Practice Set 3.2 Class 8 Answers Chapter 3 Indices and Cube Root Maharashtra Board

Balbharti Maharashtra State Board Class 8 Maths Solutions covers the Practice Set 3.2 8th Std Maths Answers Solutions Chapter 3 Indices and Cube Root.

Indices and Cube Root Class 8 Maths Chapter 3 Practice Set 3.2 Solutions Maharashtra Board

Std 8 Maths Practice Set 3.2 Chapter 3 Solutions Answers

Question 1.
Complete the following table.

S.No. Number Power of the root Root of the power
1. \((225)^{\frac{3}{2}}\) Cube of square root of 225 Square root of cube of 225
2. \((45)^{\frac{4}{5}}\)
3. \((81)^{\frac{6}{7}}\)
4. \((100)^{\frac{4}{10}}\)
5. \((21)^{\frac{3}{7}}\)

Solution:

S.No. Number Power of the root Root of the power
1. \((225)^{\frac{3}{2}}\) Cube of square root of 225 Square root of cube of 225
2. \((45)^{\frac{4}{5}}\) 4th power of 5th root of 45 5th root of 4th power of 45
3. \((81)^{\frac{6}{7}}\) 6th power of 7th root of 81 7th root of 6th power of 81
4. \((100)^{\frac{4}{10}}\) 4th power of 10th root of 100 10th root of 4th power of 100
5. \((21)^{\frac{3}{7}}\) Cube of 7th root of 21 7th root of cube of 21

Question 2.
Write the following numbers in the form of rational indices.
i. Square root of 5th power of 121.
ii. Cube of 4th root of 324.
iii. 5th root of square of 264.
iv. Cube of cube root of 3.
Solution:
i. \((121)^{\frac{5}{2}}\)
ii. \((324)^{\frac{3}{4}}\)
iii. \((264)^{\frac{2}{5}}\)
iv. \((3)^{\frac{3}{3}}\)

Std 8 Maths Digest

Practice Set 1.3 Algebra 9th Standard Maths Part 1 Chapter 1 Sets Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 1.3 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 1 Sets.

9th Standard Maths 1 Practice Set 1.3 Chapter 1 Sets Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Practice Set 1.3 Chapter 1 Sets Questions With Answers Maharashtra Board

Question 1.
If A = {a, b, c, d, e}, B = {c, d, e, f}, C = {b, d}, D = {a, e}, then which of the following statements are true and which are false?
i. C ⊆ 3
ii. A ⊆ D
iii. D ⊆ B
iv. D ⊆ A
V. B ⊆ A
vi. C ⊆ A
Ans:
i. C = {b, d}, B = {c, d, e ,f}
C ⊆ B
False
Since, all the elements of C are not present in B.

ii. A = {a, b, c, d, e}, D = {a, e}
A ⊆ D
False
Since, all the elements of A are not present in D.

iii. D = {a, e}, B = {c, d, e, f}
D ⊆ B
False
Since, all the elements of D are not present in B.

iv. D = {a, e}, A = {a, b, c, d, e}
D ⊆ A
True
Since, all the elements of D are present in A.

v. B = {c, d, e, f}, A = {a, b, c, d, e}
B ⊆ A
False
Since, all the elements of B are not present in A.

vi. C = {b, d}, A= {a, b, c, d, e}
C ⊆A
True
Since, all the elements of C are present in A.

Question 2.
Take the set of natural numbers from 1 to 20 as universal set and show set X and Y using Venn diagram. [2 Marks each]
i. X= {x |x ∈ N, and 7 < x < 15}
ii. Y = { y | y ∈ N, y is a prime number from 1 to 20}
Answer:
i. U = {1, 2, 3, 4, …….., 18, 19, 20}
x = {x | x ∈ N, and 7 < x < 15}
∴ x = {8, 9, 10, 11, 12, 13, 14}
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.3 1

ii. U = {1, 2, 3, 4, …… ,18, 19, 20}
Y = { y | y ∈ N, y is a prime number from 1 to 20}
∴ Y = {2, 3, 5, 7, 11, 13, 17, 19}
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.3 2

Question 3.
U = {1, 2, 3, 7, 8, 9, 10, 11, 12} P = {1, 3, 7,10}, then
i. show the sets U, P and P’ by Venn diagram.
ii. Verify (P’)’ = P
Solution:
i. Here, U = {1,2, 3, 7, 8,9, 10, 11, 12} P = {1, 3, 7, 10}
∴ P’ = {2, 8, 9, 11, 12}
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.3 3

II. Here, U = {1, 2, 3, 7, 8, 9, 10, 11, 12}
P = {1, 3, 7, 10} ….(i)
∴ P’= {2, 8, 9, 11, 12}
Also, (P’)’ = {1,3,7, 10} …(ii)
∴ (P’)’ = P … [From (i) and (ii)]

Question 4.
A = {1, 3, 2, 7}, then write any three subsets of A.
Solution:
Three subsets of A:
i. B = {3}
ii. C = {2, 1}
iii. D= {1, 2, 7}
[Note: The above problem has many solutions. Students may write solutions other than the ones given]

Question 5.
i. Write the subset relation between the sets.
P is the set of all residents in Pune.
M is the set of all residents in Madhya Pradesh.
I is the set of all residents in Indore.
B is the set of all residents in India.
H is the set of all residents in Maharashtra.

ii. Which set can be the universal set for above sets ?
Solution:
i.
a. The residents of Pune are residents of India.
∴ P ⊆ B
b. The residents of Pune are residents of Maharashtra.
∴ P ⊆ H
c. The residents of Madhya Pradesh are residents of India.
∴ M ⊆ B
d. The residents of Indore are residents of India.
∴ I ⊆ B
e. The residents of Indore are residents of Madhya Pradesh.
∴ I ⊆ M
f. The residents of Maharashtra are residents of India.
∴ H ⊆B

ii. The residents of Pune, Madhya Pradesh, Indore and Maharashtra are all residents of India.
∴ B can be the Universal set for the above sets.

