Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2

Balbharti Maharashtra State Board Class 11 Maths Solutions Pdf Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2

Question 1.
Expand:
(i) (√3 + √2)4
Solution:
Here, a = √3, b = √2 and n = 4.
Using binomial theorem,
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q1 (i)
∴ (√3 + √2)4 = 1(9) (1) + 4(3√3) (√2) + 6(3)(2) + 4(√3) (2√2) + 1(1)(4)
= 9 + 12√6 + 36 + 8√6 + 4
= 49 + 20√6

(ii) (√5 – √2)5
Solution:
Here, a = √5, b = √2 and n = 5.
Using binomial theorem,
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q1 (ii)

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2

Question 2.
Expand:
(i) (2x2 + 3)4
Solution:
Here, a = 2x2, b = 3 and n = 4.
Using binomial theorem,
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q2 (i)

(ii) \(\left(2 x-\frac{1}{x}\right)^{6}\)
Solution:
Here, a = 2x, b = \(\frac{1}{x}\) and n = 6.
Using binomial theorem,
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q2 (ii)

Question 3.
Find the value of
(i) (√3 + 1)4 – (√3 – 1)4
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q3 (i)
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q3 (i).1

(ii) (2 + √5)5 + (2 – √5)5
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q3 (ii)
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q3 (ii).1
Adding (i) and (ii), we get
∴ (2 + √5 )5 + (2 – √5)5 = (32 + 80√5 + 400 + 200√5 + 250 + 25√5) + (32 – 80√5 + 400 – 200√5+ 250 – 25√5 )
= 64 + 800 + 500
= 1364

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2

Question 4.
Prove that:
(i) (√3 + √2)6 + (√3 – √2)6 = 970
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q4 (i)
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q4 (i).1
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q4 (i).2

(ii) (√5 + 1)5 – (√5 – 1)5 = 352
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q4 (ii)
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q4 (ii).1

Question 5.
Using binomial theorem, find the value of
(i) (102)4
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q5 (i)

(ii) (1.1)5
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q5 (ii)

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2

Question 6.
Using binomial theorem, find the value of
(i) (9.9)3
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q6 (i)

(ii) (0.9)4
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q6 (ii)

Question 7.
Without expanding, find the value of
(i) (x + 1)4 – 4(x + 1)3 (x – 1) + 6(x + 1)2 (x – 1)2 – 4(x + 1) (x – 1)3 + (x – 1)4
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q7 (i)

(ii) (2x – 1)4 + 4(2x – 1)3 (3 – 2x) + 6(2x – 1)2 (3 – 2x)2 + 4(2x – 1)1 (3 – 2x)3 + (3 – 2x)4
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q7 (ii)

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2

Question 8.
Find the value of (1.02)6, correct upto four places of decimals.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q8

Question 9.
Find the value of (1.01)5, correct upto three places of decimals.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q9

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2

Question 10.
Find the value of (0.9)6, correct upto four places of decimals.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q10
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.2 Q10.1

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.1

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 4 Methods of Induction and Binomial Theorem Ex 4.1 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.1

Prove by the method of induction, for all n ∈ N.

Question 1.
2 + 4 + 6 + …… + 2n = n(n + 1)
Solution:
Let P(n) = 2 + 4 + 6 + …… + 2n = n(n + 1), for all n ∈ N.
Step I:
Put n = 1
L.H.S. = 2
R.H.S. = 1(1 + 1) = 2
∴ L.H.S. = R.H.S.
∴ P(n) is true for n = 1.

Step II:
Let us assume that P(n) is true for n = k.
∴ 2 + 4 + 6 + ….. + 2k = k(k + 1) ……(i)

Step III:
We have to prove that P(n) is true for n = k + 1,
i.e., to prove that
2 + 4 + 6 + …… + 2(k + 1) = (k + 1) (k + 2)
L.H.S. = 2 + 4 + 6 + …+ 2(k + 1)
= 2 + 4 + 6+ ….. + 2k + 2(k + 1)
= k(k + 1) + 2(k + 1) …..[From (i)]
= (k + 1).(k + 2)
= R.H.S.
∴ P(n) is true for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ 2 + 4 + 6 + …… + 2n = n(n + 1) for all n ∈ N.

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.1

Question 2.
3 + 7 + 11 + ……… to n terms = n(2n + 1)
Solution:
Let P(n) = 3 + 7 + 11 + ……… to n terms = n(2n +1), for all n ∈ N.
But 3, 7, 11, …. are in A.P.
∴ a = 3 and d = 4
Let tn be the nth term.
∴ tn = a + (n – 1)d = 3 + (n – 1)4 = 4n – 1
∴ P(n) = 3 + 7 + 11 + ……. + (4n – 1) = n(2n + 1)

Step I:
Put n = 1
L.H.S. = 3
R.H.S. = 1[2(1)+ 1] = 3
∴ L.H.S. = R.H.S.
∴ P(n) is true for n = 1.

Step II:
Let us assume that P(n) is true for n = k.
∴ 3 + 7 + 11 + ….. + (4k – 1) = k(2k + 1) …..(i)

Sept III:
We have to prove that P(n) is true for n = k + 1,
i.e., to prove that
3 + 7 + 11 + …+ [4(k + 1) – 1] = (k + 1)(2k + 3)
L.H.S. = 3 + 7 + 11 + …… + [4(k + 1) – 1]
= 3 + 7 + 11 + ….. + (4k – 1) + [4(k+ 1) – 1]
= k(2k + 1) + (4k + 4 – 1) …..[From (i)]
= 2k2 + k + 4k + 3
= 2k2 + 2k + 3k + 3
= 2k(k + 1) + 3(k + 1)
= (k + 1) (2k + 3)
= R.H.S.
∴ P(n) is true for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ 3 + 7 + 11 + ….. to n terms = n(2n + 1) for all n ∈ N.

Question 3.
12 + 22 + 32 +…..+ n2 = \(\frac{n(n+1)(2 n+1)}{6}\)
Solution:
Let P(n) = 12 + 22 + 32 +…..+ n2 = \(\frac{n(n+1)(2 n+1)}{6}\) for all n ∈ N.
Step I:
Put n = 1
L.H.S. = 12 = 1
RHS = \(\frac{1(1+1)[2(1)+1]}{6}=\frac{6}{6}\) = 1
∴ L.H.S. = R.H.S.
∴ P(n) is true for n = 1.

Step II:
Let us assume that P(n) is true for n = k.
∴ 12 + 22 + 32 +…+ k2 = \(\frac{k(k+1)(2 k+1)}{6}\) …..(i)

Step III:
We have to prove that P(n) is true for n = k + 1,
i.e., to prove that
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.1 Q3
∴ P(n) is true for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ 12 + 22 + 32 + …+ n2 = \(\frac{n(n+1)(2 n+1)}{6}\) for all n ∈ N.

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.1

Question 4.
12 + 32 + 52 + ….. + (2n – 1)2 = \(\frac{n}{3}\) (2n – 1)(2n + 1)
Solution:
Let P(n) = 12 + 32 + 52+…..+ (2n – 1)2 = \(\frac{n}{3}\) (2n – 1)(2n + 1), for all n ∈ N.
Step I:
Put n = 1
L.H.S. = 12 = 1
R.H.S. = \(\frac{1}{3}\) [2(1) – 1][2(1) + 1] = 1
∴ L.H.S. = R.H.S.
∴ P(n) is true for n = 1.

Step II:
Let us assume that P(n) is true for n = k.
∴ 12 + 32 + 52 +….+(2k – 1)2 = \(\frac{k}{3}\) (2k – 1)(2k + 1) …….(i)

Step III:
We have to prove that P(n) is true for n = k + 1,
i.e., to prove that
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.1 Q4
∴ P(n) is true for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ 12 + 32 + 52 + …+ (2n – 1)2 = \(\frac{n}{3}\) (2n – 1)(2n + 1) for all n ∈ N.

Question 5.
13 + 33 + 53 + ….. to n terms = n2 (2n2 – 1)
Solution:
Let P(n) = 13 + 33 + 53 + …. to n terms = n2 (2n2 – 1), for all n ∈ N.
But 1, 3, 5, are in A.P.
∴ a = 1, d = 2
Let tn be the nth term.
tn = a + (n – 1) d = 1 + (n – 1) 2 = 2n – 1
∴ P(n) = 13 + 33 + 53 +…..+ (2n – 1)3 = n2 (2n2 – 1)

Step I:
Put n = 1
L.H.S. = 13 = 1
R.H.S. = 12 [2(1)2 – 1] = 1
∴ L.H.S. = R.H.S.
∴ P(n) is true for n = 1.

Step II:
Let us assume that P(n) is true for n = k.
∴ 13 + 33 + 53 +…+ (2k – 1)3 = k2 (2k2 – 1) …..(i)

Step III:
We have to prove that P(n) is true for n = k + 1,
i.e., to prove that
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.1 Q5
∴ P(n) is true for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ 13 + 33 + 53 + … to n terms = n2 (2n2 – 1) for all n ∈ N.

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.1

Question 6.
1.2 + 2.3 + 3.4 +… + n(n + 1) = \(\frac{n}{3}\) (n + 1)(n + 2)
Solution:
Let P(n) = 1.2 + 2.3 + 3.4 +….+n(n + 1) = \(\frac{n(n+1)(n+2)}{3}\), for all n ∈ N.

Step I:
Put n = 1
L.H.S. = 1.2 = 2
R.H.S. = \(\frac{1}{3}\) (1 + 1)(1 + 2) = 2
∴ L.H.S. = R.H.S.
∴ P(n) is true for n = 1.

Step II:
Let us assume that P(n) is true for n = k.
∴ 1.2 + 2.3 + 3.4 + ….. + k(k + 1) = \(\frac{k}{3}\) (k + 1)(k + 2) ……(i)

Step III:
We have to prove that P(n) is true for n = k + 1,
i.e., to prove that
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.1 Q6
∴ P(n) is true for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ 1.2 + 2.3 + 3.4 + … + n(n + 1) = \(\frac{n}{3}\) (n + 1)(n + 2), for all n ∈ N.

Question 7.
1.3 + 3.5 + 5.7 +… to n terms = \(\frac{n}{3}\) (4n2 + 6n – 1)
Solution:
Let P(n) = 1.3 + 3.5 + 5.7 +… to n terms = \(\frac{n}{3}\) (4n2 + 6n -1), for all n ∈ N.
But first factor in each term, i.e., 1, 3, 5,… are in A.P. with a = 1 and d = 2.
∴ nth term = a + (n – 1)d = 1 + (n – 1) 2 = (2n – 1)
Also, second factor in each term,
i.e., 3, 5, 7, … are in A.P. with a = 3 and d = 2.
∴ nth term = a + (n – 1) d = 3 + (n – 1) 2 = (2n + 1)
∴ nth term, tn = (2n – 1) (2n + 1)
∴ P(n) ≡ 1.3 + 3.5 + 5.7 + …. + (2n – 1) (2n + 1) = \(\frac{n}{3}\) (4n2 + 6n – 1)

Step I:
Put n = 1
L.H.S. = 1.3 = 3
R.H.S. = \(\frac{1}{3}\) [4(1)2 + 6(1) – 1] = 3
∴ L.H.S. = R.H.S.
∴ P(n) is trae for n = 1.

Step II:
Let us assume that P(n) is true for n = k.
∴ 1.3 + 3.5 + 5.7 +….+ (2k – 1)(2k + 1) = \(\frac{k}{3}\) (4k2 + 6k – 1) ……(i)

Step III:
We have to prove that P(n) is true for n = k + 1,
i.e., to prove that
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.1 Q7
∴ P(n) is true for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ 1.3 + 3.5 + 5.7 +… to n terms = \(\frac{n}{3}\) (4n2 + 6n – 1) for all n ∈ N.

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.1

Question 8.
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}\)
Solution:
Let P(n) ≡ \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}\), for all n ∈ N.

Step I:
Put n = 1
L.H.S. = \(\frac{1}{1.3}=\frac{1}{3}\)
R.H.S. = \(\frac{1}{2(1)+1}=\frac{1}{3}\)
∴ L.H.S. = R.H.S.
∴ P(n) is true for n = 1.

Step II:
Let us assume that P(n) is true for n = k.
∴ \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 k-1)(2 k+1)}=\frac{k}{2 k+1}\) …..(i)

Step III:
We have to prove that P(n) is true for n = k + 1,
i.e., to prove that
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.1 Q8
∴ P(n) is true for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}\), for all n ∈ N.

Question 9.
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots \text { to } n \text { terms }=\frac{n}{3(2 n+3)}\)
Solution:
Let P(n) ≡ \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots \text { to } n \text { terms }=\frac{n}{3(2 n+3)}\), for all n ∈ N.
But first factor in each term of the denominator,
i.e., 3, 5, 7, ….. are in A.P. with a = 3 and d = 2.
∴ nth term = a + (n – 1)d = 3 + (n – 1) 2 = (2n + 1)
Also, second factor in each term of the denominator,
i.e., 5, 7, 9, … are in A.P. with a = 5 and d = 2.
∴ nth term = a + (n – 1) d = 5 + (n – 1) 2 = (2n + 3)
∴ nth term, tn = \(\frac{1}{(2 n+1)(2 n+3)}\)
P(n) ≡ \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 n+1)(2 n+3)}\) = \(\frac{n}{3(2 n+3)}\)

Step I:
Put n = 1
L.H.S. = \(\frac{1}{3.5}=\frac{1}{15}\)
R.H.S. = \(\frac{1}{3[2(1)+3]}=\frac{1}{3(2+3)}=\frac{1}{15}\)
∴ L.H.S. = R.H.S.
∴ P(n) is true for n = 1.

