Practice Set 7.1 Class 8 Answers Chapter 7 Variation Maharashtra Board

Balbharti Maharashtra State Board Class 8 Maths Solutions covers the Practice Set 7.1 8th Std Maths Answers Solutions Chapter 7 Variation.

Variation Class 8 Maths Chapter 7 Practice Set 7.1 Solutions Maharashtra Board

Std 8 Maths Practice Set 7.1 Chapter 7 Solutions Answers

Question 1.
Write the following statements using the symbol of variation.

  1. Circumference (c) of a circle is directly proportional to its radius (r).
  2. Consumption of petrol (l) in a car and distance traveled by that car (d) are in direct variation.

Solution:

  1. c ∝ r
  2. l ∝ d

Question 2.
Complete the following table considering that the cost of apples and their number are in direct variation.

Number of apples (x) 1 4 __ 12 __
Cost of apples (y) 8 32 56 __ 160

Solution:
The cost of apples (y) and their number (x) are in direct variation.
∴y ∝ x
∴y = kx …(i)
where k is the constant of variation

i. When, x = 1, y = 8
∴ Substituting, x = 1 and y = 8 in (i), we get y = kx
∴ 8 = k × 1
∴ k = 8
Substituting k = 8 in (i), we get
y = kx
∴ y = 8x …(ii)
This the equation of variation

ii. When,y = 56, x = ?
∴ Substituting y = 56 in (ii), we get
y = 8x
∴ 56 = 8x
∴ x = \(\frac { 56 }{ 8 }\)
∴ x = 7

iii. When, x = 12, y = ?
∴ Substituting x = 12 in (ii), we get
y = 8x
∴ y = 8 × 12
∴ y = 96

iv. When, y = 160, x = ?
∴ Substituting y = 160 in (ii), we get
y = 8x
∴ 160 = 8x
∴ x = \(\frac { 160 }{ 8 }\)
∴ x = 20

Number of apples (x) 1 4 7 12 20
Cost of apples (y) 8 32 56 96 160

Question 3.
If m ∝ n and when m = 154, n = 7. Find the value of m, when n = 14.
Solution:
Given that,
m ∝ n
∴ m = kn …(i)
where k is constant of variation.
When m = 154, n = 7
∴ Substituting m = 154 and n = 7 in (i), we get
m = kn
∴ 154 = k × 7
∴ \(k=\frac { 154 }{ 7 }\)
∴ k = 22
Substituting k = 22 in (i), we get
m = kn
∴ m = 22n …(ii)
This is the equation of variation.
When n = 14, m = ?
∴ Substituting n = 14 in (ii), we get
m = 22n
∴ m = 22 × 14
∴ m = 308

Question 4.
If n varies directly as m, complete the following table.

m 3 5 6.5 __ 1.25
n 12 20 __ 28 __

Solution:
Given, n varies directly as m
∴ n ∝ m
∴ n = km …(i)
where, k is the constant of variation

i. When m = 3, n = 12
∴ Substituting m = 3 and n = 12 in (i), we get
n = km
∴ 12 = k × 3
∴ \(k=\frac { 12 }{ 3 }\)
∴ k = 4
Substituting, k = 4 in (i), we get
n = km
∴ n = 4m …(ii)
This is the equation of variation.

ii. When m = 6.5, n = ?
∴ Substituting, m = 6.5 in (ii), we get
n = 4m
∴ n = 4 × 6.5
∴ n = 26

iii. When n = 28, m = ?
∴ Substituting, n = 28 in (ii), we get
n = 4m
∴ 28 = 4m
∴ 28 = 4m
∴ \(m=\frac { 28 }{ 4 }\)
∴ m = 7

iv. When m = 1.25, n = ?
∴ Substituting m = 1.25 in (ii), we get
n = 4m
∴ n = 4 × 1.25
∴ n = 5

m 3 5 6.5 7 1.25
n 12 20 26 28 5

Question 5.
y varies directly as square root of x. When x = 16, y = 24. Find the constant of variation and equation of variation.
Solution:
Given, y varies directly as square root of x.
∴ y ∝ √4x
∴ y = k √x …(i)
where, k is the constant of variation.
When x = 16 ,y = 24.
∴ Substituting, x = 16 and y = 24 in (i), we get
y = k√x
∴24 = k√16
∴24 = 4k
∴ \(k=\frac { 24 }{ 4 }\)
∴ k = 6
Substituting k = 6 in (i), we get
y = k√x
∴ y = 6√x
This is the equation of variation
∴ The constant of variation is 6 and the equation of variation is y = 6√x .