Question 6.
Which set of numbers could be the universal set for the sets given below?
i. A = set of multiples of 5,
B = set of multiples of 7,
C = set of multiples of 12

ii. P = set of integers which are multiples of 4.
T = set of all even square numbers.
Answer:
i. A = set of multiples of 5
∴ A = {5, 10, 15, …}
B = set of multiples of 7
∴ B = {7, 14, 21,…}
C = set of multiples of 12
∴ C = {12, 24, 36, …}
Now, set of natural numbers, whole numbers, integers, rational numbers are as follows:
N = {1, 2, 3, …}, W = {0, 1, 2, 3, …}
I = {…,-3, -2, -1, 0, 1, 2, 3, …}
Q = { \(\frac { p }{ q }\) | p,q ∈ I,q ≠ 0}
Since, set A, B and C are the subsets of sets N, W , I and Q.
∴ For set A, B and C we can take any one of the set from N, W, I or Q as universal set.

ii. P = set of integers which are multiples of 4.
P = {4, 8, 12,…}
T = set of all even square numbers T = {22, 42, 62, …]
Since, set P and T are the subsets of sets N, W, I and Q.
∴ For set P and T we can take any one of the set from N, W, I or Q as universal set.

Question 7.
Let all the students of a class form a Universal set. Let set A be the students who secure 50% or more marks in Maths. Then write the complement of set A.
Answer:
Here, U = all the students of a class.
A = Students who secured 50% or more marks in Maths.
∴ A’= Students who secured less than 50% marks in Maths.

Question 1.
If A = {1, 3, 4, 7, 8}, then write all possible subsets of A.
i. e. P = {1, 3}, T = {4, 7, 8}, V = {1, 4, 8}, S = {1, 4, 7, 8}
In this way many subsets can be written. Write five more subsets of set A. (Textbook pg. no, 8)
Answer:
B = { },
E = {4},
C = {1, 4},
D = {3, 4, 7},
F = {3, 4, 7,8}

Question 2.
Some sets are given below.
A ={…,-4, -2, 0, 2, 4, 6,…}
B = {1, 2, 3,…}
C = {…,-12, -6, 0, 6, 12, 18, }
D = {…, -8, -4, 0, 4, 8,…}
I = {…,-3, -2, -1, 0, 1, 2, 3, 4, }
Discuss and decide which of the following statements are true.
a. A is a subset of sets B, C and D.
b. B is a subset of all the sets which are given above. (Textbook pg. no. 9)
Solution:
a. All elements of set A are not present in set B, C and D.
∴ A ⊆ B,
∴ A ⊆ C,
∴ A ⊆ D
∴ Statement (a) is false.

b. All elements of set B are not present in set A, C and D.
∴ B ⊆ A,
∴ B ⊆ C,
∴ B ⊆ D
∴ Statement (b) is false.

Question 3.
Suppose U = {1, 3, 9, 11, 13, 18, 19}, and B = {3, 9, 11, 13}. Find (B’)’ and draw the inference. (Textbook pg. no. 10)
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.3 4
Solution:
U = {1, 3, 9, 11, 13, 18, 19},
B= {3, 9, 11, 13} ….(i)
∴ B’= {1, 18, 19}
(B’)’= {3, 9, 11, 13} ….(ii)
∴ (B’)’ = B … [From (i) and (ii)]
∴ Complement of a complement is the given set itself.

Class 9 Maths Digest

Practice Set 1.2 Algebra 9th Standard Maths Part 1 Chapter 1 Sets Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 1.2 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 1 Sets.

9th Standard Maths 1 Practice Set 1.2 Chapter 1 Sets Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Practice Set 1.2 Chapter 1 Sets Questions With Answers Maharashtra Board

Question 1.
Decide which of the following are equal sets and which are not ? Justify your answer.
A= {x | 3x – 1 = 2}
B = {x | x is a natural number but x is neither prime nor composite}
C = {x | x e N, x < 2}
Solution:
A= {x | 3x – 1 = 2}
Here, 3x – 1 = 2
∴ 3x = 3
∴ x = 1
∴ A = {1} …(i)

B = {x | x is a natural number but x is neither prime nor composite}
1 is the only number which is neither prime nor composite,
∴ x = 1
∴ B = {1} …(ii)

C = {x | x G N, x < 2}
1 is the only natural number less than 2.
∴ x = 1
∴ C = {1} …(iii)
∴ The element in sets A, B and C is identical. … [From (i), (ii) and (iii)]
∴ A, B and C are equal sets.

Question 2.
Decide whether set A and B are equal sets. Give reason for your answer.
A = Even prime numbers
B = {x | 7x – 1 = 13}
Solution:
A = Even prime numbers
Since 2 is the only even prime number,
∴ A = {2} …(i)
B= {x | 7x – 1 = 13}
Here, 7x – 1 = 13
∴ 7x = 14
∴ x = 2
∴ B = {2} …(ii)
∴ The element in set A and B is identical. … [From (i) and (ii)]
∴ A and B are equal sets.