Step II:
Let us assume that P(n) is true for n = k.
∴ \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 k+1)(2 k+3)}\) = \(\frac{k}{3(2 k+3)}\) ….(i)

Step III:
We have to prove that P(n) is true for n = k + 1,
i.e., to prove that
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.1 Q9
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.1 Q9.1
∴ P(n) is true for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots \text { to } n \text { terms }=\frac{n}{3(2 n+3)}\), for all n ∈ N.

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.1

Question 10.
(23n – 1) is divisible by 7.
Solution:
(23n – 1) is divisible by 7 if and only if (23n – 1) is a multiple of 7.
Let P(n) ≡ (23n – 1) = 7m, where m ∈ N.

Step I:
Put n = 1
∴ 23n – 1 = 23(1) – 1 = 23 – 1 = 8 – 1 = 7
∴ (23n – 1) is a multiple of 7.
∴ P(n) is true for n = 1.

Step II:
Let us assume that P(n) is true for n = k.
i.e., 23k – 1 is a multiple of 7.
∴ 23k – 1 = 7a, where a ∈ N
∴ 23k = 7a + 1 ……(i)

Step III:
We have to prove that P(n) is true for n = k + 1,
i.e., to prove that
23(k+1) – 1 = 7b, where b ∈ N.
∴ P(k + 1) = 23(k+1) – 1
= 23k+3 – 1
= 23k . (23) – 1
= (7a + 1)8 – 1 …..[From (i)]
= 56a + 8 – 1
= 56a + 7
= 7(8a + 1)
7b, where b = (8a + 1) ∈ N
∴ P(n) is true for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ (24n – 1) is divisible by 7, for all n ∈ N.

Question 11.
(24n – 1) is divisible by 15.
Solution:
(24n – 1) is divisible by 15 if and only if (24n – 1) is a multiple of 15.
Let P(n) ≡ (24n – 1) = 15m, where m ∈ N.

Step I:
Put n = 1
∴ 24(1) – 1 = 16 – 1 = 15
∴ (24n – 1) is a multiple of 15.
∴ P(n) is true for n = 1.

Step II:
Let us assume that P(n) is true for n = k.
∴ 24k – 1 = 15a, where a ∈ N
∴ 24k = 15a + 1 …..(i)

Step III:
We have to prove that P(n) is true for n = k + 1,
i.e., to prove that
∴ 24(k+1) – 1 = 15b, where b ∈ N
∴ P(k + 1) = 24(k+1) – 1 = 24k+4 – 1
= 24k . 24 – 1
= 16 . (24k) – 1
= 16(15a + 1) – 1 …..[From (i)]
= 240a + 16 – 1
= 240a + 15
= 15(16a + 1)
= 15b, where b = (16a + 1) ∈ N
∴ P(n) is true for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ (24n – 1) is divisible by 15, for all n ∈ N.

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.1

Question 12.
3n – 2n – 1 is divisible by 4.
Solution:
(3n – 2n – 1) is divisible by 4 if and only if (3n – 2n – 1) is a multiple of 4.
Let P(n) ≡ (3n – 2n – 1) = 4m, where m ∈ N.

Step I:
Put n = 1
∴ (3n – 2n – 1) = 3(1) – 2(1) – 1 = 0 = 4(0)
∴ (3n – 2n – 1) is a multiple of 4.
∴ P(n) is tme for n = 1.

Step II:
Let us assume that P(n) is true for n = k.
∴ 3k – 2k – 1 = 4a, where a ∈ N
∴ 3k = 4a + 2k + 1 ….(i)

Step III:
We have to prove that P(n) is tme for n = k + 1,
i.e., to prove that
3(k+1) – 2(k + 1) – 1 = 4b, where b ∈ N
P(k + 1) = 3k+1 – 2(k + 1) – 1
= 3k . 3 – 2k – 2 – 1
= (4a + 2k + 1) . 3 – 2k – 3 …….[From (i)]
= 12a + 6k + 3 – 2k – 3
= 12a + 4k
= 4(3a + k)
= 4b, where b = (3a + k) ∈ N
∴ P(n) is tme for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is tme for all n ∈ N.
∴ 3n – 2n – 1 is divisible by 4, for all n ∈ N.

Question 13.
5 + 52 + 53 + ….. + 5n = \(\frac{5}{4}\) (5n – 1)
Solution:
Let P(n) ≡ 5 + 52 + 53 +…..+ 5n = \(\frac{5}{4}\) (5n – 1), for all n ∈ N.

Step I:
Put n = 1
L.H.S. = 5
R.H.S. = \(\frac{5}{4}\) (51 – 1) = 5
∴ L.H.S. = R.H.S.
∴ P(n) is true for n = 1.

Step II:
Let us assume that P(n) is true for n = k.
∴ 5 + 52 + 53 + ….. + 5k = \(\frac{5}{4}\) (5k – 1) …….(i)

Step III:
We have to prove that P(n) is true for n = k + 1,
i.e., to prove that
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.1 Q13
∴ P(n) is true for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ 5 + 52 + 53 + … + 5n = \(\frac{5}{4}\) (5n – 1), for all n ∈ N.

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.1

Question 14.
(cos θ + i sin θ)n = cos (nθ) + i sin (nθ)
Solution:
Let P(n) ≡ (cos θ + i sin θ)n = cos nθ + i sin nθ, for all n ∈ N.
Step I:
Put n = 1
L.H.S. = (cos θ + i sin θ)1 = cos θ + i sin θ
R.H.S. = cos[(1)θ] + i sin[(1)θ] = cos θ + i sin θ
∴ L.H.S. = R.H.S.
∴ P(n) is true for n = 1.

Step II:
Let us assume that P(n) is true for n = k.
∴ (cos θ + i sin θ)k = cos kθ + i sin kθ …….(i)

Step III:
We have to prove that P(n) is true for n = k + 1,
i.e., to prove that
(cos θ + i sin θ)k+1 = cos (k + 1)θ + i sin (k + 1)θ
L.H.S. = (cos θ + i sin θ)k+1
= (cos θ + i sin θ)k . (cos θ + i sin θ)
= (cos kθ + i sin kθ) . (cos θ + i sin θ) ……[From (i)]
= cos kθ cos θ + i sin θ cos kθ + i sin kθ cosθ – sin kθ sin θ ……[∵ i2 = -1]
= (cos kθ cos θ – sin k θ sin θ) + i(sin kθ cos θ + cos kθ sin θ)
= cos(kθ + θ) + i sin(kθ + θ)
= cos(k + 1) θ + i sin (k + 1) θ
= R.H.S.
∴ P(n) is true for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ (cos θ + i sin θ)n = cos (nθ) + i sin (nθ), for all n ∈ N.

Question 15.
Given that tn+1 = 5 tn+4, t1 = 4, prove by method of induction that tn = 5n – 1.
Solution:
Let the statement P(n) has L.H.S. a recurrence relation tn+1 = 5 tn+4, t1 = 4 and R.H.S. a general statement tn = 5n – 1.
Step I:
Put n = 1
L.H.S. = 4
R.H.S. = 51 – 1 = 4
∴ L.H.S. = R.H.S.
∴ P(n) is true for n = 1.
Put n = 2
L.H.S. = t2 = 5t1 + 4 = 24
R.H.S. = t2 = 52 – 1 = 24
∴ L.H.S. = R.H.S.
∴ P(n) is true for n = 2.

Step II:
Let us assume that P(n) is true for n = k.
∴ tk+1 = 5 tk+4 and tk = 5k – 1

Step III:
We have to prove that P(n) is true for n = k + 1,
i.e., to prove that tk+1 = 5k+1 – 1
Since tk+1 = 5 tk+4 and tk = 5k – 1 …..[From Step II]
tk+1 = 5 (5k – 1) + 4 = 5k+1 – 1
∴ P(n) is true for n = k + 1.

Step IV:
From all the steps above, by the principle of mathematical induction, P(n) is true for all n ∈ N.
∴ tn = 5n – 1, for all n ∈ N.

Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.1

Question 16.
Prove by method of induction
\(\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)^{n}=\left(\begin{array}{cc}
1 & 2 n \\
0 & 1
\end{array}\right) \forall n \in N\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.1 Q16
Maharashtra Board 11th Maths Solutions Chapter 4 Methods of Induction and Binomial Theorem Ex 4.1 Q16.1

Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Miscellaneous Exercise 3

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 3 Permutations and Combination Miscellaneous Exercise 3 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 3 Permutations and Combination Miscellaneous Exercise 3

(I) Select the correct answer from the given alternatives.

Question 1.
A college offers 5 courses in the morning and 3 in the evening. The number of ways a student can select exactly one course, either in the morning or in the evening is
(A) 5
(B) 3
(C) 8
(D) 15
Answer:
(C) 8
Hint:
Number of ways to select one course from available 8 courses
(i.e., 5 courses in the morning and 3 in the evening) = 5 + 3 = 8

Question 2.
A college has 7 courses in the morning and 3 in the evening. The possible number of choices with the student if he wants to study one course in the morning and one in the evening is
(A) 21
(B) 4
(C) 42
(D) 10
Answer:
(A) 21
Hint:
Number of ways to select one morning and one evening course = 7C1 × 3C1 = 21

Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Miscellaneous Exercise 3

Question 3.
In how many ways can 8 Indians and, 4 American and 4 Englishmen can be seated in a row so that all persons of the same nationality sit together?
(A) 3! 8!
(B) 3! 4! 8! 4!
(C) 4! 4!
(D) 8! 4! 4!
Answer:
(B) 3! 4! 8! 4!
Hint:
8 Indians take their seats in 8! ways, 4 Americans take their seats in 4! ways, 4 Englishmen take their seats in 4! ways.
Three groups of Indians, Americans and Englishmen can be permuted in 3! ways.
Required number = 3! × 8! × 4! × 4!

Question 4.
In how many ways can 10 examination papers be arranged so that the best and the worst papers never come together?
(A) 9 × 8!
(B) 8 × 8!
(C) 9 × 9!
(D) 8 × 9!
Answer:
(D) 8 × 9!
Hint:
Arrange 8 papers in 8! ways and two papers in 9 gaps are arranged in 9P2 ways.
Required number = 8! 9P2
= 8! × 9 × 8
= 9! × 8

Question 5.
In how many ways 4 boys and 3 girls can be seated in a row so that they are alternate.
(A) 12
(B) 288
(C) 144
(D) 256
Answer:
(C) 144
Hint:
B G B G B G B
4 boys take their seats in 4! ways.
3 girls take their seats in 3! ways.
Required number = 4! × 3!
= 24 × 6
= 144

Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Miscellaneous Exercise 3

Question 6.
Find the number of triangles which can be formed by joining the angular points of a polygon of 8 sides as vertices.
(A) 16
(B) 56
(C) 24
(D) 8
Answer:
(B) 56
Hint:
A triangle is obtained by joining three vertices.
Number of ways of selecting 3 vertices out of 8 vertices = 8C3
= \(\frac{8 \times 7 \times 6}{1 \times 2 \times 3}\)
= 56

Question 7.
A question paper has two parts, A and B, each containing 10 questions. If a student has to choose 8 from part A and 5 from part B, in how many ways can he choose the questions?
(A) 320
(B) 750
(C) 40
(D) 11340
Answer:
(D) 11340
Hint:
Number of ways to choose 8 questions from Part A and 5 from Part B = 10C8 × 10C5
= 10C2 × 10C5
= 45 × 252
= 11340

Question 8.
There are 10 persons among whom two are brothers. The total number of ways in which these persons can be seated around a round table so that exactly one person sits between the brothers is equal to:
(A) 2! × 7!
(B) 2! × 8!
(C) 3! × 7!
(D) 3! × 8!
Answer:
(B) 2! × 8!
Hint:
Select a person from 8 people (i.e., the people excluding two brothers).
This is done in 8 ways.
2 brothers sit adjacent to the selected person on two sides, they may interchange their seats.
Remaining 7 people sit in 7! ways
Required number = 8 × 2 × 7! = 2! × 8!

Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Miscellaneous Exercise 3

Question 9.
The number of arrangements of the letters of the word BANANA in which two N’s do not appear adjacently is
(A) 80
(B) 60
(C) 40
(D) 100
Answer:
(C) 40
Hint:
Arrange B, A, A, A in \(\frac{4 !}{3 !}\) ways.
These four letters create 5 gaps in which 2 N are to be filled, this can be done in 5C2 ways, we do not permute those 2N as they are identical.
∴ Required number = \(\frac{4 !}{3 !}\) × 5C2 = 40

Question 10.
The number of ways in which 5 male and 2 female members of a committee can be seated around a round table so that the two females are not seated together is
(A) 840
(B) 600
(C) 720
(D) 480
Answer:
(D) 480
Hint:
5 males take their seats in 4! ways, creating 5 gaps.
In these 5 gaps, 2 females are to be seated.
∴ The number of ways to do this = 5C2 × 2!
Required number = 4! × 5C2 × 2! = 480

(II) Answer the following.