Question 6.
The total remuneration paid to laborers, employed to harvest soybean is in direct variation with the number of laborers. If remuneration of 4 laborers is Rs 1000, find the remuneration of 17 laborers.
Solution:
Let, m represent total remuneration paid to laborers and n represent number of laborers employed to harvest soybean.
Since, the total remuneration paid to laborers, is in direct variation with the number of laborers.
∴ m ∝ n
∴ m = kn …(i)
where, k = constant of variation
Remuneration of 4 laborers is Rs 1000.
i. e., when n = 4, m = Rs 1000
∴ Substituting, n = 4 and m = 1000 in (i), we get m = kn
∴ 1000 = k × 4
∴ \(k=\frac { 1000 }{ 4 }\)
∴ k = 250
Substituting, k = 250 in (i), we get
m = kn
∴ m = 250 n …(ii)
This is the equation of variation
Now, we have to find remuneration of 17 laborers.
i. e., when n = 17, m = ?
∴ Substituting n = 17 in (ii), we get
m = 250 n
∴ m = 250 × 17
∴ m = 4250
∴ The remuneration of 17 laborers is Rs 4250.

Maharashtra Board Class 8 Maths Chapter 7 Variation Practice Set 7.1 Intext Questions and Activities

Question 1.
If the rate of notebooks is Rs 240 per dozen, what is the cost of 3 notebooks?
Also find the cost of 9 notebooks, 24 notebooks and 50 notebooks and complete the following table. (Textbook pg. no. 35)

Number of notebooks (x) 12 3 9 24 50 1
Cost (In Rupees) (y) 240 __ __ __ __ 20

Solution:
As the number of notebooks increases their cost also increases.
∴ Number of notebooks and cost of notebooks are in direct proportion.

i.
Maharashtra Board Class 8 Maths Solutions Chapter 7 Variation Practice Set 7.1 1
∴ y = 3 × 20
∴ y = 60

ii.
Maharashtra Board Class 8 Maths Solutions Chapter 7 Variation Practice Set 7.1 2
∴ y = 9 × 20
∴ y = 180

iii.
Maharashtra Board Class 8 Maths Solutions Chapter 7 Variation Practice Set 7.1 3
∴ y = 24 × 20
∴ y = 480

iv.
Maharashtra Board Class 8 Maths Solutions Chapter 7 Variation Practice Set 7.1 4
∴ y = 50 × 20
∴ y = 1000

Number of notebooks (x) 12 3 9 24 50 1
Cost (In Rupees) (y) 240 60 180 480 1000 20

Std 8 Maths Digest

Practice Set 2.5 Algebra 9th Standard Maths Part 1 Chapter 2 Real Numbers Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 2.5 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 2 Real Numbers.

9th Standard Maths 1 Practice Set 2.5 Chapter 2 Real Numbers Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Practice Set 2.5 Chapter 2 Real Numbers Questions With Answers Maharashtra Board

Question 1.
Find the value.
i. | 15 – 2|
ii. | 4 – 9|
iii. | 7| x | -4|
Solution:
i. |15 – 2| = |13| = 13
ii. |4 – 9| = |-5| = 5
iii. |7| x |- 4| = 7 x 4 = 28

Question 2.
Solve.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.5 1
Solution:
i. |3x – 5| = 1
∴ 3x – 5 = 1 or 3x – 5 = -1
∴ 3x = 1 + 5 or 3x = -1 + 5
∴ 3x = 6 or 3x = 4
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.5 2

ii. |7 – 2x| = 5
∴ 7 – 2x = 5 or 7 – 2x = -5
∴ 7 – 5 = 2x or 7 + 5 = 2x
∴ 2x = 2 or 2x = 12
∴ x = \(\frac { 2 }{ 2 }\) or x = \(\frac { 12 }{ 2 }\)
∴ x = 1 or x = 6

Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.5 3
∴ 8 – x = 10 or 8 – x = -10 .. [Multiplying both the sides by 2]
∴ 8 – 10 = x or 8 + 10 = x
∴ x = -2 or x = 18

Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.5 4

Class 9 Maths Digest

Practice Set 2.4 Algebra 9th Standard Maths Part 1 Chapter 2 Real Numbers Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 2.4 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 2 Real Numbers.

9th Standard Maths 1 Practice Set 2.4 Chapter 2 Real Numbers Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Practice Set 2.4 Chapter 2 Real Numbers Questions With Answers Maharashtra Board

Question 1.
Multiply.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.4 1
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.4 2

Question 2.
Rationalize the denominator.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.4 3
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.4 4
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.4 5
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.4 6
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.4 7

Class 9 Maths Digest

Practice Set 3.6 Algebra 9th Standard Maths Part 1 Chapter 3 Polynomials Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 3.6 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 3 Polynomials.

9th Standard Maths 1 Practice Set 3.6 Chapter 3 Polynomials Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Practice Set 3.6 Chapter 3 Polynomials Questions With Answers Maharashtra Board