Question 3.
Which of the following are empty sets? Why?
i. A = {a | a is a natural number smaller than zero}
ii. B = {x | x2 = 0}
iii. C = {x | 5x – 2 = 0, x ∈N}
Solution:
i. A = {a| a is a natural number smaller than zero}
Natural numbers begin from 1.
∴ A = { }
∴ A is an empty set.

ii. B = {x | x2 = 0}
Here, x2 = 0
∴ x = 0 … [Taking square root on both sides]
∴ B = {0}
∴B is not an empty set.

iii. C = {x | 5x – 2 = 0, x ∈ N}
Here, 5x – 2 = 0
∴ 5x = 2
∴ x = \(\frac { 2 }{ 5 }\)
Given, x ∈ N
But, x = \(\frac { 2 }{ 5 }\) is not a natural number.
∴ C = { }
∴ C is an empty set.

Question 4.
Write with reasons, which of the following sets are finite or infinite.
i. A = {x | x<10, xisa natural number}
ii. B = {y | y < -1, y is an integer}
iii. C = Set of students of class 9 from your school.
iv. Set of people from your village.
v. Set of apparatus in laboratory
vi. Set of whole numbers
vii. Set of rational number
Solution:
i. A={x| x < 10, x is a natural number}
∴ A = {1,2, 3,4, 5,6, 7, 8, 9}
The number of elements in A are limited and can be counted.
∴A is a finite set.

ii. B = (y | y < -1, y is an integer}
∴ B = { …,-4, -3, -2}
The number of elements in B are unlimited and uncountable.
∴ B is an infinite set.

iii. C = Set of students of class 9 from your school.
The number of students in a class is limited and can be counted.
∴ C is a finite set.

iv. Set of people from your village.
The number of people in a village is limited and can be counted.
∴ Given set is a finite set.

v. Set of apparatus in laboratory
The number of apparatus in the laboratory are limited and can be counted.
∴ Given set is a finite set.

vi. Set of whole numbers
The number of elements in the set of whole numbers are unlimited and uncountable.
∴ Given set is an infinite set.

vii. Set of rational number
The number of elements in the set of rational numbers are unlimited and uncountable.
∴ Given set is an infinite set.

Question 1.
If A = {1, 2, 3} and B = {1, 2, 3, 4}, then A ≠ B verify it. (Textbook pg. no. 6)
Answer:
Here, 4 ∈ B but 4 ∉ A
∴ A and B are not equal sets,
i.e. A ≠ B

Question 2.
A = {x | x is prime number and 10 < x < 20} and B = {11,13,17,19}. Here A = B. Verify. (Textbook pg. no. 6)
Answer:
A = {x | x is prime number and 10 < x < 20}
∴ A = {11, 13, 17, 19}
B = {11, 13, 17, 19}
∴ All the elements in set A and B are identical.
∴ A and B are equal sets, i.e. A = B

Class 9 Maths Digest

Practice Set 1.4 Algebra 9th Standard Maths Part 1 Chapter 1 Sets Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 1.4 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 1 Sets.

9th Standard Maths 1 Practice Set 1.4 Chapter 1 Sets Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Practice Set 1.4 Chapter 1 Sets Questions With Answers Maharashtra Board

Question 1.
If n(A) = 15, n(A ∪ B) = 29, n(A ∩ B) = 7, then n(B) = ?
Solution:
Here, n(A) = 15, n(A ∪ B) = 29, n(A ∩ B) = 7
n(A ∪ B) = n(A) + n(B) – n(A ∩ B)
∴ 29 = 15 + n(B) – 7
∴ 29 – 15 + 7 = n(B)
∴ n(B) = 21

Question 2.
In a hostel there are 125 students, out of which 80 drink tea, 60 drink coffee and 20 drink tea and coffee both. Find the number of students who do not drink tea or coffee.
Solution:
i. Let U be the set of students in the hostel, T be the set of students who drink tea and C be the set of students who drink coffee.
n(U) = 125, n(T) = 80, n(C) = 60,
number of students who drink Tea and Coffee = n(T ∩ C) = 20

ii. n(T ∪ C) = n(T) + n(C) – n(T ∩ C)
= 80 + 60 – 20
∴ n(T ∪ C) = 120
∴ 120 students drink tea or coffee
Also, there are 125 students in the hostel.

iii. Number of students who do not drink tea or coffee = n(U) – n(T ∪ C)
= 125 – 120
= 5
∴ 5 students do not drink tea or coffee.

Alternate Method:
Let U be the set of students in the hostel, T be the set of students who drink tea and C be the set of students who drink coffee.
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.4 1
From Venn diagram,
Student who drinks tea or coffee = n(T ∪ C) = 60 + 20 + 40 = 120
∴ The number of students who do not drink tea or coffee = n(U) – n(T ∪ C)
= 125 – 120 = 5
∴ 5 students do not drink tea or coffee.

Question 3.
In a competitive exam 50 students passed in English, 60 students passed in Mathematics and 40 students passed in both the subjects. None of them failed in both the subjects. Find the number of students who passed at least in one of the subjects ?
Solution:
Let U be the set of students who appeared for the exam,
E be the set of students who passed in English and
M be the set of students who passed in Maths.
∴ n(E) = 50, n(M) = 60,
40 students passed in both the subjects
∴ n(M ∩ E) = 40
Since, none of the students failed in both subjects
∴ Total students = n(E ∪M)
= n(E) + n(M) – n(E ∩ M)
= 50 + 60 – 40
= 70
∴ The number of students who passed at least in one of the subjects is 70.

Alternate Method:
Let U be the set of students who appeared for the exam,
E be the set of students who passed in English and M be the set of students who passed in Maths.
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.4 2
Since, none of the students failed in both subjects
∴ Total student = n(E ∪M)
= 10 + 40 + 20
= 70
∴ The number of students who passed at least in one of the subjects is 70.

