the number of mosquitoes after
(i) 3 years
(ii) 10 years
(iii) n years
Solution:
a = 200, r = 1 + \(\frac{10}{100}\) = \(\frac{11}{10}\)
Mosquitoes at the end of 1st year = 200 × \(\frac{11}{10}\)
(i) Number of mosquitoes after 3 years
= 200 × \(\frac{11}{10} \times\left(\frac{11}{10}\right)^{2}\)
= 200 \(\left(\frac{11}{10}\right)^{3}\)
= 200 (1.1)3

(ii) Number of mosquitoes after 10 years = 200 (1.1)10

(iii) Number of mosquitoes after n years = 200 (1.1)n

Question 15.
The numbers x – 6, 2x and x2 are in G. P. Find
(i) x
(ii) 1st term
(iii) nth term
Solution:
(i) x – 6, 2x and x are in Geometric progression.
∴ \(\frac{2 x}{x-6}=\frac{x^{2}}{2 x}\)
4x2 = x2(x – 6)
4 = x – 6
x = 10

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1

(ii) t1 = x – 6 = 10 – 6 = 4

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q15

Class 11 Maharashtra State Board Maths Solution 

Complex Numbers Class 11 Maths 2 Miscellaneous Exercise 1 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 1 Complex Numbers Miscellaneous Exercise 1 Questions and Answers.

11th Maths Part 2 Complex Numbers Miscellaneous Exercise 1 Questions And Answers Maharashtra Board

(I) Select the correct answer from the given alternatives.

Question 1.
If n is an odd positive integer, then the value of 1 + (i)2n + (i)4n + (i)6n is:
(A) -4i
(B) 0
(C) 4i
(D) 4
Answer:
(B) 0
Hint:
1 + (i2)n + (i4)n + (i2)3n
= 1 – 1 + 1 – 1 …..(n odd positive integer)
= 0

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 2.
The value of \(\frac{i^{592}+i^{590}+i^{588}+i^{586}+i^{584}}{i^{582}+i^{580}+i^{578}+i^{576}+i^{574}}\) is equal to:
(A) -2
(B) 1
(C) 0
(D) -1
Answer:
(D) -1
Hint:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 I Q2

Question 3.
√-3 √-6 is equal to
(A) -3√2
(B) 3√2
(C) 3√2 i
(D) -3√2 i
Answer:
(A) -3√2
Hint:
√-3 √-6
= (√3 i) (√6 i)
= 3√2 (-1)
= -3√2

Question 4.
If ω is a complex cube root of unity, then the value of ω99 + ω100 + ω101 is:
(A) -1
(B) 1
(C) 0
(D) 3
Answer:
(C) 0
Hint:
ω99 + ω100 + ω101
= ω99 (1 + ω + ω2)
= ω99 (0)
= 0

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 5.
If z = r(cos θ + i sin θ), then the value of \(\frac{z}{\bar{z}}+\frac{\bar{z}}{z}\) is
(A) cos 2θ
(B) 2cos 2θ
(C) 2cos θ
(D) 2sin θ
Answer:
(B) 2cos 2θ
Hint:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 I Q5

Question 6.
If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers
(A) 0, 1
(B) 1, 1
(C) 1, 0
(D) -1, 1
Answer:
(B) 1, 1
Hint:
(1 + ω)7
= (-ω2)7
= -ω14
= -ω23)4
= -ω2
= 1 + ω
A = 1, B = 1

Question 7.
The modulus and argument of (1 + i√3)8 are respectively
(A) 2 and \(\frac{2 \pi}{3}\)
(B) 256 and \(\frac{8 \pi}{3}\)
(C) 256 and \(\frac{2 \pi}{3}\)
(D) 64 and \(\frac{4 \pi}{3}\)
Answer:
(C) 256 and \(\frac{2 \pi}{3}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 I Q7

Question 8.
If arg (z) = θ, then arg \(\overline{(\mathrm{z})}\) =
(A) -θ
(B) θ
(C) π – θ
(D) π + θ
Answer:
(A) -θ
Hint:
Let z = \(\mathrm{re}^{\mathrm{i} \theta}\), then \(\overline{\mathrm{z}}=\mathrm{r} \mathrm{e}^{-\mathrm{i} \theta}\)
∴ arg \(\overline{\mathbf{z}}\) = -θ.

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 9.
If -1 + √3 i = \(\mathrm{re}^{\mathrm{i} \theta}\), then θ =
(A) –\(\frac{2 \pi}{3}\)
(B) \(\frac{\pi}{3}\)
(C) –\(\frac{\pi}{3}\)
(D) \(\frac{2 \pi}{3}\)
Answer:
(D) \(\frac{2 \pi}{3}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 I Q9

Question 10.
If z = x + iy and |z – zi| = 1, then
(A) z lies on X-axis
(B) z lies on Y-axis
(C) z lies on a rectangle
(D) z lies on a circle
Answer:
(D) z lies on a circle
Hint:
|z – zi | = |z| |1 – i| = 1
∴ |z| = \(\frac{1}{\sqrt{2}}\)
∴ x2 + y2 = \(\frac{1}{2}\)

(II) Answer the following:

Question 1.
Simplify the following and express in the form a + ib.
(i) 3 + √-64
Solution:
3 + √-64
= 3 + √64 √-1
= 3 + 8i

(ii) (2i3)2
Solution:
(2i3)2
= 4i6
= 4(i2)3
= 4(-1)3
= -4 …..[∵ i2 = -1]
= -4 + 0i

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

(iii) (2 + 3i) (1 – 4i)
Solution:
(2 + 3i)(1 – 4i)
= 2 – 8i + 3i – 12i2
= 2 – 5i – 12(-1) …..[∵ i2 = -1]
= 14 – 5i