Question 1.
Find the factors of the polynomials given below:
i. 2x2 + x – 1
ii. 2m2 + 5m – 3
iii. 12x2 + 61x + 77
iv. 3y2 – 2y – 1
v. √3x2 + 4x + √3
vi. \(\frac { 1 }{ 2 }\)x2 – 3x + 4
Solution:
i. 2x2 + x – 1
= 2x2 + 2x – x – 1
= 2x(x + 1)- 1(x + 1)
= (x + 1)(2x – 1)
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.6 1

ii. 2m2 + 5m – 3
= 2m2 + 6m – m – 3
= 2m(m + 3) – 1(m + 3)
= (m + 3)(2m – 1)
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.6 2

iii. 12x2 + 61x + 77
= 12x2 + 28x + 33x + 77
= 4x(3x + 7) 4 + 11(3x + 7)
= (3x + 7)(4x + 11)
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.6 3

iv. 3y2 – 2y – 1
= 3y2 – 3y + y – 1
= 3y(y – 1) + 1 (y – 1)
= (y – 1)(3y + 1)
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.6 4

v. √3×2 + 4x + √3
= √3×2 + 3x + x + √3
= √3×2 + √3 x √3x + x + √3
= √3x(x + √3) + 1 ( x + √3 )
= (x + √3)(√3x + 1)
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.6 5

vi. \(\frac { 1 }{ 2 }\) x2 – 3x + 4
= \(\frac { 1 }{ 2 }\) x2 – 2x – x + 4
= \(\frac{1}{2} x^{2}-\frac{2 \times 2}{2} x-x+4\)
= \(\frac { 1 }{ 2 }\) x(x – 4) – 1 (x – 4)
= (x – 4) (\(\frac { 1 }{ 2 }\) x – 1)
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.6 6

Alternate method
\(\frac { 1 }{ 2 }\) x2 – 3x + 4 = \(\frac { 1 }{ 2 }\) (x2 – 6x + 8)
= \(\frac { 1 }{ 2 }\) (x2 – 4x – 2x + 8)
= \(\frac { 1 }{ 2 }\) [x(x – 4) – 2(x – 4)]
= \(\frac { 1 }{ 2 }\) (x – 2)(x – 4)
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.6 7

Question 2.
Factorize the following polynomials.
i. (x2 – x)2 – 8(x2 – x) + 12
iii. (x2 – 6x)2 – 8(x2 – 6x + 8) – 64
v. (y + 2) (y – 3) (y + 8) (y + 3) + 56
vii. (x – 3) (x – 4)2 (x – 5) – 6
Solution:
i. (x2 – x)2 – 8(x2 – x) + 12
= m2 – 8m + 12 …[Putting x2 – x = m]
= m2 – 6m – 2m + 12
= m(m – 6) – 2(m – 6)
= (m – 6)(m – 2)
= (x2 – x- 6) (x2 – x- 2) …[Replacing m = x2 -x]
= (x2 – 3x + 2x – 6) (x2 – 2x + x – 2)
= [x(x – 3) + 2(x – 3)] [x(x – 2) + 1 (x-2)]
= (x – 3) (x + 2) (x – 2) (x + 1)

ii. (x – 5)2 – (5x – 25) – 24
= (x – 5)2 – (5x – 25) – 24
= (x – 5)2 – 5(x – 5) – 24
= m2 – 5m – 24 … [Putting x – 5 = m]
= m2 – 8m + 3m – 24
= m(m – 8) + 3(m – 8)
= (m – 8) (m + 3)
= (x – 5 – 8) (x – 5 + 3) … [Replacing m = x – 5]
= (x – 13) (x – 2)
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.6 8

iii. (x2 – 6x)2 – 8(x2 – 6x + 8) – 64
= m2 – 8(m + 8)-64 …[Putting x2 – 6x = m]
= m2 – 8m – 64 – 64
= m2 – 8m – 128
= m2 – 16m + 8m- 128
= m(m – 16) + 8(m – 16)
= (m – 16)(m + 8)
= (x2 – 6x – 16) (x2 – 6x + 8) … [Replacing m = x2 – 6x]
= (x2 – 8x + 2x – 16) (x2 – 4x – 2x + 8)
= [x(x – 8) + 2(x – 8)] [x(x – 4) – 2(x – 4)]
= (x – 8) (x + 2) (x – 4) (x – 2)

iv. (x2– 2x + 3) (x2 – 2x + 5) – 35
= (m + 3) (m + 5) – 35 … [Putting x2 – 2x = m]
= m (m + 5) + 3(m + 5) – 35
= m2 + 5m + 3m + 15 – 35
= m2 + 8m – 20
= m2 + 10m – 2m – 20
= m(m + 10) – 2(m + 10)
= (m + 10) (m – 2)
= (x2 – 2x + 10) (x2 – 2x – 2) … [Replacing m = x2 – 2x]
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.6 9

v. (y + 2) (y – 3) (y + 8) (y + 3) + 56
= (y + 2)(y + 3)(y – 3)(y + 8) + 56
= (y2 + 3y + 2y + 6) (y2 + 8y – 3y – 24) + 56
= (y2 + 5y + 6) (y2 + 5y – 24) + 56
= (m + 6) (m – 24) + 56 … [Putting y2 + 5y = m]
= m (m – 24) + 6 (m – 24) + 56
= m2 – 24m + 6m – 144 + 56
= m2 – 18m – 88
= m2 – 22m + 4m – 88
= m(m – 22) + 4(m – 22)
= (m – 22) (m + 4)
= (y2 + 5y – 22)(y2 + 5y + 4) … [Replacing m = y2 + 5y]
= (y2 + 5y – 22) (y2 + 4y + y + 4)
= (y2 + 5y – 22) [y(y + 4) + 1(y + 4)]
= (y2 + 5y – 22) (y + 4) (y + 1)