Question 4.
A survey was conducted to know the hobby of 220 students of class IX. Out of which 130 students informed about their hobby as ’rock climbing and 180 students informed about their hobby as sky watching. There are 110 students who follow both the hobbies. Then how many students do not have any of the two hobbies? How many of them follow the hobby of rock climbing only? How many students follow the hobby of sky watching only?
Solution:
i. Let U be the set of students of class IX,
R be the set of students who follow the hobby of rock climbing and
S be the set of students who follow the hobby of sky watching.
∴ n (U) = 220, n (R) = 130, n (S) = 180,
110 students follow both the hobbies
∴ n (R ∩ S) = 110

ii. n(R ∪ S)=n (R) + n (S) – n (R ∩ S)
= 130 + 180 – 110
∴n (R ∪ S) = 200
∴ 200 students follow the hobby of rock climbing or sky watching.

iii. Total number of students = 220.
Number of students who do not follow the hobby of rock climbing or sky watching
= n (U) – n (R ∪ S)
= 220 – 200
= 20

iv. Number of students who follow the hobby of rock climbing only
= n (R) – n(R ∩ S)
= 130 – 110
= 20

v. Number of students who follow the hobby of sky watching only
= n (S) – n (R ∩ S)
= 180 – 110
= 70

Alternate Method:
Let U be the set of students of class IX,
R be the set of students who follow the hobby of rock climbing and
S be the set of students who follow the hobby of sky watching.
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.4 3

From the Venn diagram
i. Students who follow the hobby of rock climbing or sky watching
= n(R ∪ S)
= 20 + 110 + 70
= 200

ii. Number of students who do not follow the hobby of rock climbing or sky watching
= n (U) – n(R ∪S)
= 220 – 200
= 20

iii. Number of students who follow the hobby of rock climbing only
= n (R) – n(R ∩S)
= 130 – 110
= 20

iv. Number of students who follow the hobby of sky watching only
= n (S) – n (R ∩ S)
= 180 – 110
= 70

Question 5.
Observe the given Venn diagram and write the following sets.
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.4 4
i. A
ii. B
iii. A ∪ B
iv. U
v. A’
vi. B’
vii. (A ∪B )’
Ans:
i. A = {x, y, z, m, n}
ii. B = {p, q, r, m, n}
iii. A ∪ B = {x, y, z, m, n, p, q, r }
iv. U = {x, y, z, m, n, p, q, r, s, t}
v. A’ = {p, q, r, s, t}
vi. B’ = {x, y, z, s, t}
vii. (A ∪ B )’ = {s, t}

Question 1.
Take different examples of sets and verify the above mentioned properties. (Textbook pg.no. 12)
Solution:
i. Let A = {3, 5}, B= {3, 5, 8, 9, 10}
A ∩ B = B ∩ A = {3, 5}

ii. Let A = {3, 5}, B = {3, 5, 8, 9, 10}
Since, all elements of set A are present in set B.
∴ A ⊆ B
Also, A ∩ B = {3, 5} = A
∴ If A ⊆ B, then A ∩B = A.

iii. Let A = {2, 3, 8, 10}, B = {3,8}
A ∩ B = {3, 8} = B
Also, all the elements of set B are present in set A
∴ B ⊆ A
∴ If A ∩ B = B, then B ⊆ A.

iv. Let A = {2, 3, 8, 10}, B = {3, 8}, A ∩B = {3, 8}
Since, all the elements of set A n B are present in set A and B
A ∩ B ⊆ A and A ∩B ⊆B

v. Let U= {3, 4, 6, 8}, A = {6, 4}
∴ A’ = {3, 8}
∴ A ∩ A’= { } = φ

vi. A ∩ φ = { } = φ

vii. Let A = {6, 4}
∴ A ∩ A = {6, 4}
∴ A ∩ A = A

Question 2.
Observe the set A, B, C given by Venn diagrams and write which of these are disjoint sets. (Textbook pg. no. 12)
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.4 5
Solution:
Here, A = {1, 2, 3, 4, 5, 6, 7}
B = {3, 6, 8, 9, 10, 11, 12}
C = {10, 11, 12}
Now, A ∩ C = φ
∴ A and C are disjoint sets.

Question 3.
Let the set of English alphabets be the Universal set. The letters of the word ‘LAUGH’ is one set and the letter of the word ‘CRY’ is another set. Can we say that these are two disjoint sets? Observe that intersection of these two sets is empty. (Textbook pg. no. 13)
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.4 6
Solution:
Let A = {L, A, U, G, H}
B = {C, R, Y}
Now, A ∩ B = φ
∴ A and B are disjoint sets.

Question 4.
Fill in the blanks with elements of that set.
U = {1, 3, 5, 8, 9, 10, 11, 12, 13, 15}
A = {1,11, 13}
B = {8,5, 10, 11, 15}
A’ = { }
B’ = { }
A ∩ B = { }
A’ ∩ B’ = { }
A ∪ B = { }
A’ ∪ B’= { }
(A ∩ B)’ = { }
(A ∪ B)’ = { }
Verify: (A ∩ B)’ = A’ u B’, (A u B)’ = A’ ∩ B’ (Textbook pg. no, 18)
Solution:
U = {1, 3, 5, 8, 9, 10, 11, 12, 13, 15}
A = {1, 11, 13}
B = {8, 5, 10, 11, 15}
A’ = {3, 5, 8, 9, 10, 12, 15}
B’ = {1, 3, 9, 12, 13}
A∩ B= {11}
A’ ∩ B’= {3, 9, 12} …(i)
A ∪ B = {1, 5, 8, 10, 11, 13, 15}
A’ ∪ B’ = { 1, 3, 5, 8, 9, 10, 12, 13, 15} …(ii)
(A ∩ B)’= { 1, 3, 5, 8, 9, 10, 12, 13,15} …(iii)
(A ∪ B)’ = {3, 9, 12} ,..(iv)
(A ∩ B)’ = A’ ∪ B’ … [From (ii) and (iii)]
(A ∪ B)’ = A’ ∩ B’ … [From (i) and (iv)]