(iv) \(\frac{5}{2}\)i(-4 – 3i)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q1 (iv)

(v) (1 + 3i)2 (3 + i)
Solution:
(1 + 3i)2 (3 + i)
= (1 + 6i + 9i2)(3 + i)
= (1 + 6i – 9)(3 + i) ……[∵ i2 = -1]
= (-8 + 6i)(3 + i)
= -24 – 8i + 18i + 6i2
= -24 + 10i + 6(-1)
= -24 + 10i – 6
= -30 + 10i

(vi) \(\frac{4+3 i}{1-i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q1 (vi)

(vii) \(\left(1+\frac{2}{i}\right)\left(3+\frac{4}{i}\right)(5+i)^{-1}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q1 (vii)

(viii) \(\frac{\sqrt{5}+\sqrt{3 i}}{\sqrt{5}-\sqrt{3} i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q1 (viii)

(ix) \(\frac{3 i^{5}+2 i^{7}+i^{9}}{i^{6}+2 i^{8}+3 i^{18}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q1 (ix)

(x) \(\frac{5+7 i}{4+3 i}+\frac{5+7 i}{4-3 i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q1 (x)

Question 2.
Solve the following equations for x, y ∈ R
(i) (4 – 5i)x + (2 + 3i)y = 10 – 7i
Solution:
(4 – 5i)x + (2 + 3i)y = 10 – 7i
(4x + 2y) + (3y – 5x) i = 10 – 7i
Equating real and imaginary parts, we get
4x + 2y= 10 i.e., 2x + y = 5 ……(i)
and 3y – 5x = -7 ……(ii)
Equation (i) × 3 – equation (ii) gives
11x = 22
∴ x = 2
Putting x = 2 in (i), we get
2(2) + y = 5
∴ y = 1
∴ x = 2 and y = 1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

(ii) \(\frac{x+i y}{2+3 i}\) = 7 – i
Solution:
\(\frac{x+i y}{2+3 i}\) = 7 – i
x + iy = (7 – i)(2 + 3i)
x + iy = 14 + 21i – 2i – 3i2
x + iy = 14 + 19i – 3(-1)
x + iy = 17 + 19i
Equating real and imaginary parts, we get
∴ x = 17 and y = 19

(iii) (x + iy) (5 + 6i) = 2 + 3i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q2 (iii)

(iv) 2x + i9 y(2 + i) = x i7 + 10 i16
Solution:
2x + i9 y(2 + i) = x i7 + 10 i16
2x + (i4)2 . i . y(2 + i) = x(i2)3 . i + 10 . (i4)4
2x + (1)2 . iy(2 + i) = x(-1)3 . i + 10(1)4 ……..[∵ i2 = -1, i4 = 1]
2x + 2yi + y i2 = -xi + 10
2x + 2yi – y + xi = 10
(2x – y) + (x + 2y)i = 10 + 0 . i
Equating real and imaginary parts, we get
2x – y = 10 ……(i)
and x + 2y = 0 ……..(ii)
Equation (i) × 2 + equation (ii) gives, we get
5x = 20
∴ x = 4
Putting x = 4 in (i), we get
2(4) – y = 10
y = 8 – 10
∴ y = -2
∴ x = 4 and y = -2

Question 3.
Evaluate
(i) (1 – i + i2)-15
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q3 (i)

(ii) i131 + i49
Solution:
i131 + i49
= (i4)32 . i3 + (i4)12 . i
= (1)32 (-i) + (1)12 . i
= -i + i
= 0

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 4.
Find the value of
(i) x3 + 2x2 – 3x + 21, if x = 1 + 2i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q4 (i)

(ii) x4 + 9x3 + 35x2 – x + 164, if x = -5 + 4i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q4 (ii)

Question 5.
Find the square roots of
(i) -16 + 30i
Solution:
Let \(\sqrt{-16+30 \mathrm{i}}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
-16 + 30i = a2 + b2 i2 + 2abi
-16 + 30i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = -16 and 2ab = 30
a2 – b2 = -16 and b = \(\frac{15}{a}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q5 (i)

(ii) 15 – 8i
Solution:
Let \(\sqrt{15-8 i}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
15 – 8i = a2 + b2 i2 + 2abi
15 – 8i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 15 and 2ab = -8
a2 – b2 = 15 and b = \(\frac{-4}{a}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q5 (ii)
When a = 4, b = \(\frac{-4}{4}\) = -1
When a = -4, b = \(\frac{-4}{-4}\) = 1
∴ \(\sqrt{15-8 i}\) = ±(4 – i)

(iii) 2 + 2√3 i
Solution:
Let \(\sqrt{2+2 \sqrt{3}}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
2 + 2√3 i = a2 + b2 i2 + 2abi
2 + 2√3 i = a2 – b2 + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 2 and 2ab = 2√3
a2 – b2 = 2 and b = \(\frac{\sqrt{3}}{a}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q5 (iii)

(iv) 18i
Solution:
Let √18i = a + bi, where a, b ∈ R.
Squaring on both sides, we get
18i = a2 + b2 i2 + 2abi
0 + 18i = a2 – b2 + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 0 and 2ab = 18
a2 – b2 = 0 and b = \(\frac{9}{a}\)
\(a^{2}-\left(\frac{9}{a}\right)^{2}=0\)
\(a^{2}-\frac{81}{a^{2}}=0\)
a4 – 81 = 0
(a2 – 9) (a2 + 9) = 0
a2 = 9 or a2 = -9
But a ∈ R
∴ a2 ≠ -9
∴ a2 = 9
∴ a = ± 3
When a = 3, b = \(\frac{9}{3}\) = 3
When a = -3, b = \(\frac{9}{-3}\) = -3
∴ √18i = ±(3 + 3i) = ±3(1 + i)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