Question 1.
Find the value of r if 56Pr+2 : 54Pr-1 = 30800 : 1.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Miscellaneous Exercise 3 II Q1

Question 2.
How many words can be formed by writing letters in the word CROWN in a different order?
Solution:
Five Letters of the word CROWN are to be permuted.
∴ Number of different words = 5! = 120

Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Miscellaneous Exercise 3

Question 3.
Find the number of words that can be formed by using all the letters in the word REMAIN. If these words are written in dictionary order, what will be the 40th word?
Solution:
There are 6 letters A, E, I, M, N, R.
Number of words that can be formed by using all these letters = 6! = 720
When a word starts with ‘A’,
‘A’ can be arranged in 1 way and the remaining 5 letters can be arranged among themselves in 5! ways.
The number of words starting with A = 5!
∴ Similarly,
The number of words starting with E = 5!
The number of words starting with I = 5!
The number of words starting with M = 5!
The number of words starting with N = 5!
The number of words starting with R = 5!
Total number of words = 6 × 5! = 720
Number of words starting with AE = 4! = 24
Number of words starting with AIE = 3! = 6
Number of words starting with AIM = 3! = 6
Number of words starting with AINE = 2!
Total words = 24 + 6 + 6 + 2 = 38
39th word is AINMER
40th word is AINMRE

Question 4.
The Capital English alphabet has 11 symmetric letters that appear the same when looked at in a mirror. These letters are A, H, I, M, O, T, U, V, W, X, and Y. How many symmetric three letters passwords can be formed using these letters?
Solution:
There are 11 symmetric letters.
∴ Number of 3 Letter passwords = 11P3
= 11 × 10 × 9
= 990

Question 5.
How many numbers formed using the digits 3, 2, 0, 4, 3, 2, 3 exceed one million?
Solution:
A number that exceeds one million is to be formed from the digits 3, 2, 0, 4, 3, 2, 3.
Then the numbers should be any number of 7 digits which can be formed from these digits.
Also, among the given numbers 2 is repeated twice and 3 is repeated thrice.
∴ Required number of numbers = Total number of arrangements possible among these digits – number of arrangements of 7 digits which begin with 0.
= \(\frac{7 !}{2 ! 3 !}-\frac{6 !}{2 ! 3 !}\)
= \(\frac{7 \times 6 \times 5 \times 4 \times 3 !}{2 \times 3 !}-\frac{6 \times 5 \times 4 \times 3 !}{2 \times 3 !}\)
= 7 × 6 × 5 × 2 – 6 × 5 × 2
= 6 × 5 × 2(7 – 1)
= 60 × 6
= 360

Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Miscellaneous Exercise 3

Question 6.
Ten students are to be selected for a project from a class of 30 students. There are 4 students who want to be together either in the project or not in the project. Find the number of possible selections.
Solution:
Ten students are to be selected for a project from a class of 30 students.
Case I:
If 4 students join the project, then from remaining 26 students, rest of the 6 students are to be selected.
Which can be done in 26C6
= \(\frac{26 !}{6 !(26-6) !}\)
= \(\frac{26 \times 25 \times 24 \times 23 \times 22 \times 21 \times 20 !}{6 ! \times 20 !}\)
= 230230 ways.

Case II:
If 4 students does not join the project, then from remaining 26 students, all the 10 students are to be selected.
Which can be done in 26C10
= \(\frac{26 !}{10 !(26-10) !}\)
= \(\frac{26 \times 25 \times 24 \times 23 \times 22 \times 21 \times 20 \times 19 \times 18 \times 17 \times 16 !}{10 ! \times 16 !}\)
= 5311735 ways.
∴ Required number of selections = 26C6 + 26C10
= 230230 + 5311735
= 5541965

Question 7.
A student finds 7 books of his interest but can borrow only three books. He wants to borrow the Chemistry part II book only if Chemistry Part I can also be borrowed. Find the number of ways he can choose three books that he wants to borrow.
Solution:
There are 7 books of student’s interest, but he can borrow only three books.
He wants to borrow the Chemistry part II book only if Chemistry Part I can also be borrowed.
Consider the following table:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Miscellaneous Exercise 3 II Q7
Required number of selections = 5 + 10 = 15

Question 8.
30 objects are to be divided into three groups containing 7, 10, 13 objects. Find the number of distinct ways of doing so.
Solution:
First we can select 7 objects out of 30 for the first group in 30C7 ways.
Now there are 23 objects left out of which we can select 10 objects for the second group in 23C10 ways.
Remaining 13 objects can be selected for the third group in 5C5 ways.
∴ Required number of ways = 30C7 × 23C10 × 13C13
= \(\frac{30 !}{23 ! 7 !} \times \frac{23 !}{10 ! 13 !} \times 1\)
= \(\frac{30 !}{7 ! 10 ! 13 !}\)

Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Miscellaneous Exercise 3

Question 9.
A student passes an examination if he secures a minimum in each of the 7 subjects. Find the number of ways a student can fail.
Solution:
Every subject a student may pass or fail.
∴ Total number of outcomes = 27 = 128
This number includes one case when the student passes in all subjects.
Required number of ways = 128 – 1 = 127

Question 10.
Nine friends decide to go for a picnic in two groups. One group decides to go by car and the other group decides to go by train. Find the number of different ways of doing so if there must be at least 3 friends in each group.
Solution:
Nine friends decide to go for a picnic in two groups and there must be at least 3 friends in each group.
Consider the following table:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Miscellaneous Exercise 3 II Q10

Question 11.
A hall has 12 lamps and every lamp can be switched on independently. Find the number of ways of illuminating the hall.
Solution:
Every lamp is either ON or OFF.
There are 12 lamps
Number of instances = 212
This number includes one case in when all 12 lamps are OFF.
∴ Required Number of ways = 212 – 1 = 4095

Question 12.
How many quadratic equations can be formed using numbers from 0, 2, 4, 5 as coefficients if a coefficient can be repeated in an equation?
Solution:
A quadratic equation is to be formed using numbers 0, 2, 4, 5 as coefficients and a coefficient can be repeated.
Let the quadratic equation be ax2 + bx + c = 0, a ≠ 0
Consider the following table:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Miscellaneous Exercise 3 II Q12
Number of quadratic equations can be formed = 3 × 4 × 4 = 48

Question 13.
How many six-digit telephone numbers can be formed if the first two digits are 45 and no digit can appear more than once?
Solution:
There are total of 10 digits.
Let the telephone number be 45abcd.
There are 8 digits left for the choice of a, b, c, d as repetition is not allowed.
Consider the following table:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Miscellaneous Exercise 3 II Q13
∴ Required number of numbers formed = 8 × 7 × 6 × 5 = 1680

Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Miscellaneous Exercise 3

Question 14.
A question paper has 6 questions. How many ways does a student have to answer if he wants to solve at least one question?
Solution:
Every question is ‘SOLVED’ or ‘NOT SOLVED’.
There are 6 questions.
Number of outcomes = 26
This number includes one case when the student solves NONE of the questions.
∴ Required number of ways = 26 – 1 = 64 – 1 = 63

Question 15.
Find the number of ways of dividing 20 objects into three groups of sizes 8, 7, and 5.
Solution:
First we can select 8 objects our of 20 for the first group in 20C8 ways.
Now there are 12 objects left out of which we can select 7 objects for the second group in 12C7 ways.
Remaining 5 objects can be selected for the third group in 5C5 ways.
∴ Required number of ways = 20C8 × 12C7 × 5C5
= \(\frac{20 !}{8 ! 12 !} \times \frac{12 !}{7 ! 5 !} \times 1\)
= \(\frac{20 !}{8 ! 7 ! 5 !}\)

Question 16.
There are 4 doctors and 8 lawyers in a panel. Find the number of ways for selecting a team of 6 if at least one doctor must be in the team.
Solution:
There are 4 doctors and 8 lawyers in a panel.
A team of 6 with at least one doctor is to be formed.
We count the number by the INDIRECT method of counting.
Number of ways to select a team of 6 people = 12C6
Number of teams with No doctor in any team = 8C6
∴ Required number of ways = 12C68C6
= 924 – 28
= 896

Question 17.
Four parallel lines intersect another set of five parallel lines. Find the number of distinct parallelograms formed.
Solution:
The first set has 4 parallel lines and another set has 5 parallel lines.
To form a parallelogram, we need 2 lines from each set.
∴ Required number of distinct parallelograms formed = 4C2 × 5C2
= 6 × 10
= 60

Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Miscellaneous Exercise 3

Question 18.
There are 12 distinct points A, B, C, …, L, in order, on a circle. Lines are drawn passing through each pair of points.
(i) How many lines are there in total?
(ii) How many lines pass through D?
(iii) How many triangles are determined by lines?
(iv) How many triangles have on vertex C?
Solution:
(i) We need two points to draw a line.
∴ Total number of lines = 12C2 = 66

(ii) Lines are drawn passing through each pair of points.
∴ Lines from point D will pass through all the remaining 11 points.
∴ 11 lines pass through D.

(iii) We need three points to draw a triangle.
∴ Number of triangles = 12C3 = 220

(iv) To get the triangles with one vertex as C,
we need two vertices from the remaining 11 vertices.
∴ Number of triangles with vertex at C = 11C2
= \(\frac{11 \times 10}{2}\)
= 55

Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 3 Permutations and Combination Ex 3.6 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6

Question 1.
Find the value of
(a) 15C4
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q1 (i)

(b) 80C2
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q1 (ii)

(c) 15C4 + 15C5
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q1 (iii)

(d) 20C1619C16
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q1 (iv)

Question 2.
Find n if
(a) 6P2 = n(6C2)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q2 (i)

(b) 2nC3 : nC2 = 52 : 3
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q2 (ii)

(c) nCn-3 = 84
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q2 (iii)

Question 3.
Find r if 14C2r : 10C2r-4 = 143 : 10.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q3
∴ 2r(2r – 1) (2r – 2) (2r – 3) = 14 × 12 × 10
∴ 2r(2r – 1) (2r – 2) (2r – 3) = 8 × 7 × 6 × 5
Comparing on both sides, we get
∴ r = 4

Question 4.
Find n and r if,
(a) nPr = 720 and nCn-r = 120
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q4 (i)

(b) nCr-1 : nCr : nCr+1 = 20 : 35 : 42
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q4 (ii)
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q4 (ii).1

Question 5.
If nPr = 1814400 and nCr = 45, find n+4Cr+3.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q5

Question 6.
If nCr-1 = 6435, nCr = 5005, nCr+1 = 3003, find rC5.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q6
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q6.1
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q6.2

Question 7.
Find the number of ways of drawing 9 balls from a bag that has 6 red balls, 8 green balls, and 7 blue balls so that 3 balls of every colour are drawn.
Solution:
9 balls are to be selected from 6 red, 8 green, 7 blue balls such that the selection consists of 3 balls of each colour.
∴ 3 red balls can be selected from 6 red balls in 6C3 ways.
3 reen balls can be selected from 8 green balls in 8C3 ways.
3 blue balls can be selected from 7 blue balls in 7C3 ways.
∴ Number of ways selection can be done if the selection consists of 3 balls of each colour
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q7

Question 8.
Find the number of ways of selecting a team of 3 boys and 2 girls from 6 boys and 4 girls.
Solution:
There are 6 boys and 4 girls.
A team of 3 boys and 2 girls is to be selected.
∴ 3 boys can be selected from 6 boys in 6C3 ways.
2 girls can be selected from 4 girls in 4C2 ways.
∴ Number of ways the team can be selected
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q8

Question 9.
After a meeting, every participant shakes hands with every other participants. If the number of handshakes is 66, find the number of participants in the meeting.
Solution:
Let there be n participants present in the meeting.
A handshake occurs between 2 persons.
∴ Number of handshakes = nC2
Given 66 handshakes were exchanged.
66 = nC2
66 = \(\frac{\mathrm{n} !}{2 !(\mathrm{n}-2) !}\)
66 × 2 = \(\frac{n(n-1)(n-2) !}{(n-2) !}\)
132 = n (n – 1)
n(n – 1) = 12 × 11
Comparing on both sides, we get n = 12
∴ 12 participants were present at the meeting.