Question 5.
A = {1,2,3, 5, 7,9,11,13}
B = {1,2,4, 6, 8,12,13}
Verify the above rule for the given set A and set B. (Textbook pg. no. 14)
Solution:
A = {1, 2, 3, 5, 7, 9, 11, 13}
B = {1, 2, 4, 6, 8, 12, 13}
A ∪ B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13}
A ∩ B= {1, 2, 13}
n(A) = 8, n(B) = 7,
n(A ∪ B) = 12, n(A ∩ B) = 3
n(A ∩ B) = 12 …(i)
n(A) + n(B) – n(A ∩ B) = 8 + 7 – 3 = 12 …(ii)
∴ n(A ∪ B) = n(A) + n(B) – n(A ∩ B) … [From (i) and (ii)]

Question 6.
Verify the above rule for the given Venn diagram. (Textbook pg. no. 14)
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.4 7
Solution:
n(A) = 5 , n(B) = 6
n(A ∪ B) = 9 , n(A ∩ B) = 2
Now, n(A ∪ B) = 9 …(i)
n(A) + n(B) – n(A ∩ B) = 5 + 6 – 2 = 9 …(ii)
∴ n(A ∪ B) = n(A) + n(B) – n(A ∩ B). …[From (i) and (ii)]

Class 9 Maths Digest

Practice Set 1.1 Algebra 9th Standard Maths Part 1 Chapter 1 Sets Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 1.1 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 1 Sets.

9th Standard Maths 1 Practice Set 1.1 Chapter 1 Sets Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Practice Set 1.1 Chapter 1 Sets Questions With Answers Maharashtra Board

Question 1.
Write the following sets in roster form.
i. Set of even natural numbers
ii. Set of even prime numbers from 1 to 50
iii. Set of negative integers
iv. Seven basic sounds of a sargam (sur)
Answer:
i. A = { 2, 4, 6, 8,….}
ii. 2 is the only even prime number
∴ B = { 2 }
iii. C = {-1, -2, -3,….}
iv. D = {sa, re, ga, ma, pa, dha, ni}

Question 2.
Write the following symbolic statements in words.
i. \(\frac { 4 }{ 3 }\) ∈ Q
ii. -2 ∉ N
iii. P = {p | p is an odd number}
Answer:
i. \(\frac { 4 }{ 3 }\) is an element of set Q.
ii. -2 is not an element of set N.
iii. Set P is a set of all p’s such that p is an odd number.

Question 3.
Write any two sets by listing method and by rule method.
Answer:
i. A is a set of even natural numbers less than 10.
Listing method: A = {2, 4, 6, 8}
Rule method: A = {x | x = 2n, n e N, n < 5}

ii. B is a set of letters of the word ‘SCIENCE’. Listing method : B = {S, C, I, E, N}
Rule method: B = {x \ x is a letter of the word ‘SCIENCE’}

Question 4.
Write the following sets using listing method.
i. All months in the Indian solar year.
ii. Letters in the word ‘COMPLEMENT’.
iii. Set of human sensory organs.
iv. Set of prime numbers from 1 to 20.
v. Names of continents of the world.
Answer:
i. A = {Chaitra, Vaishakh, Jyestha, Aashadha, Shravana, Bhadrapada, Ashwina, Kartika, Margashirsha, Paush, Magha, Falguna}
ii. X = {C, O, M, P, L, E, N, T}
iii. Y = {Nose, Ears, Eyes, Tongue, Skin}
iv. Z = {2, 3, 5, 7, 11, 13, 17, 19}
v. E = {Asia, Africa, Europe, Australia, Antarctica, South America, North America}

Question 5.
Write the following sets using rule method.
i. A = {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}
ii. B= {6, 12, 18,24, 30,36,42,48}
iii. C = {S, M, I, L, E}
iv. D = {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday}
v. X = {a, e, t}
Answer:
i. A = {x | v = n², n e N, n < 10}
ii. B = {x j x = 6n, n e N, n < 9}
iii. C = {y j y is a letter of the word ‘SMILE’} [Other possible words: ‘SLIME’, ‘MILES’, ‘MISSILE’ etc.]
iv. D = {z | z is a day of the week}
v. X = {y | y is a letter of the word ‘eat’}
[Other possible words: ‘tea’ or ‘ate’]

Question 1.
Fill in the blanks given in the following table. (Textbook pg. no. 3)
Answer:
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.1 1

Class 9 Maths Digest

Practice Set 2.3 Class 8 Answers Chapter 2 Parallel Lines and Transversals Maharashtra Board

Balbharti Maharashtra State Board Class 8 Maths Solutions covers the Practice Set 2.3 8th Std Maths Answers Solutions Chapter 2 Parallel Lines and Transversals.