(v) 3 – 4i
Solution:
Let \(\sqrt{3-4 i}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
3 – 4i = a2 + b2 i2 + 2abi
3 – 4i = a2 – b2 + 2abi ……[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 3 and 2ab = -4
a2 – b2 = 3 and b = \(\frac{-2}{a}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q5 (v)

(vi) 6 + 8i
Solution:
Let \(\sqrt{6+8 i}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
6 + 8i = a2 + b2 i2 + 2abi
6 + 8i = a2 – b2 + 2abi ……[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 6 and 2ab = 8
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q5 (vi)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q5 (vi).1

Question 6.
Find the modulus and argument of each complex number and express it in the polar form.
(i) 8 + 15i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (i)

(ii) 6 – i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (ii)

(iii) \(\frac{1+\sqrt{3} \mathbf{i}}{2}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (iii)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (iii).1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

(iv) \(\frac{-1-\mathbf{i}}{\sqrt{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (iv)

(v) 2i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (v)

(vi) -3i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (vi)

(vii) \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \mathbf{i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (vii)

Question 7.
Represent 1 + 21, 2 – i, -3 – 2i, -2 + 3i by points in Argand’s diagram.
Solution:
The complex numbers 1 + 2i, 2 – i, -3 – 2i, -2 + 3i will be represented by the points A(1, 2), B(2, -1), C(-3, -2), D(-2, 3) respectively as shown below:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q7

Question 8.
Show that z = \(\frac{5}{(1-i)(2-i)(3-i)}\) is purely imaginary number.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q8

Question 9.
Find the real numbers x and y such that \(\frac{x}{1+2 i}+\frac{y}{3+2 i}=\frac{5+6 i}{-1+8 i}\)
Solution:
\(\frac{x}{1+2 i}+\frac{y}{3+2 i}=\frac{5+6 i}{-1+8 i}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q9
(3x + y) + 2(x + y)i = 5 + 6i
Equating real and imaginary parts, we get
3x + y = 5 ……(i)
and 2(x + y) = 6
i.e., x + y = 3 …….(ii)
Subtracting (ii) from (i), we get
2x = 2
∴ x = 1
Putting x = 1 in (ii), we get
1 + y = 3
∴ y = 2
∴ x = 1, y = 2

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 10.
Show that \(\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{10}+\left(\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right)^{10}=0\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q10

Question 11.
Show that \(\left(\frac{1+i}{\sqrt{2}}\right)^{8}+\left(\frac{1-i}{\sqrt{2}}\right)^{8}=2\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q11
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q11.1

Question 12.
Convert the complex numbers in polar form and also in exponential form.
(i) z = \(\frac{2+6 \sqrt{3} i}{5+\sqrt{3} i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q12 (i)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q12 (i).1

(ii) z = -6 + √2 i
Solution:
z = -6 + √2 i
∴ a = -6, b = √2
i.e. a < 0, b > 0
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q12 (ii)

(iii) \(\frac{-3}{2}+\frac{3 \sqrt{3} i}{2}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q12 (iii)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q12 (iii).1

Question 13.
If x + iy = \(\frac{a+i b}{a-i b}\), prove that x2 + y2 = 1.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q13

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 14.
Show that z = \(\left(\frac{-1+\sqrt{-3}}{2}\right)^{3}\) is a rational number.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q14

Question 15.
Show that \(\frac{1-2 i}{3-4 i}+\frac{1+2 i}{3+4 i}\) is real.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q15
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q15.1

Question 16.
Simplify
(i) \(\frac{\mathrm{i}^{29}+\mathrm{i}^{39}+\mathrm{i}^{49}}{\mathrm{i}^{30}+\mathrm{i}^{40}+\mathrm{i}^{50}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q16 (i)

(ii) \(\left(\mathrm{i}^{65}+\frac{1}{\mathrm{i}^{145}}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q16 (ii)

(iii) \(\frac{\mathrm{i}^{238}+\mathrm{i}^{236}+\mathrm{i}^{234}+\mathrm{i}^{232}+\mathrm{i}^{230}}{\mathrm{i}^{228}+\mathrm{i}^{226}+\mathrm{i}^{224}+\mathrm{i}^{222}+\mathrm{i}^{220}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q16 (iii)

Question 17.
Simplify \(\left[\frac{1}{1-2 i}+\frac{3}{1+i}\right]\left[\frac{3+4 i}{2-4 i}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q17
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q17.1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 18.
If α and β are complex cube roots of unity, prove that (1 – α) (1 – β) (1 – α2) (1 – β2) = 9.
Solution:
α and β are the complex cube roots of unity.
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q18

Question 19.
If ω is a complex cube root of unity, prove that (1 – ω + ω2)6 + (1 + ω – ω2)6 = 128.
Solution:
ω is the complex cube root of unity.
∴ ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2
∴ L.H.S. = (1 – ω + ω2)6 + (1 + ω – ω2)6
= [(1 + ω2) – ω]6 + [(1 + ω) – ω2]6
= (-ω – ω))6 + (-ω2 – ω2)6
= (-2ω)6 + (-2ω2)6
= 64ω6 + 64ω12
= 64(ω3)2 + 64(ω3)4
= 64(1)2 + 64(1)4
= 128
= R.H.S.