vi. (y2 + 5y) (y2 + 5y – 2) – 24
= (m)(m – 2) – 24 … [Putting y2 + 5y = m]
= m2 – 2m – 24
= m2 – 6m + 4m – 24
= m(m – 6) + 4(m – 6)
= (m – 6) (m + 4)
= (y2 + 5y – 6) (y2 + 5y + 4) … [Replacing m = y2 + 5y]
= (y2 + 6y – y – 6) (y2 + 4y + y + 4)
= [y(y + 6) – 1(y + 6)] [y(y + 4) + 1(y + 4)]
= (y + 6) (y – 1) (y + 4) (y + 1)

vii. (x – 3) (x – 4)2 (x – 5) – 6
= (x – 3) (x – 5) (x – 4)2 – 6
= (x2 – 5x – 3x + 15) (x2 – 8x + 16) – 6
= (x2 – 8x + 15) (x2 – 8x + 16) – 6
= (m + 15) (m+ 16) – 6 … [Putting x2 – 8x = m]
= m (m + 16) + 15 (m + 16) – 6
= m2 + 16m + 15m + 240 – 6
= m2 + 31m + 234
= m2 + 18m + 13m + 234
= m(m + 18) + 13(m + 18)
= (m + 18) (m + 13)
= (x2 – 8x + 18) (x2 – 8x + 13) … [Replacing m = x2 – 8x]

Class 9 Maths Digest

Practice Set 3.5 Algebra 9th Standard Maths Part 1 Chapter 3 Polynomials Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 3.5 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 3 Polynomials.

9th Standard Maths 1 Practice Set 3.5 Chapter 3 Polynomials Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Practice Set 3.5 Chapter 3 Polynomials Questions With Answers Maharashtra Board

Question 1.
Find the value of the polynomial 2x – 2x3 + 7 using given values for x.
i. x = 3
ii. x = -1
iii. x = 0
Solution:
i. p(x) = 2x – 2x3 + 7
Put x = 3 in the given polynomial.
∴ p(3) = 2(3) – 2(3)3 + 7
= 6 – 2 x 27 + 7
= 6 – 54 + 7
∴ P(3) = – 41

ii. p(x) = 2x – 2x3 + 7
Put x = -1 in the given polynomial.
∴ p(- 1) = 2(- 1) – 2(-1)3 + 7
= – 2 – 2(-1) + 7
= -2 + 2 + 7
∴ p(-1) = 7

iii. p(x) = 2x – 2x3 + 7
Put x = 0 in the given polynomial.
∴ p(0) = 2(0) – 2(0)3 + 7
= 0 – 0 + 7
∴ P(0) = 7

Question 2.
For each of the following polynomial, find p(1), p(0) and p(- 2).
i. p(x) = x3
ii. p(y) = y2 – 2y + 5
ii. p(y) = x4 – 2x2 + x
Solution:
i. p(x) = x3
∴ p(1) = 13 = 1
p(x) = x3
∴ p(0) = 03 = 0
p(x) = x3
∴ p(-2) = (-2)3 = -8

ii. p(y) = y2 – 2y + 5
∴ p(1) = 12 – 2(1) + 5
= 1 – 2 + 5
∴ P(1) = 4
p(y) = y2 – 2y + 5
∴ p(0) = 02 – 2(0) + 5
= 0 – 0 + 5
∴ p(0) = 5
p(y) = y2 – 2y + 5
∴ p(- 2) = (- 2)2 – 2(- 2) + 5
= 4 + 4 + 5
∴ p(-2) = 13

iii. p(x) = x4 – 2x2 – x
∴ p(1) = (1)4 – 2(1)2 – 1
= 1 – 2 – 1
∴ p(1) = -2
∴ p(x) = x4 – 2x2 – x
∴ p(0) = (0)4 – 2(0)2 – 0
= 0 – 0 – 0
∴ p(0) = 0
p(x) = x4 – 2x2 – x
∴ p(-2) = (-2)4 – 2(-2)2 – (-2)
= 16 – 2(4) + 2
= 16 – 8 + 2
∴ p(-2) = 10

Question 3.
If the value of the polynomial m3 + 2m + a is 12 for m = 2, then find the value of a.
Solution:
p(m) = m3 + 2m + a
∴ p(2) = (2)3 + 2(2) + a
∴ 12 = 8 + 4 + a … [∵ p(2)= 12]
∴ 12 = 12 + a
∴ a = 12 – 12
∴ a = 0

Question 4.
For the polynomial mx2 – 2x + 3 if p(-1) = 7, then find m.
Solution:
p(x) = mx2 – 2x + 3
∴ p(- 1) = m (- 1)2 – 2(- 1) + 3
∴ 7 = m(1) + 2 + 3 …[∵ p(-1) = 7]
∴ 7 = m + 5
∴ m = 7 – 5
∴ m = 2