Parallel Lines and Transversals Class 8 Maths Chapter 2 Practice Set 2.3 Solutions Maharashtra Board

Std 8 Maths Practice Set 2.3 Chapter 2 Solutions Answers

Question 1.
Draw a line l. Take a point A outside the line. Through point A draw a line parallel to line l.
Solution:
Steps of construction:

  1. Draw a line l and take any point A outside the line.
  2. Place a set-square, such that one arm of the right angle passes through A and the other arm is on line l.
  3. Place the second set-square as shown in the figure such that the vertex of the right angle is at point A.
  4. Hold the two set-squares in place and draw a line parallel to line l through the edge of the second set-square. Name the line as m.

Maharashtra Board Class 8 Maths Solutions Chapter 2 Parallel Lines and Transversals Practice Set 2.3 1
Line m is the required line parallel to line l and passing through point A.

Question 2.
Draw a line l. Take a point T outside the line. Through point T draw a line parallel to line l.
Solution:
Steps of construction:

  1. Draw a line l and take any point T outside the line.
  2. Place a set-square, such that one arm of the right angle passes through T and the other arm is on line l.
  3. Place the second set-square as shown in the figure such that the vertex of the right angle is at point T.
  4. Hold the two set-squares in place and draw a line parallel to line l through the edge of the second set-square. Name the line as m.

Maharashtra Board Class 8 Maths Solutions Chapter 2 Parallel Lines and Transversals Practice Set 2.3 2
Line m is the required line parallel to line l and passing through point T.

Question 3.
Draw a line m. Draw a line n which is parallel to line m at a distance of 4 cm from it.
Solution:
Steps of construction:

  1. Draw a line m and take any two points M and N on the line.
  2. Draw perpendiculars to line m at points M and N.
  3. On the perpendicular lines take points S and T at a distance 4 cm from points M and N respectively.
  4. Draw a line through points S and T. Name the line as n.

Maharashtra Board Class 8 Maths Solutions Chapter 2 Parallel Lines and Transversals Practice Set 2.3 3
Line n is parallel to line m at a distance of 4 cm from it.

Std 8 Maths Digest

Practice Set 2.2 Class 8 Answers Chapter 2 Parallel Lines and Transversals Maharashtra Board

Balbharti Maharashtra State Board Class 8 Maths Solutions covers the Practice Set 2.2 8th Std Maths Answers Solutions Chapter 2 Parallel Lines and Transversals.

Parallel Lines and Transversals Class 8 Maths Chapter 2 Practice Set 2.2 Solutions Maharashtra Board

Std 8 Maths Practice Set 2.2 Chapter 2 Solutions Answers

Question 1.
Choose the correct alternative.
i. In the given figure, if line m || line n and line p is a transversal, then find x.
Maharashtra Board Class 8 Maths Solutions Chapter 2 Parallel Lines and Transversals Practice Set 2.2 1
(A) 135°
(B) 90°
(C) 45°
(D) 40°
Solution:
(C) 45°

Hint:
Maharashtra Board Class 8 Maths Solutions Chapter 2 Parallel Lines and Transversals Practice Set 2.2 2
line m || line n and line p is a transversal.
∴ m∠BFG + m∠FGD = 180°
…[Interior angles]
∴ 3x + x = 180°
∴ 4x = 180°
∴ x = \(\frac { 180 }{ 4 }\)
∴ x = 45°

ii. In the given figure, if line a || line b and line l is a transversal, then find x.
Maharashtra Board Class 8 Maths Solutions Chapter 2 Parallel Lines and Transversals Practice Set 2.2 3
(A) 90°
(B) 60°
(C) 45°
(D) 30°
Solution:
(D) 30°

Hint:
Maharashtra Board Class 8 Maths Solutions Chapter 2 Parallel Lines and Transversals Practice Set 2.2 4
line a || line b and line l is a transversal.
∴ m∠UVS = m∠PUV
…[Alternate angles]
= 4x
m∠UVS + m∠WVS = 180°
… [Angles in a linear pair]
∴ 4x + 2x = 180°
∴ 6x = 180°
∴ x = \(\frac { 180 }{ 6 }\)
∴ x = 30°

Question 2.
In the given figure, line p || line q. Line t and line s are transversals. Find measure of ∠x and ∠y using the measures of angles given in the figure.
Maharashtra Board Class 8 Maths Solutions Chapter 2 Parallel Lines and Transversals Practice Set 2.2 5
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 2 Parallel Lines and Transversals Practice Set 2.2 6
i. Consider ∠z as shown in figure.
line p || line q and line t is a transversal.
∴ m∠z = 40° …(i) [Corresponding angles]
m∠x + m∠z = 180° …[Angles in a linear pair]
∴ m∠x + 40o = 180° …[From(i)]
∴ m∠x= 180° – 40°
∴ m∠x = 140°

ii. Consider ∠w as shown in the figure.
m∠w + 70° = 180° …[Angles in a linear pair]
∴ m∠w = 180° – 70°
∴ m∠w = 110° …(ii)
line p || line q and line s is a transversal.
∴ m∠y = m∠w …[Alternate angles]
∴ m∠y =110° …[From (ii)]
∴ m∠x = 140°, m∠y = 110°

Question 3.
In the given figure, line p || line q, line l || line m. Find measures of ∠a, ∠b and ∠c, using the measures of given angles. Justify your answers.
Maharashtra Board Class 8 Maths Solutions Chapter 2 Parallel Lines and Transversals Practice Set 2.2 7
Solution:
i. line p || line q and line l is a transversal.
∴ m∠a + 80° = 180° …[Interior angles]
∴ m∠a= 180° – 80°
∴ m∠a= 100°

ii. line l || line m and line p is a transversal.
∴ m∠c = 80° …(i) [Exterior alternate angles]

iii. line p || line q and line m is a transversal.
∴ m∠b = m∠c … [Corresponding angles]
m∠b = 80° …[From (i)]
∴ m∠a = 100°, m∠b = 80°, m∠c = 80°