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 20.
If ω is the cube root of unity, then find the value of \(\left(\frac{-1+\mathbf{i} \sqrt{3}}{2}\right)^{18}+\left(\frac{-1-\mathbf{i} \sqrt{3}}{2}\right)^{18}\)
Solution:
If ω is the complex cube root of unity, then
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q20
Given Expression = ω18 + (ω2)18
= ω18 + ω36
= (ω3)6 + (ω3)12
= (1)6 + (1)12
= 2

Class 11 Maharashtra State Board Maths Solution 

Complex Numbers Class 11 Maths 2 Exercise 1.4 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 1 Complex Numbers Ex 1.4 Questions and Answers.

11th Maths Part 2 Complex Numbers Exercise 1.4 Questions And Answers Maharashtra Board

Question 1.
Find the value of
(i) ω18
(ii) ω21
(iii) ω-30
(iv) ω-105
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q1

Question 2.
If ω is the complex cube root of unity, show that
(i) (2 – ω)(2 – ω2) = 7
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
L.H.S. = (2 – ω)(2 – ω2)
= 4 – 2ω2 – 2ω + ω3
= 4 – 2(ω2 + ω) + 1
= 4 – 2(-1) + 1
= 4 + 2 + 1
= 7
= R.H.S.

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

(ii) (1 + ω – ω2)6 = 64
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (ii)

(iii) (1 + ω)3 – (1 + ω2)3 = 0
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (iii)

(iv) (2 + ω + ω2)3 – (1 – 3ω + ω2)3 = 65
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (iv)

(v) (3 + 3ω + 5ω2)6 – (2 + 6ω + 2ω2)3 = 0
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (v)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

(vi) \(\frac{a+b \omega+c \omega^{2}}{c+a \omega+b \omega^{2}}\) = ω2
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (vi)

(vii) (a + b) + (aω + bω2) + (aω2 + bω) = 0
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (vii)

(viii) (a – b)(a – bω)(a – bω2) = a3 – b3
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (viii)

(ix) (a + b)2 + (aω + bω2)2 + (aω2+ bω)2 = 6ab
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (ix)

Question 3.
If ω is the complex cube root of unity, find the value of
(i) ω + \(\frac{1}{\omega}\)
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
\(\omega+\frac{1}{\omega}=\frac{\omega^{2}+1}{\omega}=\frac{-\omega}{\omega}=-1\)

(ii) ω2 + ω3 + ω4
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
ω2 + ω3 + ω4
= ω2(1 + ω + ω2)
= ω2(0)
= 0

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

(iii) (1 + ω2)3
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
(1 + ω2)3
= (-ω)3
= -ω3
= -1

(iv) (1 – ω – ω2)3 + (1 – ω + ω2)3
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
(1 – ω – ω2)3 + (1 – ω + ω2)3
= [1 – (ω + ω2)]3 + [(1 + ω2) – ω]3
= [1 – (-1)]2 + (-ω – ω)3
= 23 + (-2ω)3
= 8 – 8ω3
= 8 – 8(1)
= 0

(v) (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
(1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)
= (1 + ω)(1 + ω2)(1 + ω)(1 + ω2) …..[∵ ω3 = 1, ω4 = ω]
= (-ω2)(-ω)(-ω2)(-ω)
= ω6
= (ω3)2
= (1)2
= 1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

Question 4.
If α and β are the complex cube roots of unity, show that
(i) α2 + β2 + αβ = 0
(ii) α4 + β4 + α-1β-1 = 0
Solution:
α and β are the complex cube roots of unity.
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q4 (i)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q4 (ii)

Question 5.
If x = a + b, y = αa + βb and z = aβ + bα, where α and β are complex cube roots of unity, show that xyz = a3 + b3.
Solution:
x = a + b, y = αa + βb, z = aβ + bα
α and β are the complex cube roots of unity.
∴ α = \(\frac{-1+i \sqrt{3}}{2}\) and β = \(\frac{-1-i \sqrt{3}}{2}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q5

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

Question 6.
Find the equation in cartesian coordinates of the locus of z if
(i) |z| = 10
Solution:
Let z = x + iy
|z| = 10
|x + iy| = 10
\(\sqrt{x^{2}+y^{2}}\) = 10
∴ x2 + y2 = 100

(ii) |z – 3| = 2
Solution:
Let z = x + iy
|z – 3| = 2
|x + iy – 3| = 2
|(x – 3) + iy| = 2
\(\sqrt{(x-3)^{2}+y^{2}}\) = 2
∴ (x – 3)2 + y2 = 4

(iii) |z – 5 + 6i| = 5
Solution:
Let z = x + iy
|z – 5 + 6i| = 5
|x + iy – 5 + 6i| = 5
|(x – 5) + i(y + 6)| = 5
\(\sqrt{(x-5)^{2}+(y+6)^{2}}\) = 5
∴ (x – 5)2 + (y + 6)2 = 25

(iv) |z + 8| = |z – 4|
Solution:
Let z = x + iy
|z + 8| = |z – 4|
|x + iy + 8| = |x + iy – 4|
|(x + 8) + iy | = |(x – 4) + iy|
\(\sqrt{(x+8)^{2}+y^{2}}=\sqrt{(x-4)^{2}+y^{2}}\)
(x + 8)2 + y2 = (x – 4)2 + y2
x2 + 16x + 64 + y2 = x2 – 8x + 16 + y2
16x + 64 = -8x + 16
24x + 48 = 0
∴ x + 2 = 0

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

(v) |z – 2 – 2i | = |z + 2 + 2i|
Solution:
Let z = x + iy
|z – 2 – 2i| = |z + 2 + 2i|
|x + iy – 2 – 2i | = |x + iy + 2 + 2i |
|(x – 2) + i(y – 2)| = |(x + 2) + i(y + 2)|
\(\sqrt{(x-2)^{2}+(y-2)^{2}}=\sqrt{(x+2)^{2}+(y+2)^{2}}\)
(x – 2)2 + (y – 2)2 = (x + 2)2 + (y + 2)2
x2– 4x + 4 + y2 – 4y + 4 = x2 + 4x + 4 + y2 + 4y + 4
-4x – 4y = 4x + 4y
8x + 8y = 0
x + y = 0
y = -x