Question 5.
Divide the first polynomial by the second polynomial and find the remainder using remainder theorem.
i. (x2 – 1x + 9); (x + 1)
ii. (2x3 – 2x2 + ax – a); (x – a)
iii. (54m3 + 18m2 – 27m + 5); (m – 3)
Solution:
i. p(x) = x2 – 7x + 9
Divisor = x + 1
∴ take x = – 1
∴ By remainder theorem,
∴ Remainder =p(-1)
p(x) = x2 – 7x + 9
∴ p(-1) = (- 1)2 – 7(- 1) + 9
= 1 + 7 + 9
∴ Remainder =17

ii. p(x) = 2x3 – 2x2 + ax – a
Divisor = x – a
∴ take x = a
By remainder theorem,
Remainder = p(a)
p(x) = 2x3 – 2x2 + ax – a
∴ p(a) = 2a3 – 2a2 + a(a) – a
= 2a3– 2a2 + a2 – a
∴ Remainder = 2a3 – a2 – a

iii. p(m) = 54m3 + 18m2 – 27m + 5
Divisor = m – 3
∴ take m = 3
∴ By remainder theorem,
Remainder = p(3)
p(m) = 54m3 + 18m2 – 27m + 5
∴ p(3) = 54(3)3 +18(3)2 – 27(3) + 5
= 54(27) + 18(9) – 81 + 5
= 1458 + 162 – 81 + 5
∴ Remainder = 1544

Question 6.
If the polynomial y3 – 5y2 + 7y + m is divided by y + 2 and the remainder is 50, then find the value of m.
Solution:
p(y) = y3 – 5y2 + 7y + m
Divisor = y + 2
∴ take y = – 2
∴ By remainder theorem,
Remainder = p(- 2) = 50
P(y) = y3 – 5y2 + 7y + m
∴ P(-2) = (- 2)3 – 5(- 2)2 + 7(- 2) + m
∴ 50 = -8 – 5(4) – 14 + m
∴ 50 = -8 – 20 – 14 + m
∴ 50 = – 42 + m
∴ m = 50 + 42
∴ m = 92

Question 7.
Use factor theorem to determine whether x + 3 is a factor of x2 + 2x – 3 or not.
Solution:
p(x) = x2 + 2x – 3
Divisor = x + 3
∴ take x = – 3
∴ Remainder = p(-3)
p(x) = x2 + 2x – 3
∴ p(-3) = (-3)2 + 2(- 3) – 3
= 9 – 6 – 3
∴ p(-3) = 0
∴ By factor theorem, x + 3 is a factor of x2 + 2x – 3.

Question 8.
If (x – 2) is a factor of x3 – mx2 + 10x – 20, then find the value of m.
Solution:
p(x) = x3 – mx2 + 10x – 20 x – 2 is a factor of x3 – mx2 + lOx – 20.
∴By factor theorem,
Remainder = p(2) = 0
p(x) = x3 – mx2 + 10x – 20
∴ p(2) = (2)3 – m(2)2 + 10(2) – 20
∴ 0 = 8 – 4m + 20 – 20
∴ 0 = 8 – 4m
∴ 4m = 8
∴ m = 2

Question 9.
By using factor theorem in the following examples, determine whether q(x) is a factor of p(x) or not.
i. p(x) = x3 – x2 – x -1 ; q(x) = x – 1
ii. p(x) = 2x3 – x2 – 45 ; q(x) = x – 3
Solution:
i. p(x) = x3 – x2 – x – 1
Divisor = q(x) = x – 1
∴ take x = 1
Remainder = p(1)
p(x) = x3 – x2 – x – 1
∴ P(1) = (1)3 – (1)2 – 1 – 1
= 1 – 1 – 1 – 1
= -2 ≠ 0
∴ By factor theorem, x – 1 is not a factor of x3 – x2 – x – 1.

ii. p(x) = 2x3 – x – 45
Divisor = q(x) = x – 3
take x = 3
Remainder = p(3)
p(x) = 2x3 – x2 – 45
P(3) = 2(3)3 – (3)2 – 45
= 2(27) – 9 – 45
= 54 – 9 – 45
= 0
∴ By factor theorem, x – 3 is a factor of 2x3 – x2 – 45.

Question 10.
If (x31 + 31) is divided by (x + 1), then find the remainder.
Solution:
p(x) = x31 + 31
Divisor = x + 1
∴ take x = – 1
∴ By remainder theorem,
Remainder = p(-1)
p(x) =x31 + 31 …
∴ p(-1) = (-1)31 + 31
= -1 + 31 = 30
∴ Remainder = 30

Question 11.
Show that m – 1 is a factor of m21 – 1 and m22 – 1. [3 Marks]
Solution:
i. p(m) = m21 – 1
Divisor = m – 1
∴ take m = 1
Remainder = p(1)
p(m) = m21 – 1
∴ P(1) = 121 – 1 = 1 – 1 = 0
∴ By factor theorem, m -1 is a factor of m21 -1.

ii. p(m) = m22 – 1
Divisor = m – 1
∴ take m = 1
Remainder = p(1)
p(m) = m22 – 1
∴ P(1) = 122 – 1 = 1 – 1 = 0
∴ By factor theorem, m -1 is a factor of m22 – 1.