Question 10.
If 20 points are marked on a circle, how many chords can be drawn?
Solution:
To draw a chord we need to join two points on the circle.
There are 20 points on a circle.
∴ Total number of chords possible from these points
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q10

Question 11.
Find the number of diagonals of an n-sided polygon. In particular, find the number of diagonals when
(i) n = 10
(ii) n = 15
(iii) n = 12
(iv) n = 8
Solution:
In n-sided polygon, there are ‘n’ points and ‘n’ sides.
∴ Through ‘n’ points we can draw nC2 lines including sides.
∴ Number of diagonals in n sided polygon = nC2 – n (n = number of sides)
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q11

Question 12.
There are 20 straight lines in a plane so that no two lines are parallel and no three lines are concurrent. Determine the number of points of intersection.
Solution:
There are 20 lines such that no two of them are parallel and no three of them are concurrent.
Since no two lines are parallel, they intersect at a point.
∴ Number of points of intersection if no two lines are parallel and no three lines are concurrent = 20C2
= \(\frac{20 !}{2 ! 18 !}\)
= \(\frac{20 \times 19 \times 18 !}{2 \times 1 \times 18 !}\)
= 190

Question 13.
Ten points are plotted on a plane. Find the number of straight lines obtained by joining these points if (a) no three points are collinear (b) four points are collinear
Solution:
There are 10 points on a plane.
(a) When no three of them are collinear.
A line is obtained by joining 2 points.
∴ Number of lines passing through these points = 10C2
= \(\frac{10 !}{2 ! 8 !}\)
= \(\frac{10 \times 9 \times 8 !}{2 \times 1 \times 8 !}\)
= 5 × 9
= 45

(b) When 4 of them are collinear.
If no three points are collinear, we get a total of 10C2 = 45 lines by joining them. …..[From (i)]
Since 4 points are collinear, only one line passes through these points instead of 4C2 lines.
4C2 – 1 extra lines are included in 45 lines.
Number of lines passing through these points
= 45 – (4C2 – 1)
= 45 – \(\frac{4 !}{2 ! 2 !}\) + 1
= 45 – \(\frac{4 \times 3 \times 2 !}{2 \times 2 !}\) + 1
= 45 – 6 + 1
= 40

Question 14.
Find the number of triangles formed by joining 12 points if
(a) no three points are collinear
(b) four points are collinear
Solution:
There are 12 points on the plane.
(a) When no three of them are collinear.
A triangle can be drawn by joining any three non-collinear points.
∴ Number of triangles that can be obtained from these points = 12C3
= \(\frac{12 !}{3 ! 9 !}\)
= \(\frac{12 \times 11 \times 10 \times 9 !}{3 \times 2 \times 1 \times 9 !}\)
= 220

(b) When 4 of these points are collinear.
If no three points are collinear, total we get 12C3 = 220 triangles by joining them. ……[From (i)]
Since 4 points are collinear, no triangle can be formed by joining these four points.
4C3 extra triangles are included in 220 triangles.
∴ Number of triangles that can be obtained from these points = 12C34C3
= 220 – \(\frac{4 !}{3 ! \times 1 !}\)
= 220 – \(\frac{4 \times 3 !}{3 !}\)
= 220 – 4
= 216

Question 15.
A word has 8 consonants and 3 vowels. How many distinct words can be formed if 4 consonants and 2 vowels are chosen?
Solution:
There are 8 consonants and 3 vowels.
From 8 consonants, 4 can be selected in 8C4
= \(\frac{8 !}{4 ! 4 !}\)
= \(\frac{8 \times 7 \times 6 \times 5 \times 4 !}{4 \times 3 \times 2 \times 1 \times 4 !}\)
= 70 ways.
From 3 vowels, 2 can be selected in 3C2
= \(\frac{3 !}{2 ! 1 !}\)
= \(\frac{3 \times 2 !}{2 !}\)
= 3 ways.
Now, to form a word, these 6 ietters (i.e., 4 consonants and 2 vowels) can be arranged in 6P6 = 6! ways.
∴ Total number of words that can be formed = 70 × 3 × 6!
= 70 × 3 × 720
= 151200
∴ 151200 words of 4 consonants and 2 vowels can be formed.

Question 16.
Find n if,
(i) nC8 = nC12
Solution:
nC8 = nC12
If nCx = nCy, then either x = y or x = n – y
∴ 8 = 12 or 8 = n – 12
But 8 = 12 is not possible
∴ 8 = n – 12
∴ n = 20

(ii) 23C3n = 23C2n+3
Solution:
23C3n = 23C2n+3
If nCx = nCy, then either x = y or x = n – y
∴ 3n = 2n + 3 or 3n = 23 – 2n – 3
∴ n = 3 or n = 4

(iii) 21C6n = \({ }^{21} \mathrm{C}_{\left(\mathrm{n}^{2}+5\right)}\)
Solution:
21C6n = \({ }^{21} \mathrm{C}_{\left(\mathrm{n}^{2}+5\right)}\)
If nCx = nCy, then either x = y or x = n – y
∴ 6n = n2 + 5 or 6n = 21 – (n2 + 5)
∴ n2 – 6n + 5 = 0 or 6n = 21 – n2 – 5
∴ n2 – 6n + 5 = 0 or n2 + 6n – 16 = 0
If n2 – 6n + 5 = 0, then (n – 1)(n – 5) = 0
∴ n = 1 or n = 5
If n = 5 then
n2 + 5 = 30 > 21
∴ n ≠ 5
∴ n = 1
If n2 + 6n – 16 = 0, then (n + 8)(n – 2) = 0
n = -8 or n = 2
n ≠ -8
∴ n = 2
∴ n = 1 or n = 2

Check:
n = 2
∴ n2 + 5 = 22 + 5 = 9
21C6n = 21C12
and \({ }^{21} \mathrm{C}_{\left(\mathrm{n}^{2}+5\right)}\) = 21C9
nCr = nCn-r
21C12 = 21C9
∴ n = 2 is a right answer.

(iv) 2nCr-1 = 2nCr+1
Solution:
2nCr-1 = 2nCr+1
If nCx = nCy, then either x = y or x = n – y
∴ r – 1 = r + 1 or r – 1 = 2n – (r + 1)
But r – 1 = r + 1 is not possible
∴ r – 1 = 2n – (r + 1)
∴ r + r = 2n
∴ r = n

Check:
2nCr-1 = 2nCn-1
and 2nCr+1 = 2nCn+1
using nCr = nCn-r, we have
2nCn+1 = 2nC2n-(n+1) = 2nCn-1
2nCr-1 = 2nCr+1

(v) nCn-2 = 15
Solution:
nCn-2 = 15
nC2 = 15 …..[∵ nCr = nCn-r]
∴ \(\frac{n !}{(n-2) ! 2 !}=15\)
∴ \(\frac{n(n-1)(n-2) !}{(n-2) ! \times 2 \times 1}=15\)
∴ n(n – 1) = 30
∴ n(n – 1) = 6 × 5
Equating both sides, we get
∴ n = 6

Question 17.
Find x if nPr = x nCr.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q17

Question 18.
Find r if 11C4 + 11C5 + 12C6 + 13C7 = 14Cr.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q18

Question 19.
Find the value of \(\sum_{r=1}^{4}{ }^{(21-r)} \mathrm{C}_{4}\).
Solution:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q19

Question 20.
Find the differences between the greatest values in the following:
(a) 14Cr and 12Cr
Solution:
Greatest value of 14Cr.
Here, n = 14, which is even.
Greatest value of nCr occurs at r = \(\frac{n}{2}\) if n is even.
∴ r = \(\frac{n}{2}\)
∴ r = \(\frac{14}{2}\) = 7
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q20 (i)
∴ Difference between the greatest values of 14Cr and 12Cr = 14Cr12Cr
= 3432 – 924
= 2508

(b) 13Cr and 8Cr
Solution:
Greatest value of 13Cr.
Here n = 13, which is odd.
Greatest value of nCr occurs at r = \(\frac{n-1}{2}\) if n is odd.
∴ r = \(\frac{\mathrm{n}-1}{2}\)
∴ r = \(\frac{13-1}{2}\) = 6
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q20 (ii)
∴ Difference between the greatest values of 13Cr and 8Cr = 13Cr8Cr
= 1716 – 70
= 1646

(c) 15Cr and 11Cr
Solution:
Greatest value of 15Cr.
Here n = 15, which is odd.
Greatest value of nCr occurs at r = \(\frac{n-1}{2}\) if n is odd.
∴ r = \(\frac{n-1}{2}\)
∴ r = \(\frac{15-1}{2}\) = 7
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q20 (iii)
∴ Difference between the greatest values of 15Cr and 11Cr = 15Cr11Cr
= 6435 – 462
= 5973

Question 21.
In how many ways can a boy invite his 5 friends to a party so that at least three join the party?
Solution:
Boy can invite = (3 or 4 or 5 friends)
Consider the following table:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q21
∴ Number of ways a boy can invite his friends to a party so that three or more of join the party = 10 + 5 + 1 = 16

Question 22.
A group consists of 9 men and 6 women. A team of 6 is to be selected. How many of possible selections will have at least 3 women?
Solution:
There are 9 men and 6 women.
A team of 6 persons is to be formed such that it consist of at least 3 women.
Consider the following table:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q22
∴ No. of ways this can be done = 1680 + 540 + 54 + 1 = 2275
∴ 2275 teams can be formed if team consists of at least 3 women.

Question 23.
A committee of 10 persons is to be formed from a group of 10 women and 8 men. How many possible committees will have at least 5 women? How many possible committees will have men in majority?
Solution:
(i) A committee of 10 persons is to be formed from 10 women and 8 men such that the committee contains at least 5 women.
Consider the following table:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q23
∴ Number of committees with at least 5 women
= 14112 + 14700 + 6720 + 1260 + 81
= 36873

(ii) Number of committees with men in majority = Total number of committees – (Number of committees with women in majority + women and men equal in number)
= 18C10 – 36873
= 18C8 – 36873
= 43758 – 36873
= 6885

Question 24.
A question paper has two sections. Section I has 5 questions and section II has 6 questions. A student must answer at least two questions from each section among 6 questions he answers. How many different choices does the student have in choosing questions?
Solution:
There are 11 questions, out of which 5 questions are from section I and 6 questions are from section II.
The student has to select 6 questions taking at least 2 questions from each section.
Consider the following table:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q24
∴ Number of choices = 150 + 200 + 75 = 425
∴ In 425 ways students can select 6 questions, taking at least 2 questions from each section.

Question 25.
There are 3 wicketkeepers and 5 bowlers among 22 cricket players. A team of 11 player is to be selected so that there is exactly one wicketkeeper and at least 4 bowlers in the team. How many different teams can be formed?
Solution:
There are 22 cricket players, of which 3 are wicketkeepers and 5 are bowlers.
A team of 11 players is to be chosen such that exactly one wicket keeper and at least 4 bowlers are to be included in the team.
Consider the following table:
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.6 Q25
∴ Number of ways a team of 11 players can be selected
= 45045 + 6006
= 51051

Question 26.
Five students are selected from 11. How many ways can these students be selected if
(a) two specified students are selected?
(b) two specified students are not selected?
Solution:
5 students are to be selected from 11 students.
(a) When 2 specified students are included,
then remaining 3 students can be selected from (11 – 2) = 9 students.
∴ Number of ways of selecting 3 students from 9 students = 9C3
= \(\frac{9 !}{3 ! \times 6 !}\)
= \(\frac{9 \times 8 \times 7 \times 6 !}{3 \times 2 \times 1 \times 6 !}\)
= 84
∴ Selection of students is done in 84 ways when 2 specified students are included.

(b) When 2 specified students are not included, then 5 students can be selected from the remaining (11 – 2) = 9 students.
∴ Number of ways of selecting 5 students from 9 students = 9C5
= \(\frac{9 !}{5 ! 4 !}\)
= \(\frac{9 \times 8 \times 7 \times 6 \times 5 !}{5 ! \times 4 \times 3 \times 2 \times 1}\)
= 126
∴ Selection of students is done in 126 ways when 2 specified students are not included.

Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.5

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 3 Permutations and Combination Ex 3.5 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.5

Question 1.
In how many different ways can 8 friends sit around a table?
Solution:
We know that ‘n’ persons can sit around a table in (n – 1)! ways.
∴ 8 friends can sit around a table in 7!
= 7 × 6 × 5 × 4 × 3 × 2 × 1
= 5040 ways.

Question 2.
A party has 20 participants. Find the number of distinct ways for the host to sit with them around a circular table. How many of these ways have two specified persons on either side of the host?
Solution:
A party has 20 participants.
All of them and the host (i.e., 21 persons) can be seated at a circular table in (21 – 1)! = 20! ways.
When two particular participants are seated on either side of the host.
The host takes the chair in 1 way.
These 2 persons can sit on either side of the host in 2! ways.
Once the host occupies his chair, it is not circular permutation more.
The remaining 18 people occupy their chairs in 18! ways.
∴ A total number of arrangements possible if two particular participants are seated on either side of the host = 2! × 18! = 2 × 18!

Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.5

Question 3.
Delegates from 24 countries participate in a round table discussion. Find the number of seating arrangements where two specified delegates are (a) always together. (b) never together.
Solution:
(a) Delegates of 24 countries are to participate in a round table discussion such that two specified delegates are always together.
Let us consider these 2 delegates as one unit. They can be arranged among themselves in 2! ways.
Also, these two delegates are to be seated with 22 other delegates (i.e. total of 23) which can be done in (23 – 1)! = 22! ways.
∴ Required number of arrangements = 2! × 22!

(b) When 2 specified delegates are never together then, other 22 delegates can be participate in a round table discussion in (22 – 1)! = 21! ways.
∴ There are 22 places of which any 2 places can be filled by those 2 delegates so that they are never together.
∴ Two specified delegates can be arranged in 22P2 ways.
∴ Required number of arrangements = 22P2 × 21!
= \(\frac{22 !}{(22-2) !} \times 21 !\)
= \(\frac{22 !}{20 !}\) × 21!
= 22 × 21 × 21!
= 21 × 22 × 21!
= 21 × 22!