(vi) \(\frac{|z+3 i|}{|z-6 i|}=1\)
Solution:
Let z = x + iy
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q6 (vi)
x2 + (y + 3)2 = x2 + (y – 6)2
y2 + 6y + 9 = y2 – 12y + 36
18y – 27 = 0
2y – 3 = 0

Question 7.
Use De Moivre’s theorem and simplify the following:
(i) \(\frac{(\cos 2 \theta+i \sin 2 \theta)^{7}}{(\cos 4 \theta+i \sin 4 \theta)^{3}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q7 (i)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q7 (i).1

(ii) \(\frac{\cos 5 \theta+i \sin 5 \theta}{(\cos 3 \theta-i \sin 3 \theta)^{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q7 (ii)

(iii) \(\frac{\left(\cos \frac{7 \pi}{13}+i \sin \frac{7 \pi}{13}\right)^{4}}{\left(\cos \frac{4 \pi}{13}-i \sin \frac{4 \pi}{13}\right)^{6}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q7 (iii)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

Question 8.
Express the following in the form a + ib, a, b ∈ R, using De Moivre’s theorem.
(i) (1 – i)5
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q8 (i)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q8 (i).1

(ii) (1 + i)6
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q8 (ii)

(iii) (1 – √3 i)4
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q8 (iii)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q8 (iii).1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

(iv) (-2√3 – 2i)5
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q8 (iv)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q8 (iv).1

Class 11 Maharashtra State Board Maths Solution 

Complex Numbers Class 11 Maths 2 Exercise 1.3 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 1 Complex Numbers Ex 1.3 Questions and Answers.

11th Maths Part 2 Complex Numbers Exercise 1.3 Questions And Answers Maharashtra Board

Question 1.
Find the modulus and amplitude for each of the following complex numbers:
(i) 7 – 5i
Solution:
Let z = 7 – 5i
a = 7, b = -5
i.e. a > 0, b < 0
|z| = \(\sqrt{a^{2}+b^{2}}=\sqrt{7^{2}+(-5)^{2}}=\sqrt{49+25}=\sqrt{74}\)
Here, (7, -5) lies in 4th quadrant.
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q1 (i)

(ii) √3 + √2 i
Solution:
Let z = √3 + √2 i
a = √3, b = √2,
i.e. a > 0, b > 0
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q1 (ii)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

(iii) -8 + 15i
Solution:
Let z = -8 + 15i
a = -8, b = 15 , i.e. a < 0, b > 0
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q1 (iii)

(iv) -3(1 – i)
Solution:
Let z = -3(1 – i) = -3 + 3i
a = -3, b = 3 , i.e. a < 0, b > 0
|z| = \(\sqrt{a^{2}+b^{2}}=\sqrt{(-3)^{2}+3^{2}}=\sqrt{9+9}\) = 3√2
Here, (-3, 3) lies in 2nd quadrant.
amp(z) = π – \(\tan ^{-1}\left|\frac{b}{a}\right|\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q1 (iv)

(v) -4 – 4i
Solution:
Let z = -4 – 4i
a = -4, b = -4 , i.e. a < 0, b < 0
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q1 (v)

(vi) √3 – i
Solution:
Let z = √3 – i
a = √3, b = -1, i.e. a > 0, b < 0
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q1 (vi)

(vii) 3
Solution:
Let z = 3 + 0i
a = 3, b = 0
z is a real number, it lies on the positive real axis.
|z|= \(\sqrt{a^{2}+b^{2}}=\sqrt{3^{2}+0^{2}}=\sqrt{9+0}\) = 3
and amp (z) = 0

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

(viii) 1 + i
Solution:
Let z = 1 + i
a = 1, b = 1, i.e. a > 0, b > 0
|z| = \(\sqrt{a^{2}+b^{2}}=\sqrt{1^{2}+1^{2}}=\sqrt{1+1}=\sqrt{2}\)
Here, (1, 1) lies in 1st quadrant.
amp (z) = \(\tan ^{-1}\left(\frac{b}{a}\right)=\tan ^{-1}(1)=\frac{\pi}{4}\)

(ix) 1 + i√3
Solution:
Let z = 1 + i√3
a = 1, b = √3, i.e. a > 0, b > 0
|z| = \(\sqrt{a^{2}+b^{2}}=\sqrt{1^{2}+(\sqrt{3})^{2}}=\sqrt{1+3}=2\)
Here, (1, √3) lies in 1st quadrant.
amp (z) = \(\tan ^{-1}\left(\frac{b}{a}\right)=\tan ^{-1}(\sqrt{3})=\frac{\pi}{3}\)

(x) (1 + 2i)2 (1 – i)
Solution:
Let z = (1 + 2i)2 (1 – i)
= (1 + 4i + 4i2) (1 – i)
= [1 + 4i + 4(-1)] (1 – i) ….[∵ i2 = -1]
= (-3 + 4i) (1 – i)
= -3 + 3i + 4i – 4i2
= -3 + 7i – 4(-1)
= -3 + 7i + 4
∴ z = 1 + 7i
∴ a = 1, b = 7, i. e. a > 0, b > 0
∴ |z| = \(\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}=\sqrt{1^{2}+7^{2}}=\sqrt{1+49}=5 \sqrt{2}\)
Here, (1, 7) lies in 1st quadrant.
∴ amp(z) = \(\tan ^{-1}\left(\frac{b}{a}\right)=\tan ^{-1}(7)\)