Question 12.
If x – 2 and x – \(\frac { 1 }{ 2 }\) both are the factors of the polynomial nx2 – 5x + m, then show that m = n = 2.
Solution:
p(x) = nx2 – 5x + m
(x – 2) is a factor of nx2 – 5x + m.
∴ By factor theorem,
P(2) = 0
∴ p(x) = nx2 – 5x + m
∴ p(2) = n(2)2 – 5(2) + m
∴ 0 = n(4) – 10 + m
∴ 4n – 10 + m = 0 …(i)
Also, ( x = \(\frac { 1 }{ 2 }\) ) is a factor of nx2 – 5x + m.
∴ By factor theorem,
p(\(\frac { 1 }{ 2 }\)) = 0
p(x) = nx2 – 5x + m
∴ p(\(\frac { 1 }{ 2 }\)) = n(\(\frac { 1 }{ 2 }\))2 – 5\(\frac { 1 }{ 2 }\) + m
0 = \(\frac { n }{ 4 }\) – \(\frac { 5 }{ 2 }\) + m
∴ 0 = n- 10 +4m … [Multiplying both sides by 4]
∴ n = 10 – 4m ……(ii)
Substituting n = 10 – 4m in equation (i),
4(10 – 4m) – 10 + m = 0
∴ 40 – 16m – 10 + m = 0
∴ -15m+ 30 = 0
∴ -15m = -30
∴ m = 2
Substituting m = 2 in equation (ii),
n = 10 – 4(2)
= 10 – 8
∴ n = 2
∴ m = n = 2

Question 13.
i. If p(x) = 2 + 5x, then find the value of p(2) + p(- 2) – p(1).
Solution:
p(x) = 2 + 5x
∴ P(2) = 2 + 5(2)
= 2 + 10
= 12
p(x) = 2 + 5x
P(- 2) = 2 + 5(- 2)
= 2 – 10 = – 8
p(x) = 2 + 5x
P(1) = 2 + 5(1)
= 2 + 5 = 7
∴ P(2) + P(- 2) – p(1) = 12 + (- 8) – 7
∴ P(2) + p(- 2) – p(1) = – 3

ii. If p(x) = 2x2 – 5√3 x + 5, then find the value of p(5√3 ).
Solution:
p(x) = 2x2 – 5√3 x + 5
∴ p(5√3) = 2(5√3)2 – 5√3 (5√3 ) + 5
= 2 (25 x 3) – 25 x 3 + 5
= 150-75 + 5
∴ p( 5√3 ) = 80

Question 1.
1. Divide p(x) = 3x2 + x + 7 by x + 2. Find the remainder.
2. Find the value of p(x) = 3x2 + x + 7 when x = – 2.
3. See whether remainder obtained by division is same as the value of p(-2). Take one more example and verify. (Textbook pg. no. 50)
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.5 1
∴ Remainder = 17

2. p(x) = 3x2 + x + 7
Substituting x = – 2, we get
p(-2) = 3(2)2 + (-2) + 7
= 12 – 2 + 7
∴ p(-2) = 17

3. Yes, remainder = p(-2)

Another Example:
If the polynomial t3 – 3t2 + kt + 50 is divided by (t – 3), the remainder is 62. Find the value of k.
Solution:
When given polynomial is divided by (t – 3) the remainder is 62. It means the value of the polynomial when t = 3 is 62.
p(t) = t3 – 3t3 + kt + 50
By remainder theorem,
Remainder = p(3) = 33 – 32 + k x 3 + 50
= 27 – 3 x 9 + 3k + 50
= 27 – 27 + 3k + 50
= 3k + 50
But remainder is 62.
∴ 3k + 50 = 62
∴ 3k = 62 – 50
∴ 3k = 12
∴ k = 4

Question 2.
Verify that (x – 1) is a factor of the polynomial x3 + 4x – 5. (Textbook pg. no. 51)
Solution:
Here, p(x) = x3 + 4x – 5
Substituting x = 1 in p(x), we get
p(1) = (1)3 + 4(1) – 5
= 1 + 4 – 5
P(1) = 0
∴ By remainder theorem,
Remainder = 0
∴ (x -1) is the factor of x3 + 4x – 5.

Class 9 Maths Digest

Practice Set 3.4 Algebra 9th Standard Maths Part 1 Chapter 3 Polynomials Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 3.4 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 3 Polynomials.

9th Standard Maths 1 Practice Set 3.4 Chapter 3 Polynomials Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Practice Set 3.4 Chapter 3 Polynomials Questions With Answers Maharashtra Board

Question 1.
For x = 0, find the value of the polynomial x2 – 5x + 5.
Solution:
p(x) = x2 – 5x + 5
Put x = 0 in the given polynomial.
∴ P(0) = (0)2 – 5(0) + 5
= 0 – 0 + 5
∴ p(0) = 5

Question 2.
If p(y) = y2 – 3√2 + 1, then find p( 3√2 ).
Solution:
p(y) = y2 – 3√2 y + 1
Putp= 3√2 in the given polynomial.
∴ p( 3√2 ) = (3√2 )2 – 3√2 (3√2 ) + 1
= 9 x 2 – 9 x 2 + 1
= 18 – 18 + 1
∴ p( 3√2 ) = 1