Question 4.
In the given figure, line a || line b, line l is a transversal. Find the measures of ∠x, ∠y, ∠z using the given information.
Maharashtra Board Class 8 Maths Solutions Chapter 2 Parallel Lines and Transversals Practice Set 2.2 8
Solution:
line a || line b and line l is a transversal.
∴ m∠x = 105° …(i) [Corresponding angles]

ii. m∠y = m∠x … [Vertically opposite angles]
∴ m∠y = 105° …[From (i)]

iii. m∠z + 105° = 180° …[Angles in a linear pair]
∴ m∠z = 180°- 105°
∴ m∠z = 75°
∴ m∠x = 105°, m∠y = 105°, m∠z = 75°

Question 5.
In the given figure, line p || line l || line q. Find ∠x with the help of the measures given in the figure.
Maharashtra Board Class 8 Maths Solutions Chapter 2 Parallel Lines and Transversals Practice Set 2.2 9
Solution:
Maharashtra Board Class 8 Maths Solutions Chapter 2 Parallel Lines and Transversals Practice Set 2.2 10
line p || line l and line IJ is a transversal.
m∠IJN = m∠JIH … [Alternate angles]
∴ m∠IJN = 40° …(i)
line l || line q and line MJ is a transversal.
m∠MJN = m∠JMK … [Alternate angles]
∴ m∠MJN = 30° …(ii)
Now, m∠x = m∠IJN + m∠MJN
…[Angle addition property]
= 40° + 30° …[From (i) and (ii)]
∴ m∠x = 70°

Maharashtra Board Class 8 Maths Chapter 2 Parallel Lines and Transversals Practice Set 2.2 Intext Questions and Activities

Question 1.
When two parallel lines are intersected by a transversal eight angles are formed. If the measure of one of these eight angles is given, can we find measures of remaining seven angles? (Textbook pg, no. 9)
Solution:
Yes, we can find the measures of the remaining angles.
Maharashtra Board Class 8 Maths Solutions Chapter 2 Parallel Lines and Transversals Practice Set 2.2 11
In the given figure, line m || line n and line l is a transversal.
m∠a = 60°(say) …(i)
i. m∠a + m∠b = 180° …[Angles in a linear pair]
∴ 60° + m∠b =180° … [From (i)]
∴ m∠b = 180° – 60°
∴ m∠b = 120° …(ii)

ii. m∠c = m∠b …[Vertically opposite angles]
∴ m∠c = 120° .. .(iii) [From (ii)]

iii. m∠d = m∠a …[Vertically opposite angles]
∴ m∠d = 60° …(iv) [From (i)]

iv. m∠e = m∠d …[Alternate angles]
∴ m∠e = 60° … [From (iv)]

v. m∠f = m∠c …[Alternate angles]
∴ m∠f = 120° …[From (iii)]

vi. m∠g = m∠d …[Corresponding angles]
∴ m∠g = 60° … [From (iv)]

vii. m∠h = m∠c … [Corresponding angles]
∴ m∠h = 120° …[From (iii)]

Question 2.
As shown in the figure (A), draw two parallel lines and their transversal on a paper. Draw a copy of the figure on another blank sheet using a trace paper, as shown in the figure (B). Colour part Land part II with different colours. Cut out the two parts with a pair of scissors. Place, part I and part II on each angle in the figure A and answer the following questions. (Textbook pg. no. 9)

  1. Which angles coincide with part I?
  2. Which angles coincide with part II?

Maharashtra Board Class 8 Maths Solutions Chapter 2 Parallel Lines and Transversals Practice Set 2.2 12
Solution:

  1. ∠d, ∠f and ∠h coincide with part I.
  2. ∠c, ∠e and ∠g coincide with part II.

Std 8 Maths Digest

Practice Set 2.1 Class 8 Answers Chapter 2 Parallel Lines and Transversals Maharashtra Board

Balbharti Maharashtra State Board Class 8 Maths Solutions covers the Practice Set 2.1 8th Std Maths Answers Solutions Chapter 2 Parallel Lines and Transversals.

Parallel Lines and Transversals Class 8 Maths Chapter 2 Practice Set 2.1 Solutions Maharashtra Board

Std 8 Maths Practice Set 2.1 Chapter 2 Solutions Answers

Question 1.
In the given figure, each angle is shown by a letter. Fill in the boxes with the help of the figure
Maharashtra Board Class 8 Maths Solutions Chapter 2 Parallel Lines and Transversals Practice Set 2.1 1
Corresponding angles:
i. ∠p and __
ii. ∠q and __
iii. ∠r and __
iv. ∠s and __

Interior alternate angles:
v. ∠s and __
vi. ∠w and __
Solution:
i. ∠w
ii. ∠x
iii. ∠y
iv. ∠z
v. ∠x
vi. ∠r

Question 2.
Observe the angles shown in the figure and write the following pair of angles.

Maharashtra Board Class 8 Maths Solutions Chapter 2 Parallel Lines and Transversals Practice Set 2.1 2

  1. Interior alternate angles
  2. Corresponding angles
  3. Interior angles

Solution:

  1. ∠c and ∠e; ∠b and ∠h
  2. ∠a and ∠e; ∠b and ∠f; ∠c and ∠g; ∠d and ∠h
  3. ∠c and ∠h; ∠b and ∠e

Std 8 Maths Digest

Practice Set 1.4 Class 8 Answers Chapter 1 Rational and Irrational Numbers Maharashtra Board

Balbharti Maharashtra State Board Class 8 Maths Solutions covers the Practice Set 1.4 8th Std Maths Answers Solutions Chapter 1 Rational and Irrational Numbers.