Question 2.
Find real values of θ for which \(\left(\frac{4+3 i \sin \theta}{1-2 i \sin \theta}\right)\) is purely real.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q2

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

Question 3.
If z = 3 + 5i, then represent the z, \(\overline{\mathbf{z}}\), -z, \(\overline{\mathbf{-z}}\) in Argand’s diagram.
Solution:
z = 3 + 5i
\(\overline{\mathbf{z}}\) = 3 – 5i
-z = – 3 – 5i
\(\overline{\mathbf{-z}}\)= -3 + 5i
The above complex numbers will be represented by the points
A (3, 5), B (3, -5), C (-3, -5) , D (-3, 5) respectively as shown below:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q3

Question 4.
Express the following complex numbers in polar form and exponential form.
(i) -1 + √3 i
Solution:
Let z = – 1 + √3
a = -1, b = √3
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (i)

(ii) -i
Solution:
Let z = -i = 0 – i
a = 0, b = -1
z lies on negative imaginary Y-axis.
|z| = r = \(\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}=\sqrt{0^{2}+(-1)^{2}}\) = 1 and
θ = amp z = 270° = \(\frac{3 \pi}{2}\)
The polar form of z = r (cos θ + i sin θ)
= 1 (cos 270° + i sin 270°)
= 1 (cos \(\frac{3 \pi}{2}\) + i sin \(\frac{3 \pi}{2}\))
The exponential form of z = \(r e^{i \theta}=e^{\frac{3 \pi}{2} i}\)

(iii) -1
Solution:
Let z = -1 = -1 + 0.i
a = -1, b = 0
z lies on negative real X-axis.
|z| = r = \(\sqrt{a^{2}+b^{2}}=\sqrt{(-1)^{2}+0^{2}}\) = 1 and
θ = amp z = 180° = π
The polar form of z = r (cos θ + i sin θ)
= 1 (cos 180° + i sin 180°)
= 1 (cos π + i sin π)
The exponential form of z = \(r e^{i \theta}=e^{\pi i}\)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

(iv) \(\frac{1}{1+i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (iv)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (iv).1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (iv).2

(v) \(\frac{1+2 i}{1-3 i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (v)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (v).1

(vi) \(\frac{1+7 \mathbf{i}}{(2-\mathbf{i})^{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (vi)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (vi).1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

Question 5.
Express the following numbers in the form x + iy:
(i) \(\sqrt{3}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q5 (i)

(ii) \(\sqrt{2} \cdot\left(\cos \frac{7 \pi}{4}+i \sin \frac{7 \pi}{4}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q5 (ii)

(iii) \(7\left(\cos \left(-\frac{5 \pi}{6}\right)+i \sin \left(-\frac{5 \pi}{6}\right)\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q5 (iii)

(iv) \(e^{\frac{\pi}{3} i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q5 (iv)

(v) \(e^{\frac{-4 \pi}{3} i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q5 (v)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q5 (v).1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

(vi) \([latex]e^{\frac{5 \pi}{6} i}\)[/latex]
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q5 (vi)

Question 6.
Find the modulus and argument of the complex number \(\frac{1+2 i}{1-3 i}\).
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q6
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q6.1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q6.2
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q6.3

Question 7.
Convert the complex number \(\mathrm{z}=\frac{i-1}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}\) in the polar form.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q7
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q8

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

Question 8.
For z = 2 + 3i, verify the following:
(i) \(\overline{(\bar{z})}=z\)
Solution:
z = 2 + 3i
∴ \(\bar{z}\) = 2 – 3i
∴ \(\overline{\bar{z}}\) = 2 + 3i = z

(ii) \(\overline{z \bar{z}}=|z|^{2}\)
Solution:
z\(\bar{z}\) = (2 + 3i) (2 – 3i)
= 4 – 9i2
= 4 – 9(-1) …..[∵ i2 = -1]
= 13
|z|2 = \(\left(\sqrt{2^{2}+3^{2}}\right)^{2}\)
= 22 + 32
= 4 + 9
= 13
∴ \(\overline{z \bar{z}}=|z|^{2}\)

(iii) (z + \(\bar{z}\)) is real
Solution:
(z + \(\bar{z}\)) = (2 + 3i) + (2 – 3i)
= 2 + 3i + 2 – 3i
= 4, which is a real number.
∴ z + \(\bar{z}\) is real.

(iv) z – \(\bar{z}\) = 6i
Solution:
z – \(\bar{z}\) = (2 + 3i) – (2 – 3i)
= 2 + 3i – 2 + 3i
= 6i

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

Question 9.
z1 = 1 + i, z2 = 2 – 3i, verify the following:
(i) \(\overline{Z_{1}+Z_{2}}=\overline{Z_{1}}+\overline{Z_{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q9 (i)

(ii) \(\overline{Z_{1}-Z_{2}}=\overline{Z_{1}}-\overline{Z_{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q9 (ii)

(iii) \(\overline{Z_{1} \cdot Z_{2}}=\overline{Z_{1}} \cdot \overline{Z_{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q9 (iii)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

(iv) \(\overline{\left(\frac{\mathbf{z}_{1}}{\mathbf{z}_{2}}\right)}=\frac{\overline{\mathbf{z}}_{1}}{\overline{\mathbf{z}}_{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q9 (iv)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q9 (iv).1

Class 11 Maharashtra State Board Maths Solution 

Complex Numbers Class 11 Maths 2 Exercise 1.2 Solutions Maharashtra Board

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 1 Complex Numbers Ex 1.2 Questions and Answers.