Question 4.
Find the number of ways for 15 people to sit around the table so that no two arrangements have the same neighbours.
Solution:
There are 15 people to sit around a table.
∴ They can be arranged in(15 – 1)! = 14! ways.
But, they should not have the same neighbour in any two arrangements.
Around the table, arrangements (i.e., clockwise and anticlockwise) coincide.
Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.5 Q4
∴ Required number of arrangements = \(\frac{14 !}{2}\)

Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.5

Question 5.
A committee of 10 members sits around a table. Find the number of arrangements that have the President and the Vice-president together.
Solution:
A committee of 10 members sits around a table.
But, President and Vice-president sit together.
Let us consider President and Vice-president as one unit.
They can be arranged among themselves in 2! ways.
Now, this unit with the other 8 members of the committee is to be arranged around a table, which can be done in (9 – 1)! = 8! ways.
∴ Required number of arrangements = 8! × 2! = 2 × 8!

Question 6.
Five men, two women, and a child sit around a table. Find the number of arrangements where the child is seated (a) between the two women. (b) between two men.
Solution:
5 men, 2 women, and a child sit around a table.
(a) When the child is seated between two women.
5 men, 2 women, and a child are to be seated around a round table such that the child is seated between two women.
∴ the two women can be seated on either side of the child in 2! ways.
Let us consider these 3 (two women and a child) as one unit.
Now, this one unit is to be arranged with the remaining 5 men,
i.e., a total of 6 units are to be arranged around a round table, which can be done in (6 – 1)! = 5! ways.
∴ Required number of arrangements = 5! × 2!
= 120 × 2
= 240

(b) Two men can be selected from 5 men in
5C2 = \(\frac{5 !}{2 !(5-2) !}=\frac{5 \times 4 \times 3 !}{2 \times 3 !}\) = 10 ways.
Also, these two men can sit on either side of the child in 2! ways.
Let us take two men and a child as one unit.
Now, this one unit is to be arranged with the remaining 3 men and 2 women,
i.e., a total of 6 units (3 + 2 + 1) are to be arranged around a round table, which can be done in (6 – 1)! = 5! ways.
∴ Required number of arrangements = 10 × 2! × 5!
= 10 × 2 × 120
= 2400

Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.5

Question 7.
Eight men and six women sit around a table. How many sitting arrangements will have no two women together?
Solution:
8 men can be seated around a table in (8 – 1)! = 7! ways.
No two women should sit together.
There are 8 gaps created by 8 men’s seats.
∴ Women can be seated in 8 gaps in 8P6 ways.
∴ Required number of arrangements = 7! × 8P6

Question 8.
Find the number of seating arrangements for 3 men and 3 women to sit around a table so that exactly two women are together.
Solution:
2 women (who wish to sit together) can be selected from 3 in
3C2 = \(\frac{3 !}{2 !(3-2) !}=\frac{3 \times 2 !}{2 ! \times 1 !}\) = 3 ways.
Also, these two women can sit together in 2! ways.
Let us take two women as one unit.
Now, this one unit is to be arranged with the remaining 3 men and 1 woman,
i.e., a total of 5 units are to be arranged around a round table, which can be done in (5 – 1)! = 4! ways.
∴ Required number of arrangements = 3 × 2! × 4!
= 3 × 2 × 24
= 144

Question 9.
Four objects in a set of ten objects are alike. Find the number of ways of arranging them in a circular order.
Solution:
Ten things can be arranged in a circular order of which 4 are alike in \(\frac{9 !}{4 !}\) ways.
∴ Required number of arrangements = \(\frac{9 !}{4 !}\)

Maharashtra Board 11th Maths Solutions Chapter 3 Permutations and Combination Ex 3.5

Question 10.
Fifteen persons sit around a table. Find the number of arrangements that have two specified persons not sitting side by side.
Solution:
Since 2 particular persons can’t be sitting side by side,
the other 13 persons can be arranged around the table in (13 – 1)! = 12! ways.
The two persons who are not sitting side by side may take 13 positions created by 3 persons in 13P2 ways.
∴ Required number of arrangements = 12! × 13P2
= 12! × 13 × 12
= 13 × 12! × 12
= 12 × 13!

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 2 Sequences and Series Ex 2.1 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1

Question 1.
Check whether the following sequences are G.P. If so, write tn.
(i) 2, 6, 18, 54, ……
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q1 (i)

(ii) 1, -5, 25, -125, ………
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q1 (ii)

(iii) \(\sqrt{5}, \frac{1}{\sqrt{5}}, \frac{1}{5 \sqrt{5}}, \frac{1}{25 \sqrt{5}}, \cdots\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q1 (iii)

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1

(iv) 3, 4, 5, 6, ……
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q1 (iv)

(v) 7, 14, 21, 28, ……
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q1 (v)

Question 2.
For the G.P.
(i) If r = \(\frac{1}{3}\), a = 9, find t7.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q2 (i)

(ii) If a = \(\frac{7}{243}\), r = 3, find t6.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q2 (ii)

(iii) If r = -3 and t6 = 1701, find a.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q2 (iii)

(iv) If a = \(\frac{2}{3}\), t6 = 162, find r.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q2 (iv)

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1

Question 3.
Which term of the G. P. 5, 25, 125, 625, …… is 510?
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q3

Question 4.
For what values of x, the terms \(\frac{4}{3}\), x, \(\frac{4}{27}\) are in G. P.?
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q4

Question 5.
If for a sequence, \(\mathrm{t}_{\mathrm{n}}=\frac{5^{n-3}}{2^{n-3}}\), show that the sequence is a G. P. Find its first term and the common ratio.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q5
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q5.1

Question 6.
Find three numbers in G. P. such that their sum is 21 and the sum of their squares is 189.
Solution:
Let the three numbers in G. P. be \(\frac{a}{r}\), a, ar.
According to the given conditions,
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q6
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q6.1
When a = 6, r = 2,
\(\frac{a}{r}\) = 3, a = 6, ar = 12
Hence, the three numbers in G.P. are 12, 6, 3 or 3, 6, 12.

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1

Check:
If sum of the three numbers is 21 and sum of their squares is 189, then our answer is correct.
Sum of the numbers = 12 + 6 + 3 = 21
Sum of the squares of the numbers = 122 + 62 + 32
= 144 + 36 + 9
= 189
Thus, our answer is correct.

Question 7.
Find four numbers in G. P. such that the sum of the middle two numbers is \(\frac{10}{3}\) and their product is 1.
Solution:
Let the four numbers in G.P. be \(\frac{a}{r^{3}}, \frac{a}{r}, a r, a r^{3}\)
According to the given conditions,
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q7
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q7.1

Question 8.
Find five numbers in G. P. such that their product is 1024 and the fifth term is square of the third term.
Solution:
Let the five numbers in G. P. be
\(\frac{a}{r^{2}}, \frac{a}{r}, a, a r, a r^{2}\)
According to the given conditions,
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q8
Hence, the five numbers in G.P. are
1, 2, 4, 8, 16 or 1, -2, 4, -8, 16.

Question 9.
The fifth term of a G. P. is x, the eighth term of a G.P. is y and the eleventh term of a G.P. is z, verify whether y2 = xz.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q9

Question 10.
If p, q, r, s are in G.P., show that p + q, q + r, r + s are also in G. P.
Solution:
p, q, r, s are in G.P.
∴ \(\frac{\mathrm{q}}{\mathrm{p}}=\frac{\mathrm{r}}{\mathrm{q}}=\frac{\mathrm{s}}{\mathrm{r}}\)
Let \(\frac{\mathrm{q}}{\mathrm{p}}=\frac{\mathrm{r}}{\mathrm{q}}=\frac{\mathrm{s}}{\mathrm{r}}\) = k
∴ q = pk, r = qk, s = rk
We have to prove that p + q, q + r, r + s are in G.P.
i.e., to prove that \(\frac{\mathrm{q}+\mathrm{r}}{\mathrm{p}+\mathrm{q}}=\frac{\mathrm{r}+\mathrm{s}}{\mathrm{q}+\mathrm{r}}\)
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q10
∴ p + q, q + r, r + s are in G.P.

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1

Question 11.
The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of the 5th hour?
Solution:
Since the number of bacteria in culture doubles every hour, increase in number of bacteria after every hour is in G.P.
∴ a = 50, r = \(\frac{100}{50}\) = 2
tn = arn-1
To find the number of bacteria at the end of the 5th hour.
(i.e., to find the number of bacteria at the beginning of the 6th hour, i.e., to find t6.)
∴ t6 = ar5
= 50 × (25)
= 50 × 32
= 1600

Question 12.
A ball is dropped from a height of 80 ft. The ball is such that it rebounds \(\left(\frac{3}{4}\right)^{\text {th }}\) of the height it has fallen. How high does the ball rebound on the 6th bounce? How high does the ball rebound on the nth bounce?
Solution:
Since the ball rebounds \(\left(\frac{3}{4}\right)^{\text {th }}\) of the height it has fallen, the height in successive bounce is in G.P.
1st height in the bounce = 80 × \(\frac{3}{4}\)
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q12

Question 13.
The numbers 3, x and x + 6 are in G. P. Find
(i) x
(ii) 20th term
(iii) nth term.
Solution:
(i) 3, x and x + 6 are in G. P.
\(\frac{x}{3}=\frac{x+6}{x}\)
x2 = 3x + 18
x2 – 3x – 18 = 0
(x – 6) (x + 3) = 0
x = 6, -3
Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q13

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1

Question 14.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning, write down the number of mosquitoes after
(i) 3 years
(ii) 10 years
(iii) n years
Solution:
a = 200, r = 1 + \(\frac{10}{100}\) = \(\frac{11}{10}\)
Mosquitoes at the end of 1st year = 200 × \(\frac{11}{10}\)
(i) Number of mosquitoes after 3 years
= 200 × \(\frac{11}{10} \times\left(\frac{11}{10}\right)^{2}\)
= 200 \(\left(\frac{11}{10}\right)^{3}\)
= 200 (1.1)3

(ii) Number of mosquitoes after 10 years = 200 (1.1)10

(iii) Number of mosquitoes after n years = 200 (1.1)n

Question 15.
The numbers x – 6, 2x and x2 are in G. P. Find
(i) x
(ii) 1st term
(iii) nth term
Solution:
(i) x – 6, 2x and x are in Geometric progression.
∴ \(\frac{2 x}{x-6}=\frac{x^{2}}{2 x}\)
4x2 = x2(x – 6)
4 = x – 6
x = 10

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1

(ii) t1 = x – 6 = 10 – 6 = 4

Maharashtra Board 11th Maths Solutions Chapter 2 Sequences and Series Ex 2.1 Q15

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 1 Complex Numbers Miscellaneous Exercise 1 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

(I) Select the correct answer from the given alternatives.

Question 1.
If n is an odd positive integer, then the value of 1 + (i)2n + (i)4n + (i)6n is:
(A) -4i
(B) 0
(C) 4i
(D) 4
Answer:
(B) 0
Hint:
1 + (i2)n + (i4)n + (i2)3n
= 1 – 1 + 1 – 1 …..(n odd positive integer)
= 0

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 2.
The value of \(\frac{i^{592}+i^{590}+i^{588}+i^{586}+i^{584}}{i^{582}+i^{580}+i^{578}+i^{576}+i^{574}}\) is equal to:
(A) -2
(B) 1
(C) 0
(D) -1
Answer:
(D) -1
Hint:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 I Q2

Question 3.
√-3 √-6 is equal to
(A) -3√2
(B) 3√2
(C) 3√2 i
(D) -3√2 i
Answer:
(A) -3√2
Hint:
√-3 √-6
= (√3 i) (√6 i)
= 3√2 (-1)
= -3√2

Question 4.
If ω is a complex cube root of unity, then the value of ω99 + ω100 + ω101 is:
(A) -1
(B) 1
(C) 0
(D) 3
Answer:
(C) 0
Hint:
ω99 + ω100 + ω101
= ω99 (1 + ω + ω2)
= ω99 (0)
= 0

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 5.
If z = r(cos θ + i sin θ), then the value of \(\frac{z}{\bar{z}}+\frac{\bar{z}}{z}\) is
(A) cos 2θ
(B) 2cos 2θ
(C) 2cos θ
(D) 2sin θ
Answer:
(B) 2cos 2θ
Hint:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 I Q5

Question 6.
If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers
(A) 0, 1
(B) 1, 1
(C) 1, 0
(D) -1, 1
Answer:
(B) 1, 1
Hint:
(1 + ω)7
= (-ω2)7
= -ω14
= -ω23)4
= -ω2
= 1 + ω
A = 1, B = 1

Question 7.
The modulus and argument of (1 + i√3)8 are respectively
(A) 2 and \(\frac{2 \pi}{3}\)
(B) 256 and \(\frac{8 \pi}{3}\)
(C) 256 and \(\frac{2 \pi}{3}\)
(D) 64 and \(\frac{4 \pi}{3}\)
Answer:
(C) 256 and \(\frac{2 \pi}{3}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 I Q7

Question 8.
If arg (z) = θ, then arg \(\overline{(\mathrm{z})}\) =
(A) -θ
(B) θ
(C) π – θ
(D) π + θ
Answer:
(A) -θ
Hint:
Let z = \(\mathrm{re}^{\mathrm{i} \theta}\), then \(\overline{\mathrm{z}}=\mathrm{r} \mathrm{e}^{-\mathrm{i} \theta}\)
∴ arg \(\overline{\mathbf{z}}\) = -θ.