Question 3.
If p(m) = m3 + 2m2 – m + 10, then P(a) + p(-a) = ?
Solution:
p(m) = m3 + 2m2 – m + 10
Put m = a in the given polynomial.
∴ p(a) = a3 + 2a2 – a + 10 …(i)
Put m = -a in the given polynomial.
p(-a) = (-a)3 + 2(-a)2 – (-a) +10
∴ p (-a) = -a3 + 2a2 + a + 10 …(ii)
Adding (i) and (ii),
p(a) + p(-a) = (a3 + 2a2 – a + 10) + (-a3 + 2a2 + a + 10)
= a3 – a3 + 2a2 + 2a2a + a + 10 + 10
∴ p(a) + p(-a) = 4a2 + 20

Question 4.
If p(y) = 2y3 – 6y2 – 5y + 7, then find p(2).
Solution:
p(y) = 2y3 – 6y2 – 5y + 7
Put y = 2 in the given polynomial.
∴ p(2) = 2(2)3 – 6(2)2 – 5(2) + 7
= 2 x 8 – 6 x 4 – 10 + 7
= 16 – 24 – 10 + 7
∴ P(2) = -11

Class 9 Maths Digest

Practice Set 3.3 Algebra 9th Standard Maths Part 1 Chapter 3 Polynomials Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 3.3 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 3 Polynomials.

9th Standard Maths 1 Practice Set 3.3 Chapter 3 Polynomials Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Practice Set 3.3 Chapter 3 Polynomials Questions With Answers Maharashtra Board

Question 1.
Divide each of the following polynomials by synthetic division method and also by linear division method. Write the quotient and the remainder.
i. (2m2 – 3m + 10) ÷ (m – 5)
ii. (x4 + 2x3 + 3x2 + 4x + 5) ÷ (x + 2)
iii. (y3 – 216) ÷ (y – 6)
iv. (2x4 + 3x3 + 4x – 2x2) ÷ (x + 3)
v. (x4 – 3x2 – 8) ÷ (x + 4)
vi. (y3 – 3y2 + 5y – 1) ÷ (y – 1)
Solution:
i. Synthetic division:
(2m2 – 3m + 10) ÷ (m – 5)
Dividend = 2m² – 3m + 10
∴ Coefficient form of dividend = (2, -3, 10)
Divisor = m – 5
∴ Opposite of -5 is 5.
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.3 1
Coefficient form of quotient = (2, 7)
∴ Quotient = 2m + 7,
Remainder = 45
Linear division method:
2m2 – 3m + 10
To get the term 2m2, multiply (m – 5) by 2m and add 10m,
= 2m(m – 5) + 10m- 3m + 10
= 2m(m – 5) + 7m + 10
To get the term 7m, multiply (m – 5) by 7 and add 35
= 2m(m – 5) + 7(m- 5) + 35+ 10
= (m – 5) (2m + 7) + 45
∴ Quotient = 2m + 7,
Remainder = 45

ii. Synthetic division:
(x4 + 2x3 + 3x2 + 4x + 5) ÷ (x + 2)
Dividend = x4 + 2x3 + 3x2 + 4x + 5
∴ Coefficient form of dividend = (1, 2, 3, 4, 5)
Divisor = x + 2
∴ Opposite of + 2 is -2.
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.3 2
Coefficient form of quotient = (1, 0, 3, -2)
∴ Quotient = x3 + 3x – 2,
Remainder = 9

Linear division method:
x4 + 2x3 + 3x2 + 4x + 5
To get the term x4, multiply (x + 2) by x3 and subtract 2x3,
= x3(x + 2) – 2x3 + 2x3 + 3x2 + 4x + 5
= x3(x + 2) + 3x2 + 4x + 5
To get the term 3x2, multiply (x + 2) by 3x and subtract 6x,
= x3(x + 2) + 3x(x + 2) – 6x + 4x + 5
= x3(x + 2) + 3x(x + 2) – 2x + 5
To get the term -2x, multiply (x + 2) by -2 and add 4,
= x3(x + 2) + 3x(x + 2) – 2(x + 2) + 4 + 5
= (x + 2) (x3 + 3x – 2) + 9
∴ Quotient = x3 + 3x – 2,
Remainder – 9

iii. Synthetic division:
(y3 – 216) ÷ (y – 6)
Dividend = y3 – 216
∴ Index form = y3 + 0y3 + 0y – 216
∴ Coefficient form of dividend = (1, 0, 0, -216)
Divisor = y – 6
∴ Opposite of – 6 is 6.
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.3 3
Coefficient form of quotient = (1, 6, 36)
∴ Quotient = y2 + 6y + 36,
Remainder = 0