11th Maths Part 2 Complex Numbers Exercise 1.2 Questions And Answers Maharashtra Board

Question 1.
Find the square root of the following complex numbers:
(i) -8 – 6i
Solution:
Let \(\sqrt{-8-6 i}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
-8 – 6i = (a + bi)2
-8 – 6i = a2 + b2i2 + 2abi
-8 – 6i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = -8 and 2ab = -6
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (i)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (i).1

(ii) 7 + 24i
Solution:
Let \(\sqrt{7+24 i}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
7 + 24i = (a + bi)2
7 + 24i = a2 + b2i2 + 2abi
7 + 24i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 7 and 2ab = 24
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (ii)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

(iii) 1 + 4√3 i
Solution:
Let \(\sqrt{1+4 \sqrt{3} i}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
1 + 4√3 i = (a + bi)2
1 + 4√3i = a2 + b2i2 + 2abi
1 + 4√3i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real arid imaginary parts, we get
a2 – b2 = 1 and 2ab = 4√3
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (iii)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (iii).1

(iv) 3 + 2√10 i
Solution:
Let \(\sqrt{3+2 \sqrt{10}} i\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
3 + 2√10 i = a2 + b2i2 + 2abi
3 + 2√10 i = (a2 – b2) + 2abi ……[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 3 and 2ab = 2√10
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (iv)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (iv).1

(v) 2(1 – √3 i)
Solution:
Let \(\sqrt{2(1-\sqrt{3} i)}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
2(1 – √3 i) = a2 + b2i2 + 2abi
2 – 2√3 i = (a2 – b2) + 2abi ….[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 2 and 2ab = -2√3
a2 – b2 = 2 and b = \(-\frac{\sqrt{3}}{a}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (v)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

Question 2.
Solve the following quadratic equations:
(i) 8x2 + 2x + 1 = 0
Solution:
Given equation is 8x2 + 2x + 1 = 0
Comparing with ax2 + bx + c = 0, we get
a = 8, b = 2, c = 1
Discriminant = b2 – 4ac
= (2)2 – 4 × 8 × 1
= 4 – 32
= -28 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q2 (i)

(ii) 2x2 – √3 x + 1 = 0
Solution:
Given equation is 2x2 – √3 x + 1 = 0
Comparing with ax2 + bx + c = 0, we get
a = 2, b = -√3, c = 1
Discriminant = b2 – 4ac
= (-√3)2 – 4 × 2 × 1
= 3 – 8
= -5 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q2 (ii)

(iii) 3x2 – 7x + 5 = 0
Solution:
Given equation is 3x2 – 7x + 5 = 0
Comparing with ax2 + bx + c = 0, we get
a = 3, b = -7, c = 5
Discriminant = b2 – 4ac
= (-7)2 – 4 × 3 × 5
= 49 – 60
= -11 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q2 (iii)
The roots of the given equation are \(\frac{7+\sqrt{11} \mathrm{i}}{6}\) and \(\frac{7-\sqrt{11} \mathrm{i}}{6}\)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

(iv) x2 – 4x + 13 = 0
Solution:
Given equation is x2 – 4x + 13 = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = -4, c = 13
Discriminant = b2 – 4ac
= (-4)2 – 4 × 1 × 13
= 16 – 52
= -36 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q2 (iv)
∴ The roots of the given equation are 2 + 3i and 2 – 3i.

Question 3.
Solve the following quadratic equations:
(i) x2 + 3ix + 10 = 0
Solution:
Given equation is x2 + 3ix + 10 = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = 3i, c = 10
Discriminant = b2 – 4ac
= (3i)2 – 4 × 1 × 10
= 9i2 – 40
= -9 – 40 ……[∵ i2 = -1]
= -49 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q3 (i)
∴ x = 2i or x = -5i
∴ The roots of the given equation are 2i and -5i.

(ii) 2x2 + 3ix + 2 = 0
Solution:
Given equation is 2x2 + 3ix + 2 = 0
Comparing with ax + bx + c = 0, we get
a = 2, b = 3i, c = 2
Discriminant = b2 – 4ac
= (3i)2 – 4 × 2 × 2
= 9i2 – 16
= -9 – 16 …..[∵ i2 = -1]
= -25 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q3 (ii)
∴ The roots of the given equation are \(\frac{1}{2}\)i and -2i.

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

(iii) x2 + 4ix – 4 = 0
Solution:
Given equation is x2 + 4ix – 4 = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = 4i, c = -4
Discriminant = b2 – 4ac
= (4i)2 – 4 × 1 × (-4)
= 16i2 + 16
= -16 + 16 …..[∵ i2 = -1]
= 0
So, the given equation has equal roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q3 (iii)
∴ x = -2i
∴ The root of the given equation is -2i.

(iv) ix2 – 4x – 4i = 0
Solution:
ix2 – 4x – 4i = 0
Multiplying throughout by i, we get
i2x2 – 4ix – 4i2 = 0
-x2 – 4ix + 4 = 0 …[∵ i2 = -1]
x2 + 4ix – 4 = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = 4i, c = -4
Discriminant = b2 – 4ac
= (4i)2 – 4 × 1 × (-4)
= 16i2 + 16
= -16 + 16
= 0
So, the given equation has equal roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q3 (iv)
∴ The root of the given equation is -2i

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

Question 4.
Solve the following quadratic equations:
(i) x2 – (2 + i) x – (1 – 7i) = 0
Solution:
Given equation is x2 – (2 + i)x – (1 – 7i) = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = -(2 + i), c = -(1 – 7i)
Discriminant = b2 – 4ac
= [-(2 + i)]2 – 4 × 1 × -(1 – 7i)
= 4 + 4i + i2 + 4 – 28i
= 4 + 4i – 1 + 4 – 28i …..[∵ i2 = – 1]
= 7 – 24i
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (i)
Let \(\sqrt{7-24 i}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
7 – 24i = a2 + i2b2 + 2abi
7 – 24i = a2 – b2 + 2abi
Equating real and imaginary parts, we get
a2 – b2 = 7 and 2ab = -24
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (i).1