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 9.
If -1 + √3 i = \(\mathrm{re}^{\mathrm{i} \theta}\), then θ =
(A) –\(\frac{2 \pi}{3}\)
(B) \(\frac{\pi}{3}\)
(C) –\(\frac{\pi}{3}\)
(D) \(\frac{2 \pi}{3}\)
Answer:
(D) \(\frac{2 \pi}{3}\)
Hint:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 I Q9

Question 10.
If z = x + iy and |z – zi| = 1, then
(A) z lies on X-axis
(B) z lies on Y-axis
(C) z lies on a rectangle
(D) z lies on a circle
Answer:
(D) z lies on a circle
Hint:
|z – zi | = |z| |1 – i| = 1
∴ |z| = \(\frac{1}{\sqrt{2}}\)
∴ x2 + y2 = \(\frac{1}{2}\)

(II) Answer the following:

Question 1.
Simplify the following and express in the form a + ib.
(i) 3 + √-64
Solution:
3 + √-64
= 3 + √64 √-1
= 3 + 8i

(ii) (2i3)2
Solution:
(2i3)2
= 4i6
= 4(i2)3
= 4(-1)3
= -4 …..[∵ i2 = -1]
= -4 + 0i

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

(iii) (2 + 3i) (1 – 4i)
Solution:
(2 + 3i)(1 – 4i)
= 2 – 8i + 3i – 12i2
= 2 – 5i – 12(-1) …..[∵ i2 = -1]
= 14 – 5i

(iv) \(\frac{5}{2}\)i(-4 – 3i)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q1 (iv)

(v) (1 + 3i)2 (3 + i)
Solution:
(1 + 3i)2 (3 + i)
= (1 + 6i + 9i2)(3 + i)
= (1 + 6i – 9)(3 + i) ……[∵ i2 = -1]
= (-8 + 6i)(3 + i)
= -24 – 8i + 18i + 6i2
= -24 + 10i + 6(-1)
= -24 + 10i – 6
= -30 + 10i

(vi) \(\frac{4+3 i}{1-i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q1 (vi)

(vii) \(\left(1+\frac{2}{i}\right)\left(3+\frac{4}{i}\right)(5+i)^{-1}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q1 (vii)

(viii) \(\frac{\sqrt{5}+\sqrt{3 i}}{\sqrt{5}-\sqrt{3} i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q1 (viii)

(ix) \(\frac{3 i^{5}+2 i^{7}+i^{9}}{i^{6}+2 i^{8}+3 i^{18}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q1 (ix)

(x) \(\frac{5+7 i}{4+3 i}+\frac{5+7 i}{4-3 i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q1 (x)

Question 2.
Solve the following equations for x, y ∈ R
(i) (4 – 5i)x + (2 + 3i)y = 10 – 7i
Solution:
(4 – 5i)x + (2 + 3i)y = 10 – 7i
(4x + 2y) + (3y – 5x) i = 10 – 7i
Equating real and imaginary parts, we get
4x + 2y= 10 i.e., 2x + y = 5 ……(i)
and 3y – 5x = -7 ……(ii)
Equation (i) × 3 – equation (ii) gives
11x = 22
∴ x = 2
Putting x = 2 in (i), we get
2(2) + y = 5
∴ y = 1
∴ x = 2 and y = 1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

(ii) \(\frac{x+i y}{2+3 i}\) = 7 – i
Solution:
\(\frac{x+i y}{2+3 i}\) = 7 – i
x + iy = (7 – i)(2 + 3i)
x + iy = 14 + 21i – 2i – 3i2
x + iy = 14 + 19i – 3(-1)
x + iy = 17 + 19i
Equating real and imaginary parts, we get
∴ x = 17 and y = 19

(iii) (x + iy) (5 + 6i) = 2 + 3i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q2 (iii)

(iv) 2x + i9 y(2 + i) = x i7 + 10 i16
Solution:
2x + i9 y(2 + i) = x i7 + 10 i16
2x + (i4)2 . i . y(2 + i) = x(i2)3 . i + 10 . (i4)4
2x + (1)2 . iy(2 + i) = x(-1)3 . i + 10(1)4 ……..[∵ i2 = -1, i4 = 1]
2x + 2yi + y i2 = -xi + 10
2x + 2yi – y + xi = 10
(2x – y) + (x + 2y)i = 10 + 0 . i
Equating real and imaginary parts, we get
2x – y = 10 ……(i)
and x + 2y = 0 ……..(ii)
Equation (i) × 2 + equation (ii) gives, we get
5x = 20
∴ x = 4
Putting x = 4 in (i), we get
2(4) – y = 10
y = 8 – 10
∴ y = -2
∴ x = 4 and y = -2

Question 3.
Evaluate
(i) (1 – i + i2)-15
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q3 (i)

(ii) i131 + i49
Solution:
i131 + i49
= (i4)32 . i3 + (i4)12 . i
= (1)32 (-i) + (1)12 . i
= -i + i
= 0

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 4.
Find the value of
(i) x3 + 2x2 – 3x + 21, if x = 1 + 2i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q4 (i)

(ii) x4 + 9x3 + 35x2 – x + 164, if x = -5 + 4i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q4 (ii)

Question 5.
Find the square roots of
(i) -16 + 30i
Solution:
Let \(\sqrt{-16+30 \mathrm{i}}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
-16 + 30i = a2 + b2 i2 + 2abi
-16 + 30i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = -16 and 2ab = 30
a2 – b2 = -16 and b = \(\frac{15}{a}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q5 (i)

(ii) 15 – 8i
Solution:
Let \(\sqrt{15-8 i}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
15 – 8i = a2 + b2 i2 + 2abi
15 – 8i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 15 and 2ab = -8
a2 – b2 = 15 and b = \(\frac{-4}{a}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q5 (ii)
When a = 4, b = \(\frac{-4}{4}\) = -1
When a = -4, b = \(\frac{-4}{-4}\) = 1
∴ \(\sqrt{15-8 i}\) = ±(4 – i)

(iii) 2 + 2√3 i
Solution:
Let \(\sqrt{2+2 \sqrt{3}}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
2 + 2√3 i = a2 + b2 i2 + 2abi
2 + 2√3 i = a2 – b2 + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 2 and 2ab = 2√3
a2 – b2 = 2 and b = \(\frac{\sqrt{3}}{a}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q5 (iii)

(iv) 18i
Solution:
Let √18i = a + bi, where a, b ∈ R.
Squaring on both sides, we get
18i = a2 + b2 i2 + 2abi
0 + 18i = a2 – b2 + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 0 and 2ab = 18
a2 – b2 = 0 and b = \(\frac{9}{a}\)
\(a^{2}-\left(\frac{9}{a}\right)^{2}=0\)
\(a^{2}-\frac{81}{a^{2}}=0\)
a4 – 81 = 0
(a2 – 9) (a2 + 9) = 0
a2 = 9 or a2 = -9
But a ∈ R
∴ a2 ≠ -9
∴ a2 = 9
∴ a = ± 3
When a = 3, b = \(\frac{9}{3}\) = 3
When a = -3, b = \(\frac{9}{-3}\) = -3
∴ √18i = ±(3 + 3i) = ±3(1 + i)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

(v) 3 – 4i
Solution:
Let \(\sqrt{3-4 i}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
3 – 4i = a2 + b2 i2 + 2abi
3 – 4i = a2 – b2 + 2abi ……[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 3 and 2ab = -4
a2 – b2 = 3 and b = \(\frac{-2}{a}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q5 (v)

(vi) 6 + 8i
Solution:
Let \(\sqrt{6+8 i}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
6 + 8i = a2 + b2 i2 + 2abi
6 + 8i = a2 – b2 + 2abi ……[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 6 and 2ab = 8
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q5 (vi)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q5 (vi).1

Question 6.
Find the modulus and argument of each complex number and express it in the polar form.
(i) 8 + 15i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (i)

(ii) 6 – i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (ii)

(iii) \(\frac{1+\sqrt{3} \mathbf{i}}{2}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (iii)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (iii).1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

(iv) \(\frac{-1-\mathbf{i}}{\sqrt{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (iv)

(v) 2i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (v)

(vi) -3i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (vi)

(vii) \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \mathbf{i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q6 (vii)

Question 7.
Represent 1 + 21, 2 – i, -3 – 2i, -2 + 3i by points in Argand’s diagram.
Solution:
The complex numbers 1 + 2i, 2 – i, -3 – 2i, -2 + 3i will be represented by the points A(1, 2), B(2, -1), C(-3, -2), D(-2, 3) respectively as shown below:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q7

Question 8.
Show that z = \(\frac{5}{(1-i)(2-i)(3-i)}\) is purely imaginary number.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q8

Question 9.
Find the real numbers x and y such that \(\frac{x}{1+2 i}+\frac{y}{3+2 i}=\frac{5+6 i}{-1+8 i}\)
Solution:
\(\frac{x}{1+2 i}+\frac{y}{3+2 i}=\frac{5+6 i}{-1+8 i}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q9
(3x + y) + 2(x + y)i = 5 + 6i
Equating real and imaginary parts, we get
3x + y = 5 ……(i)
and 2(x + y) = 6
i.e., x + y = 3 …….(ii)
Subtracting (ii) from (i), we get
2x = 2
∴ x = 1
Putting x = 1 in (ii), we get
1 + y = 3
∴ y = 2
∴ x = 1, y = 2

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 10.
Show that \(\left(\frac{1}{\sqrt{2}}+\frac{i}{\sqrt{2}}\right)^{10}+\left(\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right)^{10}=0\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q10

Question 11.
Show that \(\left(\frac{1+i}{\sqrt{2}}\right)^{8}+\left(\frac{1-i}{\sqrt{2}}\right)^{8}=2\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q11
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q11.1

Question 12.
Convert the complex numbers in polar form and also in exponential form.
(i) z = \(\frac{2+6 \sqrt{3} i}{5+\sqrt{3} i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q12 (i)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q12 (i).1

(ii) z = -6 + √2 i
Solution:
z = -6 + √2 i
∴ a = -6, b = √2
i.e. a < 0, b > 0
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q12 (ii)

(iii) \(\frac{-3}{2}+\frac{3 \sqrt{3} i}{2}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q12 (iii)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q12 (iii).1

Question 13.
If x + iy = \(\frac{a+i b}{a-i b}\), prove that x2 + y2 = 1.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q13

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 14.
Show that z = \(\left(\frac{-1+\sqrt{-3}}{2}\right)^{3}\) is a rational number.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q14

Question 15.
Show that \(\frac{1-2 i}{3-4 i}+\frac{1+2 i}{3+4 i}\) is real.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q15
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q15.1

Question 16.
Simplify
(i) \(\frac{\mathrm{i}^{29}+\mathrm{i}^{39}+\mathrm{i}^{49}}{\mathrm{i}^{30}+\mathrm{i}^{40}+\mathrm{i}^{50}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q16 (i)

(ii) \(\left(\mathrm{i}^{65}+\frac{1}{\mathrm{i}^{145}}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q16 (ii)

(iii) \(\frac{\mathrm{i}^{238}+\mathrm{i}^{236}+\mathrm{i}^{234}+\mathrm{i}^{232}+\mathrm{i}^{230}}{\mathrm{i}^{228}+\mathrm{i}^{226}+\mathrm{i}^{224}+\mathrm{i}^{222}+\mathrm{i}^{220}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q16 (iii)

Question 17.
Simplify \(\left[\frac{1}{1-2 i}+\frac{3}{1+i}\right]\left[\frac{3+4 i}{2-4 i}\right]\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q17
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q17.1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 18.
If α and β are complex cube roots of unity, prove that (1 – α) (1 – β) (1 – α2) (1 – β2) = 9.
Solution:
α and β are the complex cube roots of unity.
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q18

Question 19.
If ω is a complex cube root of unity, prove that (1 – ω + ω2)6 + (1 + ω – ω2)6 = 128.
Solution:
ω is the complex cube root of unity.
∴ ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2
∴ L.H.S. = (1 – ω + ω2)6 + (1 + ω – ω2)6
= [(1 + ω2) – ω]6 + [(1 + ω) – ω2]6
= (-ω – ω))6 + (-ω2 – ω2)6
= (-2ω)6 + (-2ω2)6
= 64ω6 + 64ω12
= 64(ω3)2 + 64(ω3)4
= 64(1)2 + 64(1)4
= 128
= R.H.S.

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1

Question 20.
If ω is the cube root of unity, then find the value of \(\left(\frac{-1+\mathbf{i} \sqrt{3}}{2}\right)^{18}+\left(\frac{-1-\mathbf{i} \sqrt{3}}{2}\right)^{18}\)
Solution:
If ω is the complex cube root of unity, then
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Miscellaneous Exercise 1 II Q20
Given Expression = ω18 + (ω2)18
= ω18 + ω36
= (ω3)6 + (ω3)12
= (1)6 + (1)12
= 2

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 1 Complex Numbers Ex 1.4 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

Question 1.
Find the value of
(i) ω18
(ii) ω21
(iii) ω-30
(iv) ω-105
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q1

Question 2.
If ω is the complex cube root of unity, show that
(i) (2 – ω)(2 – ω2) = 7
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
L.H.S. = (2 – ω)(2 – ω2)
= 4 – 2ω2 – 2ω + ω3
= 4 – 2(ω2 + ω) + 1
= 4 – 2(-1) + 1
= 4 + 2 + 1
= 7
= R.H.S.

