Loading web-font TeX/Main/Regular

Matrices Class 12 Maths 1 Exercise 2.1 Solutions Maharashtra Board

Balbharti 12th Maharashtra State Board Maths Solutions Book Pdf Chapter 2 Matrices Ex 2.1 Questions and Answers.

12th Maths Part 1 Matrices Exercise 2.1 Questions And Answers Maharashtra Board

Question 1.
Apply the given elementary transformation on each of the following matrices.
A = \left[\begin{array}{cc} 1 & 0 \\ -1 & 3 \end{array}\right], R1 ↔ R2
Solution:
A = \left[\begin{array}{cc} 1 & 0 \\ -1 & 3 \end{array}\right]
By R1 ↔ R2, we get,
A ~ \left[\begin{array}{rr} -1 & 3 \\ 1 & 0 \end{array}\right]

Question 2.
B = \left[\begin{array}{ccc} 1 & -1 & 3 \\ 2 & 5 & 4 \end{array}\right], R1 → R1 → R2
Solution:
B = \left[\begin{array}{ccc} 1 & -1 & 3 \\ 2 & 5 & 4 \end{array}\right],
R1 → R1 → R2 gives,
B ~ \left[\begin{array}{rrr} -1 & -6 & -1 \\ 2 & 5 & 4 \end{array}\right]

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 3.
A = \left[\begin{array}{ll} 5 & 4 \\ 1 & 3 \end{array}\right], C1 ↔ C2; B = \left[\begin{array}{ll} 3 & 1 \\ 4 & 5 \end{array}\right], R1 ↔ R2. What do you observe?
Solution:
A = \left[\begin{array}{ll} 5 & 4 \\ 1 & 3 \end{array}\right]
By C1 ↔ C2, we get,
A ~ \left[\begin{array}{ll} 4 & 5 \\ 3 & 1 \end{array}\right] …(1)
B = \left[\begin{array}{ll} 3 & 1 \\ 4 & 5 \end{array}\right]
By R1 ↔ R2, we get,
B ~ \left[\begin{array}{ll} 4 & 5 \\ 3 & 1 \end{array}\right] …(2)
From (1) and (2), we observe that the new matrices are equal.

Question 4.
A = \left[\begin{array}{ccc} 1 & 2 & -1 \\ 0 & 1 & 3 \end{array}\right], 2C2
B = \left[\begin{array}{lll} 1 & 0 & 2 \\ 2 & 4 & 5 \end{array}\right], -3R1
Find the addition of the two new matrices.
Solution:
A = \left[\begin{array}{ccc} 1 & 2 & -1 \\ 0 & 1 & 3 \end{array}\right]
By 2C2, we get,
A ~ \left[\begin{array}{rrr} 1 & 4 & -1 \\ 0 & 2 & 3 \end{array}\right]
B = \left[\begin{array}{lll} 1 & 0 & 2 \\ 2 & 4 & 5 \end{array}\right]
By -3R1, we get,
B ~ \left[\begin{array}{rrr} -3 & 0 & -6 \\ 2 & 4 & 5 \end{array}\right]
Now, addition of the two new matrices
Maharashtra Board 12th Maths Solutions Chapter 2 Matrics Ex 2.1 1

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 5.
A = \left[\begin{array}{ccc} 1 & -1 & 3 \\ 2 & 1 & 0 \\ 3 & 3 & 1 \end{array}\right], 3R3 and then C3 + 2C2.
Solution:
A = \left[\begin{array}{ccc} 1 & -1 & 3 \\ 2 & 1 & 0 \\ 3 & 3 & 1 \end{array}\right]
By 3R3, we get
A ~ \left[\begin{array}{rrr} 1 & -1 & 3 \\ 2 & 1 & 0 \\ 9 & 9 & 3 \end{array}\right]
By C3 + 2C2, we get,
A ~ \left(\begin{array}{rrr} 1 & -1 & 3+2(-1) \\ 2 & 1 & 0+2(1) \\ 9 & 9 & 3+2(9) \end{array}\right)
∴ A ~ \left(\begin{array}{rrr} 1 & -1 & 1 \\ 2 & 1 & 2 \\ 9 & 9 & 21 \end{array}\right)

Question 6.
A = \left(\begin{array}{rrr} 1 & -1 & 3 \\ 2 & 1 & 0 \\ 3 & 3 & 1 \end{array}\right), C3 + 2C2 and then 3R3. What do you conclude from Ex. 5 and Ex. 6 ?
Solution:
A = \left(\begin{array}{rrr} 1 & -1 & 3 \\ 2 & 1 & 0 \\ 3 & 3 & 1 \end{array}\right)
By C3 + 2C2, we get,
A ~ \left(\begin{array}{rrr} 1 & -1 & 3+2(-1) \\ 2 & 1 & 0+2(1) \\ 3 & 3 & 1+2(3) \end{array}\right)
∴ A ~ \left(\begin{array}{rrr} 1 & -1 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 7 \end{array}\right)
By 3R3, we get
A ~ \left(\begin{array}{rrr} 1 & -1 & 1 \\ 2 & 1 & 2 \\ 9 & 9 & 21 \end{array}\right)
We conclude from Ex. 5 and Ex. 6 that the matrix remains same by interchanging the order of the elementary transformations. Hence, the transformations are commutative.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 7.
Use suitable transformation on \left[\begin{array}{ll} 1 & 2 \\ 3 & 4 \end{array}\right] into an upper triangular matrix.
Solution:
Let A = \left[\begin{array}{ll} 1 & 2 \\ 3 & 4 \end{array}\right]
By R2 – 3R1, we get,
A ~ \left[\begin{array}{rr} 1 & 2 \\ 0 & -2 \end{array}\right]
This is an upper triangular matrix.

Maharashtra Board 12th Maths Solutions Chapter 1 Mathematical Logic Ex 1.1

Question 8.
Convert \left[\begin{array}{rr} 1 & -1 \\ 2 & 3 \end{array}\right] into an identity matrix by suitable row transformations.
Solution:
Let A = \left[\begin{array}{rr} 1 & -1 \\ 2 & 3 \end{array}\right]
By R2 – 2R1, we get,
A ~ \left[\begin{array}{rr} 1 & -1 \\ 0 & 5 \end{array}\right]
By \left(\frac{1}{5}\right)R2, we get,
A ~ \left[\begin{array}{rr} 1 & -1 \\ 0 & 1 \end{array}\right]
By R1 + R2, we get,
A ~ \left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right]
This is an identity matrix.

Question 9.
Transform \left[\begin{array}{rrr} 1 & -1 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 4 \end{array}\right] into an upper triangular matrix by suitable row transformations.
Solution:
Let A = \left[\begin{array}{rrr} 1 & -1 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 4 \end{array}\right]
By R2 – 2R1 and R3 – 3R1, we get
A ~ \left[\begin{array}{rrr} 1 & -1 & 2 \\ 0 & 3 & -1 \\ 0 & 5 & -2 \end{array}\right]
By R3\left(\frac{5}{3}\right)R2, we get,
A ~ \left(\begin{array}{rrr} 1 & -1 & 2 \\ 0 & 3 & -1 \\ 0 & 0 & -\frac{1}{3} \end{array}\right)
This is an upper triangular matrix.

Class 12 Maharashtra State Board Maths Solution