(ii) x2 – (3√2 + 2i) x + 6√2 i = 0
Solution:
Given equation is x2 – (3√2 + 2i) x + 6√2 i = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = -(3√2 + 2i), c = 6√2i
Discriminant = b2 – 4ac
= [-(3√2 + 2i)]2 – 4 × 1 × 6√2 i
= 18 + 12√2i + 4i2 – 24√2 i
= 18 – 12√2 i – 4 ……[∵ i2 = -1]
= 14 – 12√2 i
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (ii)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (ii).1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (ii).2

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

(iii) x2 – (5 – i) x + (18 + i) = 0
Solution:
Given equation is x2 – (5 – i)x + (18 + i) = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = -(5 – i), c = 18 + i
Discriminant = b2 – 4ac
= [-(5 – i)]2 – 4 × 1 × (18 + i)
= 25 – 10i + i2 – 72 – 4i
= 25 – 10i – 1 – 72 – 4i ……[∵ i2 = -1]
= -48 – 14i
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (iii)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (iii).1

(iv) (2 + i) x2 – (5 – i) x + 2(1 – i) = 0
Solution:
Given equation is (2 + i) x2 – (5 – i) x + 2(1 – i) = 0
Comparing with ax2 + bx + c = 0, we get
a = 2 + i, b = -(5 – i), c = 2(1 – i)
Discriminant = b2 – 4ac
= [-(5 – i)]2 – 4 × (2 + i) × 2(1 – i)
= 25 – 10i + i2 – 8(2 + i) (1 – i)
= 25 – 10i + i2 – 8(2 – 2i + i – i2)
= 25 – 10i – 1 – 8(2 – i + 1) …..[∵ i2 = -1]
= 25 – 10i – 1 – 16 + 8i – 8
= -2i
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (iv)
Let \(\sqrt{-2 i}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
-2i = a2 + b2i2 + 2abi
-2i = a2 – b2 + 2abi
Equating real and imaginary parts, we get
a2 – b2 = 0 and 2ab = -2
a2 – b2 = 0 and b = \(-\frac{1}{a}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (iv).1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (iv).2

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

Question 5.
Find the value of
(i) x3 – x2 + x + 46, if x = 2 + 3i
Solution:
x = 2 + 3i
x – 2 = 3i
(x – 2)2 = 9i2
x2 – 4x + 4 = 9(-1) …..[∵ i2 = -1]
x2 – 4x + 13 = 0 …..(i)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q5 (i)
Dividend = Divisor × Quotient + Remainder
∴ x3 – x2 + x + 46 = (x2 – 4x + 13) (x + 3) + 7
= 0(x + 3) + 7 …..[from(i)]
= 7

Alternate Method:
x = 2 + 3i
α = 2 + 3i, \(\bar{\alpha}\) = 2 – 3i
α\(\bar{\alpha}\) = (2 + 3i)(2 – 3i)
= 4 – 6i + 6i – 9i2
= 4 – 9(-1)
= 4 + 9
= 13
α + \(\bar{\alpha}\) = 2 + 3i + 2 – 3i = 4
∴ Standard form of quadratic equation,
x2 – (Sum of roots) x + Product of roots = 0
x2 – 4x + 13 = 0
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q5 (i).1
Dividend = Divisor × Quotient + Remainder
∴ x3 – x2 + x + 46 = (x2 – 4x + 13).(x + 3) + 7
= 0(x + 3) + 7 …..[From (i)]
= 7

(ii) 2x3 – 11x2 + 44x + 27, if x = \(\frac{25}{3-4 i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q5 (ii)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q5 (ii).1
Dividend = Divisor × Quotient + Remainder
2x3 – 11x2 + 44x + 27 = (x2 – 6x + 25)(2x + 1) + 2
= 0.(2x + 1) + 2 …..[From (i)]
= 0 + 2
= 2

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

(iii) x3 + x2 – x + 22, if x = \(\frac{5}{1-2 i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q5 (iii)
Dividend = Divisor × Quotient + Remainder
x3 + x2 – x + 22 = (x2 – 2x + 5)(x + 3) + 7
= 0.(x + 3) + 7 …..[From (i)]
= 0 + 7
= 7

(iv) x4 + 9x3 + 35x2 – x + 4, if x = -5 + √-4
Solution:
x = -5 + √-4
x + 5 = √-4
x + 5 = √4 √-1
x + 5 = 2i
(x + 5)2 = 4i2
x2 + 10x + 25 = 4(-1) ….[∵ i2 = -1]
x2 + 10x + 29 = 0 …..(i)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q5 (iv)
Dividend = Divisor × Quotient + Remainder
x4 + 9x3 + 35x2 – x + 4 = (x2 + 10x + 29) (x2 – x + 16) – 132x – 460
= 0.(x2 – x + 16) – 132x – 460 …..[From (i)]
= -132 (-5 + 2i) – 460
= 660 – 264i – 460
= 200 – 264i

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

(v) 2x4 + 5x3 + 7x2 – x + 41, if x = -2 – √3i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q5 (v)
Dividend = Divisor × Quotient + Remainder
2x4 + 5x3 + 7x2 – x + 41 = (x2 + 4x + 7) (2x2 – 3x + 5) + 6
= 0(2x2 – 3x + 5) + 6 ……[From (i)]
= 0 + 6
= 6

Class 11 Maharashtra State Board Maths Solution