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

(ii) (1 + ω – ω2)6 = 64
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (ii)

(iii) (1 + ω)3 – (1 + ω2)3 = 0
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (iii)

(iv) (2 + ω + ω2)3 – (1 – 3ω + ω2)3 = 65
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (iv)

(v) (3 + 3ω + 5ω2)6 – (2 + 6ω + 2ω2)3 = 0
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (v)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

(vi) \(\frac{a+b \omega+c \omega^{2}}{c+a \omega+b \omega^{2}}\) = ω2
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (vi)

(vii) (a + b) + (aω + bω2) + (aω2 + bω) = 0
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (vii)

(viii) (a – b)(a – bω)(a – bω2) = a3 – b3
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (viii)

(ix) (a + b)2 + (aω + bω2)2 + (aω2+ bω)2 = 6ab
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q2 (ix)

Question 3.
If ω is the complex cube root of unity, find the value of
(i) ω + \(\frac{1}{\omega}\)
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
\(\omega+\frac{1}{\omega}=\frac{\omega^{2}+1}{\omega}=\frac{-\omega}{\omega}=-1\)

(ii) ω2 + ω3 + ω4
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
ω2 + ω3 + ω4
= ω2(1 + ω + ω2)
= ω2(0)
= 0

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

(iii) (1 + ω2)3
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
(1 + ω2)3
= (-ω)3
= -ω3
= -1

(iv) (1 – ω – ω2)3 + (1 – ω + ω2)3
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
(1 – ω – ω2)3 + (1 – ω + ω2)3
= [1 – (ω + ω2)]3 + [(1 + ω2) – ω]3
= [1 – (-1)]2 + (-ω – ω)3
= 23 + (-2ω)3
= 8 – 8ω3
= 8 – 8(1)
= 0

(v) (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)
Solution:
ω is the complex cube root of unity.
ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
(1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)
= (1 + ω)(1 + ω2)(1 + ω)(1 + ω2) …..[∵ ω3 = 1, ω4 = ω]
= (-ω2)(-ω)(-ω2)(-ω)
= ω6
= (ω3)2
= (1)2
= 1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

Question 4.
If α and β are the complex cube roots of unity, show that
(i) α2 + β2 + αβ = 0
(ii) α4 + β4 + α-1β-1 = 0
Solution:
α and β are the complex cube roots of unity.
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q4 (i)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q4 (ii)

Question 5.
If x = a + b, y = αa + βb and z = aβ + bα, where α and β are complex cube roots of unity, show that xyz = a3 + b3.
Solution:
x = a + b, y = αa + βb, z = aβ + bα
α and β are the complex cube roots of unity.
∴ α = \(\frac{-1+i \sqrt{3}}{2}\) and β = \(\frac{-1-i \sqrt{3}}{2}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q5

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

Question 6.
Find the equation in cartesian coordinates of the locus of z if
(i) |z| = 10
Solution:
Let z = x + iy
|z| = 10
|x + iy| = 10
\(\sqrt{x^{2}+y^{2}}\) = 10
∴ x2 + y2 = 100

(ii) |z – 3| = 2
Solution:
Let z = x + iy
|z – 3| = 2
|x + iy – 3| = 2
|(x – 3) + iy| = 2
\(\sqrt{(x-3)^{2}+y^{2}}\) = 2
∴ (x – 3)2 + y2 = 4

(iii) |z – 5 + 6i| = 5
Solution:
Let z = x + iy
|z – 5 + 6i| = 5
|x + iy – 5 + 6i| = 5
|(x – 5) + i(y + 6)| = 5
\(\sqrt{(x-5)^{2}+(y+6)^{2}}\) = 5
∴ (x – 5)2 + (y + 6)2 = 25

(iv) |z + 8| = |z – 4|
Solution:
Let z = x + iy
|z + 8| = |z – 4|
|x + iy + 8| = |x + iy – 4|
|(x + 8) + iy | = |(x – 4) + iy|
\(\sqrt{(x+8)^{2}+y^{2}}=\sqrt{(x-4)^{2}+y^{2}}\)
(x + 8)2 + y2 = (x – 4)2 + y2
x2 + 16x + 64 + y2 = x2 – 8x + 16 + y2
16x + 64 = -8x + 16
24x + 48 = 0
∴ x + 2 = 0

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

(v) |z – 2 – 2i | = |z + 2 + 2i|
Solution:
Let z = x + iy
|z – 2 – 2i| = |z + 2 + 2i|
|x + iy – 2 – 2i | = |x + iy + 2 + 2i |
|(x – 2) + i(y – 2)| = |(x + 2) + i(y + 2)|
\(\sqrt{(x-2)^{2}+(y-2)^{2}}=\sqrt{(x+2)^{2}+(y+2)^{2}}\)
(x – 2)2 + (y – 2)2 = (x + 2)2 + (y + 2)2
x2– 4x + 4 + y2 – 4y + 4 = x2 + 4x + 4 + y2 + 4y + 4
-4x – 4y = 4x + 4y
8x + 8y = 0
x + y = 0
y = -x

(vi) \(\frac{|z+3 i|}{|z-6 i|}=1\)
Solution:
Let z = x + iy
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q6 (vi)
x2 + (y + 3)2 = x2 + (y – 6)2
y2 + 6y + 9 = y2 – 12y + 36
18y – 27 = 0
2y – 3 = 0

Question 7.
Use De Moivre’s theorem and simplify the following:
(i) \(\frac{(\cos 2 \theta+i \sin 2 \theta)^{7}}{(\cos 4 \theta+i \sin 4 \theta)^{3}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q7 (i)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q7 (i).1

(ii) \(\frac{\cos 5 \theta+i \sin 5 \theta}{(\cos 3 \theta-i \sin 3 \theta)^{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q7 (ii)

(iii) \(\frac{\left(\cos \frac{7 \pi}{13}+i \sin \frac{7 \pi}{13}\right)^{4}}{\left(\cos \frac{4 \pi}{13}-i \sin \frac{4 \pi}{13}\right)^{6}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q7 (iii)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

Question 8.
Express the following in the form a + ib, a, b ∈ R, using De Moivre’s theorem.
(i) (1 – i)5
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q8 (i)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q8 (i).1

(ii) (1 + i)6
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q8 (ii)

(iii) (1 – √3 i)4
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q8 (iii)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q8 (iii).1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4

(iv) (-2√3 – 2i)5
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q8 (iv)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.4 Q8 (iv).1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 1 Complex Numbers Ex 1.3 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

Question 1.
Find the modulus and amplitude for each of the following complex numbers:
(i) 7 – 5i
Solution:
Let z = 7 – 5i
a = 7, b = -5
i.e. a > 0, b < 0
|z| = \(\sqrt{a^{2}+b^{2}}=\sqrt{7^{2}+(-5)^{2}}=\sqrt{49+25}=\sqrt{74}\)
Here, (7, -5) lies in 4th quadrant.
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q1 (i)

(ii) √3 + √2 i
Solution:
Let z = √3 + √2 i
a = √3, b = √2,
i.e. a > 0, b > 0
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q1 (ii)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

(iii) -8 + 15i
Solution:
Let z = -8 + 15i
a = -8, b = 15 , i.e. a < 0, b > 0
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q1 (iii)

(iv) -3(1 – i)
Solution:
Let z = -3(1 – i) = -3 + 3i
a = -3, b = 3 , i.e. a < 0, b > 0
|z| = \(\sqrt{a^{2}+b^{2}}=\sqrt{(-3)^{2}+3^{2}}=\sqrt{9+9}\) = 3√2
Here, (-3, 3) lies in 2nd quadrant.
amp(z) = π – \(\tan ^{-1}\left|\frac{b}{a}\right|\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q1 (iv)

(v) -4 – 4i
Solution:
Let z = -4 – 4i
a = -4, b = -4 , i.e. a < 0, b < 0
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q1 (v)

(vi) √3 – i
Solution:
Let z = √3 – i
a = √3, b = -1, i.e. a > 0, b < 0
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q1 (vi)

(vii) 3
Solution:
Let z = 3 + 0i
a = 3, b = 0
z is a real number, it lies on the positive real axis.
|z|= \(\sqrt{a^{2}+b^{2}}=\sqrt{3^{2}+0^{2}}=\sqrt{9+0}\) = 3
and amp (z) = 0

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

(viii) 1 + i
Solution:
Let z = 1 + i
a = 1, b = 1, i.e. a > 0, b > 0
|z| = \(\sqrt{a^{2}+b^{2}}=\sqrt{1^{2}+1^{2}}=\sqrt{1+1}=\sqrt{2}\)
Here, (1, 1) lies in 1st quadrant.
amp (z) = \(\tan ^{-1}\left(\frac{b}{a}\right)=\tan ^{-1}(1)=\frac{\pi}{4}\)

(ix) 1 + i√3
Solution:
Let z = 1 + i√3
a = 1, b = √3, i.e. a > 0, b > 0
|z| = \(\sqrt{a^{2}+b^{2}}=\sqrt{1^{2}+(\sqrt{3})^{2}}=\sqrt{1+3}=2\)
Here, (1, √3) lies in 1st quadrant.
amp (z) = \(\tan ^{-1}\left(\frac{b}{a}\right)=\tan ^{-1}(\sqrt{3})=\frac{\pi}{3}\)

(x) (1 + 2i)2 (1 – i)
Solution:
Let z = (1 + 2i)2 (1 – i)
= (1 + 4i + 4i2) (1 – i)
= [1 + 4i + 4(-1)] (1 – i) ….[∵ i2 = -1]
= (-3 + 4i) (1 – i)
= -3 + 3i + 4i – 4i2
= -3 + 7i – 4(-1)
= -3 + 7i + 4
∴ z = 1 + 7i
∴ a = 1, b = 7, i. e. a > 0, b > 0
∴ |z| = \(\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}=\sqrt{1^{2}+7^{2}}=\sqrt{1+49}=5 \sqrt{2}\)
Here, (1, 7) lies in 1st quadrant.
∴ amp(z) = \(\tan ^{-1}\left(\frac{b}{a}\right)=\tan ^{-1}(7)\)

Question 2.
Find real values of θ for which \(\left(\frac{4+3 i \sin \theta}{1-2 i \sin \theta}\right)\) is purely real.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q2

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

Question 3.
If z = 3 + 5i, then represent the z, \(\overline{\mathbf{z}}\), -z, \(\overline{\mathbf{-z}}\) in Argand’s diagram.
Solution:
z = 3 + 5i
\(\overline{\mathbf{z}}\) = 3 – 5i
-z = – 3 – 5i
\(\overline{\mathbf{-z}}\)= -3 + 5i
The above complex numbers will be represented by the points
A (3, 5), B (3, -5), C (-3, -5) , D (-3, 5) respectively as shown below:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q3

Question 4.
Express the following complex numbers in polar form and exponential form.
(i) -1 + √3 i
Solution:
Let z = – 1 + √3
a = -1, b = √3
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (i)

(ii) -i
Solution:
Let z = -i = 0 – i
a = 0, b = -1
z lies on negative imaginary Y-axis.
|z| = r = \(\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}=\sqrt{0^{2}+(-1)^{2}}\) = 1 and
θ = amp z = 270° = \(\frac{3 \pi}{2}\)
The polar form of z = r (cos θ + i sin θ)
= 1 (cos 270° + i sin 270°)
= 1 (cos \(\frac{3 \pi}{2}\) + i sin \(\frac{3 \pi}{2}\))
The exponential form of z = \(r e^{i \theta}=e^{\frac{3 \pi}{2} i}\)

(iii) -1
Solution:
Let z = -1 = -1 + 0.i
a = -1, b = 0
z lies on negative real X-axis.
|z| = r = \(\sqrt{a^{2}+b^{2}}=\sqrt{(-1)^{2}+0^{2}}\) = 1 and
θ = amp z = 180° = π
The polar form of z = r (cos θ + i sin θ)
= 1 (cos 180° + i sin 180°)
= 1 (cos π + i sin π)
The exponential form of z = \(r e^{i \theta}=e^{\pi i}\)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

(iv) \(\frac{1}{1+i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (iv)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (iv).1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (iv).2

(v) \(\frac{1+2 i}{1-3 i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (v)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (v).1

(vi) \(\frac{1+7 \mathbf{i}}{(2-\mathbf{i})^{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (vi)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q4 (vi).1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

Question 5.
Express the following numbers in the form x + iy:
(i) \(\sqrt{3}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q5 (i)

(ii) \(\sqrt{2} \cdot\left(\cos \frac{7 \pi}{4}+i \sin \frac{7 \pi}{4}\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q5 (ii)

(iii) \(7\left(\cos \left(-\frac{5 \pi}{6}\right)+i \sin \left(-\frac{5 \pi}{6}\right)\right)\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q5 (iii)

(iv) \(e^{\frac{\pi}{3} i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q5 (iv)

(v) \(e^{\frac{-4 \pi}{3} i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q5 (v)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q5 (v).1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

(vi) \([latex]e^{\frac{5 \pi}{6} i}\)[/latex]
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q5 (vi)

Question 6.
Find the modulus and argument of the complex number \(\frac{1+2 i}{1-3 i}\).
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q6
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q6.1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q6.2
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q6.3

Question 7.
Convert the complex number \(\mathrm{z}=\frac{i-1}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}\) in the polar form.
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q7
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q8

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

Question 8.
For z = 2 + 3i, verify the following:
(i) \(\overline{(\bar{z})}=z\)
Solution:
z = 2 + 3i
∴ \(\bar{z}\) = 2 – 3i
∴ \(\overline{\bar{z}}\) = 2 + 3i = z

(ii) \(\overline{z \bar{z}}=|z|^{2}\)
Solution:
z\(\bar{z}\) = (2 + 3i) (2 – 3i)
= 4 – 9i2
= 4 – 9(-1) …..[∵ i2 = -1]
= 13
|z|2 = \(\left(\sqrt{2^{2}+3^{2}}\right)^{2}\)
= 22 + 32
= 4 + 9
= 13
∴ \(\overline{z \bar{z}}=|z|^{2}\)

(iii) (z + \(\bar{z}\)) is real
Solution:
(z + \(\bar{z}\)) = (2 + 3i) + (2 – 3i)
= 2 + 3i + 2 – 3i
= 4, which is a real number.
∴ z + \(\bar{z}\) is real.