Rational and Irrational Numbers Class 8 Maths Chapter 1 Practice Set 1.4 Solutions Maharashtra Board

Std 8 Maths Practice Set 1.4 Chapter 1 Solutions Answers

Question 1.
The number √2 is shown on a number line. Steps are given to show √3 on the number line using √2. Fill in the boxes properly and complete the activity.
Maharashtra Board Class 8 Maths Solutions Chapter 1 Rational and Irrational Numbers Practice Set 1.4 1
The point Q on the number line shows the number ……….
A line perpendicular to the number line is drawn through the point Q. Point R is at unit distance from Q on the line.
Right angled ∆OQR is obtained by drawing seg OR.
l(OQ) = √2, l(QR) = 1
∴By Pythagoras theorem,
[l(OR)]² = [l(OQ)]² + [l(QR)]²
Maharashtra Board Class 8 Maths Solutions Chapter 1 Rational and Irrational Numbers Practice Set 1.4 2
Draw an arc with centre O and radius OR. Mark the point of intersection of the line and the arc as C. The point C shows the number √3
Solution:
The point Q on the number line shows the number √2
A line perpendicular to the number line is drawn through the point Q. Point R is at unit distance from Q on the line.
Right angled ∆OQR is obtained by drawing seg OR.
l(OQ) = √2, l(QR) = 1
∴By Pythagoras theorem,
[l(OR)]² = [l(OQ)]² + [l(QR)]²
Maharashtra Board Class 8 Maths Solutions Chapter 1 Rational and Irrational Numbers Practice Set 1.4 3
.. .[Taking square root of both sides]
Draw an arc with centre O and radius OR. Mark the point of intersection of the line and the arc as C. The point C shows the number √3.

Question 2.
Show the number √5 on the number line.
Solution:
Draw a number line and take a point Q at 2
such that l(OQ) = 2 units.
Draw a line QR perpendicular to the number line through the point Q such that l(QR) = 1 unit.
Draw seg OR.
∆OQR formed is a right angled triangle.
By Pythagoras theorem,
[l(OR)]² = [l(OQ)]² + [l(QR)]²
= 2² + 1²
= 4 + 1
= 5
∴l(OR) = √5 units
…[Taking square root of both sides]
Draw an arc with centre O and radius OR. Mark the point of intersection of the number line and arc as C. The point C shows the number √5.
Maharashtra Board Class 8 Maths Solutions Chapter 1 Rational and Irrational Numbers Practice Set 1.4 4

Question 3.
Show the number √7 on the number line.
Solution:
Draw a number line and take a point Q at 2 such that l(OQ) = 2 units.
Draw a line QR perpendicular to the number line through the point Q such that l(QR) = 1 unit.
Draw seg OR.
∆OQR formed is a right angled triangle.
By Pythagoras theorem,
[l(OR)]² = [l(OQ)]² + [l(QR)]²
= 2² + 1²
= 4 + 1
= 5
∴ l(OR) = √5 units
… [Taking square root of both sides]
Draw an arc with centre O and radius OR.
Mark the point of intersection of the number line and arc as C. The point C shows the number √5.
Similarly, draw a line CD perpendicular to the number line through the point C such that l(CD) = 1 unit.
By Pythagoras theorem,
l(OD) = √6 units
The point E shows the number √6 .
Similarly, draw a line EP perpendicular to the number line through the point E such that l(EP) = 1 unit.
By Pythagoras theorem,
l(OP) = √7 units
The point F shows the number √7.
Maharashtra Board Class 8 Maths Solutions Chapter 1 Rational and Irrational Numbers Practice Set 1.4 5

Std 8 Maths Digest

Practice Set 1.3 Class 8 Answers Chapter 1 Rational and Irrational Numbers Maharashtra Board

Balbharti Maharashtra State Board Class 8 Maths Solutions covers the Practice Set 1.3 8th Std Maths Answers Solutions Chapter 1 Rational and Irrational Numbers.

Rational and Irrational Numbers Class 8 Maths Chapter 1 Practice Set 1.3 Solutions Maharashtra Board

Std 8 Maths Practice Set 1.3 Chapter 1 Solutions Answers

Question 1.
Write the following rational numbers in decimal form.
i. \(\frac { 9 }{ 37 }\)
ii. \(\frac { 18 }{ 42 }\)
iii. \(\frac { 9 }{ 14 }\)
iv. \(-\frac { 103 }{ 5 }\)
v. \(-\frac { 11 }{ 13 }\)
Solution:
i. \(\frac { 9 }{ 37 }\)
Maharashtra Board Class 8 Maths Solutions Chapter 1 Rational and Irrational Numbers Practice Set 1.3 1

ii. \(\frac { 18 }{ 42 }\)
Maharashtra Board Class 8 Maths Solutions Chapter 1 Rational and Irrational Numbers Practice Set 1.3 2

iii. \(\frac { 9 }{ 14 }\)
Maharashtra Board Class 8 Maths Solutions Chapter 1 Rational and Irrational Numbers Practice Set 1.3 3

iv. \(-\frac { 103 }{ 5 }\)
Maharashtra Board Class 8 Maths Solutions Chapter 1 Rational and Irrational Numbers Practice Set 1.3 4

v. \(-\frac { 11 }{ 13 }\)
Maharashtra Board Class 8 Maths Solutions Chapter 1 Rational and Irrational Numbers Practice Set 1.3 5

Std 8 Maths Digest