(iv) z – \(\bar{z}\) = 6i
Solution:
z – \(\bar{z}\) = (2 + 3i) – (2 – 3i)
= 2 + 3i – 2 + 3i
= 6i

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

Question 9.
z1 = 1 + i, z2 = 2 – 3i, verify the following:
(i) \(\overline{Z_{1}+Z_{2}}=\overline{Z_{1}}+\overline{Z_{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q9 (i)

(ii) \(\overline{Z_{1}-Z_{2}}=\overline{Z_{1}}-\overline{Z_{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q9 (ii)

(iii) \(\overline{Z_{1} \cdot Z_{2}}=\overline{Z_{1}} \cdot \overline{Z_{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q9 (iii)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3

(iv) \(\overline{\left(\frac{\mathbf{z}_{1}}{\mathbf{z}_{2}}\right)}=\frac{\overline{\mathbf{z}}_{1}}{\overline{\mathbf{z}}_{2}}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q9 (iv)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.3 Q9 (iv).1

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

Balbharti Maharashtra State Board 11th Maths Book Solutions Pdf Chapter 1 Complex Numbers Ex 1.2 Questions and Answers.

Maharashtra State Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

Question 1.
Find the square root of the following complex numbers:
(i) -8 – 6i
Solution:
Let \(\sqrt{-8-6 i}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
-8 – 6i = (a + bi)2
-8 – 6i = a2 + b2i2 + 2abi
-8 – 6i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = -8 and 2ab = -6
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (i)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (i).1

(ii) 7 + 24i
Solution:
Let \(\sqrt{7+24 i}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
7 + 24i = (a + bi)2
7 + 24i = a2 + b2i2 + 2abi
7 + 24i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 7 and 2ab = 24
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (ii)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

(iii) 1 + 4√3 i
Solution:
Let \(\sqrt{1+4 \sqrt{3} i}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
1 + 4√3 i = (a + bi)2
1 + 4√3i = a2 + b2i2 + 2abi
1 + 4√3i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real arid imaginary parts, we get
a2 – b2 = 1 and 2ab = 4√3
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (iii)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (iii).1

(iv) 3 + 2√10 i
Solution:
Let \(\sqrt{3+2 \sqrt{10}} i\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
3 + 2√10 i = a2 + b2i2 + 2abi
3 + 2√10 i = (a2 – b2) + 2abi ……[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 3 and 2ab = 2√10
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (iv)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (iv).1

(v) 2(1 – √3 i)
Solution:
Let \(\sqrt{2(1-\sqrt{3} i)}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
2(1 – √3 i) = a2 + b2i2 + 2abi
2 – 2√3 i = (a2 – b2) + 2abi ….[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 2 and 2ab = -2√3
a2 – b2 = 2 and b = \(-\frac{\sqrt{3}}{a}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q1 (v)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

Question 2.
Solve the following quadratic equations:
(i) 8x2 + 2x + 1 = 0
Solution:
Given equation is 8x2 + 2x + 1 = 0
Comparing with ax2 + bx + c = 0, we get
a = 8, b = 2, c = 1
Discriminant = b2 – 4ac
= (2)2 – 4 × 8 × 1
= 4 – 32
= -28 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q2 (i)

(ii) 2x2 – √3 x + 1 = 0
Solution:
Given equation is 2x2 – √3 x + 1 = 0
Comparing with ax2 + bx + c = 0, we get
a = 2, b = -√3, c = 1
Discriminant = b2 – 4ac
= (-√3)2 – 4 × 2 × 1
= 3 – 8
= -5 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q2 (ii)

(iii) 3x2 – 7x + 5 = 0
Solution:
Given equation is 3x2 – 7x + 5 = 0
Comparing with ax2 + bx + c = 0, we get
a = 3, b = -7, c = 5
Discriminant = b2 – 4ac
= (-7)2 – 4 × 3 × 5
= 49 – 60
= -11 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q2 (iii)
The roots of the given equation are \(\frac{7+\sqrt{11} \mathrm{i}}{6}\) and \(\frac{7-\sqrt{11} \mathrm{i}}{6}\)

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

(iv) x2 – 4x + 13 = 0
Solution:
Given equation is x2 – 4x + 13 = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = -4, c = 13
Discriminant = b2 – 4ac
= (-4)2 – 4 × 1 × 13
= 16 – 52
= -36 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q2 (iv)
∴ The roots of the given equation are 2 + 3i and 2 – 3i.

Question 3.
Solve the following quadratic equations:
(i) x2 + 3ix + 10 = 0
Solution:
Given equation is x2 + 3ix + 10 = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = 3i, c = 10
Discriminant = b2 – 4ac
= (3i)2 – 4 × 1 × 10
= 9i2 – 40
= -9 – 40 ……[∵ i2 = -1]
= -49 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q3 (i)
∴ x = 2i or x = -5i
∴ The roots of the given equation are 2i and -5i.

(ii) 2x2 + 3ix + 2 = 0
Solution:
Given equation is 2x2 + 3ix + 2 = 0
Comparing with ax + bx + c = 0, we get
a = 2, b = 3i, c = 2
Discriminant = b2 – 4ac
= (3i)2 – 4 × 2 × 2
= 9i2 – 16
= -9 – 16 …..[∵ i2 = -1]
= -25 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q3 (ii)
∴ The roots of the given equation are \(\frac{1}{2}\)i and -2i.

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

(iii) x2 + 4ix – 4 = 0
Solution:
Given equation is x2 + 4ix – 4 = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = 4i, c = -4
Discriminant = b2 – 4ac
= (4i)2 – 4 × 1 × (-4)
= 16i2 + 16
= -16 + 16 …..[∵ i2 = -1]
= 0
So, the given equation has equal roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q3 (iii)
∴ x = -2i
∴ The root of the given equation is -2i.

(iv) ix2 – 4x – 4i = 0
Solution:
ix2 – 4x – 4i = 0
Multiplying throughout by i, we get
i2x2 – 4ix – 4i2 = 0
-x2 – 4ix + 4 = 0 …[∵ i2 = -1]
x2 + 4ix – 4 = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = 4i, c = -4
Discriminant = b2 – 4ac
= (4i)2 – 4 × 1 × (-4)
= 16i2 + 16
= -16 + 16
= 0
So, the given equation has equal roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q3 (iv)
∴ The root of the given equation is -2i

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

Question 4.
Solve the following quadratic equations:
(i) x2 – (2 + i) x – (1 – 7i) = 0
Solution:
Given equation is x2 – (2 + i)x – (1 – 7i) = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = -(2 + i), c = -(1 – 7i)
Discriminant = b2 – 4ac
= [-(2 + i)]2 – 4 × 1 × -(1 – 7i)
= 4 + 4i + i2 + 4 – 28i
= 4 + 4i – 1 + 4 – 28i …..[∵ i2 = – 1]
= 7 – 24i
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (i)
Let \(\sqrt{7-24 i}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
7 – 24i = a2 + i2b2 + 2abi
7 – 24i = a2 – b2 + 2abi
Equating real and imaginary parts, we get
a2 – b2 = 7 and 2ab = -24
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (i).1

(ii) x2 – (3√2 + 2i) x + 6√2 i = 0
Solution:
Given equation is x2 – (3√2 + 2i) x + 6√2 i = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = -(3√2 + 2i), c = 6√2i
Discriminant = b2 – 4ac
= [-(3√2 + 2i)]2 – 4 × 1 × 6√2 i
= 18 + 12√2i + 4i2 – 24√2 i
= 18 – 12√2 i – 4 ……[∵ i2 = -1]
= 14 – 12√2 i
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (ii)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (ii).1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (ii).2

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

(iii) x2 – (5 – i) x + (18 + i) = 0
Solution:
Given equation is x2 – (5 – i)x + (18 + i) = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = -(5 – i), c = 18 + i
Discriminant = b2 – 4ac
= [-(5 – i)]2 – 4 × 1 × (18 + i)
= 25 – 10i + i2 – 72 – 4i
= 25 – 10i – 1 – 72 – 4i ……[∵ i2 = -1]
= -48 – 14i
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (iii)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (iii).1

(iv) (2 + i) x2 – (5 – i) x + 2(1 – i) = 0
Solution:
Given equation is (2 + i) x2 – (5 – i) x + 2(1 – i) = 0
Comparing with ax2 + bx + c = 0, we get
a = 2 + i, b = -(5 – i), c = 2(1 – i)
Discriminant = b2 – 4ac
= [-(5 – i)]2 – 4 × (2 + i) × 2(1 – i)
= 25 – 10i + i2 – 8(2 + i) (1 – i)
= 25 – 10i + i2 – 8(2 – 2i + i – i2)
= 25 – 10i – 1 – 8(2 – i + 1) …..[∵ i2 = -1]
= 25 – 10i – 1 – 16 + 8i – 8
= -2i
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (iv)
Let \(\sqrt{-2 i}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
-2i = a2 + b2i2 + 2abi
-2i = a2 – b2 + 2abi
Equating real and imaginary parts, we get
a2 – b2 = 0 and 2ab = -2
a2 – b2 = 0 and b = \(-\frac{1}{a}\)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (iv).1
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q4 (iv).2

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

Question 5.
Find the value of
(i) x3 – x2 + x + 46, if x = 2 + 3i
Solution:
x = 2 + 3i
x – 2 = 3i
(x – 2)2 = 9i2
x2 – 4x + 4 = 9(-1) …..[∵ i2 = -1]
x2 – 4x + 13 = 0 …..(i)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q5 (i)
Dividend = Divisor × Quotient + Remainder
∴ x3 – x2 + x + 46 = (x2 – 4x + 13) (x + 3) + 7
= 0(x + 3) + 7 …..[from(i)]
= 7

Alternate Method:
x = 2 + 3i
α = 2 + 3i, \(\bar{\alpha}\) = 2 – 3i
α\(\bar{\alpha}\) = (2 + 3i)(2 – 3i)
= 4 – 6i + 6i – 9i2
= 4 – 9(-1)
= 4 + 9
= 13
α + \(\bar{\alpha}\) = 2 + 3i + 2 – 3i = 4
∴ Standard form of quadratic equation,
x2 – (Sum of roots) x + Product of roots = 0
x2 – 4x + 13 = 0
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q5 (i).1
Dividend = Divisor × Quotient + Remainder
∴ x3 – x2 + x + 46 = (x2 – 4x + 13).(x + 3) + 7
= 0(x + 3) + 7 …..[From (i)]
= 7

(ii) 2x3 – 11x2 + 44x + 27, if x = \(\frac{25}{3-4 i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q5 (ii)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q5 (ii).1
Dividend = Divisor × Quotient + Remainder
2x3 – 11x2 + 44x + 27 = (x2 – 6x + 25)(2x + 1) + 2
= 0.(2x + 1) + 2 …..[From (i)]
= 0 + 2
= 2

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

(iii) x3 + x2 – x + 22, if x = \(\frac{5}{1-2 i}\)
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q5 (iii)
Dividend = Divisor × Quotient + Remainder
x3 + x2 – x + 22 = (x2 – 2x + 5)(x + 3) + 7
= 0.(x + 3) + 7 …..[From (i)]
= 0 + 7
= 7

(iv) x4 + 9x3 + 35x2 – x + 4, if x = -5 + √-4
Solution:
x = -5 + √-4
x + 5 = √-4
x + 5 = √4 √-1
x + 5 = 2i
(x + 5)2 = 4i2
x2 + 10x + 25 = 4(-1) ….[∵ i2 = -1]
x2 + 10x + 29 = 0 …..(i)
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q5 (iv)
Dividend = Divisor × Quotient + Remainder
x4 + 9x3 + 35x2 – x + 4 = (x2 + 10x + 29) (x2 – x + 16) – 132x – 460
= 0.(x2 – x + 16) – 132x – 460 …..[From (i)]
= -132 (-5 + 2i) – 460
= 660 – 264i – 460
= 200 – 264i

Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2

(v) 2x4 + 5x3 + 7x2 – x + 41, if x = -2 – √3i
Solution:
Maharashtra Board 11th Maths Solutions Chapter 1 Complex Numbers Ex 1.2 Q5 (v)
Dividend = Divisor × Quotient + Remainder
2x4 + 5x3 + 7x2 – x + 41 = (x2 + 4x + 7) (2x2 – 3x + 5) + 6
= 0(2x2 – 3x + 5) + 6 ……[From (i)]
= 0 + 6
= 6