Linear division method:
y3 – 216
To get the term y3, multiply (y – 6) by y2 and add 6y2,
= y2(y – 6) + 6y2 – 216
= y2(y – 6) + 6ysup>2 – 216
To get the, term 6 y2 multiply (y – 6) by 6y and add 36y,
= y2(y – 6) + 6y(y – 6) + 36y – 216
= y2(y – 6) + 6y(y – 6) + 36y – 216
To get the term 36y, multiply (y- 6) by 36 and add 216,
= y2 (y – 6) + 6y(y – 6) + 36(y – 6) + 216 – 216
= (y – 6) (y2 + 6y + 36) + 0
Quotient = y2 + 6y + 36
Remainder = 0

iv. Synthetic division:
(2x4 + 3x3 + 4x – 2x2) ÷ (x + 3)
Dividend = 2x4 + 3x3 + 4x – 2x2
∴ Index form = 2x4 + 3x3 – 2x2 + 4x + 0
∴ Coefficient form of the dividend = (2,3, -2,4,0)
Divisor = x + 3
∴ Opposite of + 3 is -3
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.3 4
Coefficient form of quotient = (2, -3, 7, -17)
∴ Quotient = 2x3 – 3x2 + 7x – 17,
Remainder = 51

Linear division method:
2x4 + 3x3 + 4x – 2x2 = 2x2 + 3x3 – 2x2 + 4x
To get the term 2x4, multiply (x + 3) by 2x3 and subtract 6x3,
= 2x3(x + 31 – 6x3 + 3x3 – 2x2 + 4x
= 2x3(x + 3) – 3x3 – 2x2 + 4x

To get the term – 3x3, multiply (x + 3) by -3x2 and add 9x2,
= 2x3(x + 3) – 3x2(x + 3) + 9x2 – 2x2 + 4x
= 2x3(x + 3) – 3x2(x + 3) + 7x2 + 4x

To get the term 7x2, multiply (x + 3) by 7x and subtract 21x,
= 2x3(x + 3) – 3x2(x + 3) + 7x(x + 3) – 21x + 4x
= 2x3(x + 3) – 3x2(x + 3) + 7x(x + 3) – 17x

To get the term -17x, multiply (x + 3) by -17 and add 51,
= 2x3(x + 3) – 3x2(x + 3) + 7x(x+3) – 17(x + 3) + 51
= (x + 3) (2x3 – 3x2 + 7x- 17) + 51
∴ Quotient = 2x3 – 3x2 + 7x – 17,
Remainder = 51

v. Synthetic division:
(x4 – 3x2 – 8) + (x + 4)
Dividend = x4 – 3x2 – 8
∴ Index form = x4 + 0x3 – 3x2 + 0x – 8
∴ Coefficient form of the dividend = (1,0, -3,0, -8)
Divisor = x + 4
∴ Opposite of + 4 is -4
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.3 5
∴ Coefficient form of quotient = (1, -4, 13, -52)
∴ Quotient = x3 – 4x2 + 13x – 52,
Remainder = 200

Linear division method:
x4 – 3x2 – 8
To get the term x4, multiply (x + 4) by x3 and subtract 4x3,
= x3(x + 4) – 4x3 – 3x2 – 8
= x3(x + 4) – 4x3 – 3x2 – 8
To get the term – 4x3, multiply (x + 4) by -4x2 and add 16x2,
= x3(x + 4) – 4x2 (x + 4) + 16x2 – 3x2 – 8
= x3(x + 4) – 4x2 (x + 4) + 13x2 – 8
To get the term 13x2, multiply (x + 4) by 13x and subtract 52x,
= x3(x + 4) – 4x2(x + 4) + 13x(x + 4) – 52x – 8
= x3(x + 4) – 4x2(x + 4) + 13x(x + 4) – 52x – 8
To get the term -52x, multiply (x + 4) by – 52 and add 208,
= x3(x + 4) – 4x2(x + 4) + 13x(x + 4) – 52(x + 4) + 208 – 8
= (x + 4) (x3 – 4x2 + 13x – 52) + 200
∴ Quotient = x3 – 4x2 + 13x – 52,
Remainder 200

vi. Synthetic division:
(y3 – 3y2 + 5y – 1) ÷ (y – 1)
Dividend = y3 – 3y2 + 5y – 1
Coefficient form of the dividend = (1, -3, 5, -1)
Divisor = y – 1
∴Opposite of -1 is 1.
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.3 6
∴ Coefficient form of quotient = (1, -2, 3)
∴ Quotient = y2 – 2y + 3,
Remainder = 2

Linear division method:
y3 -3y2 + 5y – 1
To get the term y3 , multiply (y – 1) by y2 and add y2
= y2 (y – 1) + y2 – 3y2 + 5y – 1
= y2 (y – 1) – 2y2 + 5y – 1
To get the term -2y2, multiply (y – 1) by -2y and subtract 2y,
= y2 (y – 1) – 2y(y – 1) – 2y + 5y – 1
= y2 (y – 1) – 2y(y – 1) + 3y – 1
To get the term 3y, multiply (y – 1) by 3 and add 3,
= y2 (y – 1) – 2y(y – 1) + 3(y- 1) + 3 – 1
= (y – 1)(y2 – 2y + 3) + 2
∴ Quotient = y2 – 2y + 3,
Remainder = 2.

Class 9 Maths Digest

Practice Set 3.2 Algebra 9th Standard Maths Part 1 Chapter 3 Polynomials Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 3.2 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 3 Polynomials.

9th Standard Maths 1 Practice Set 3.2 Chapter 3 Polynomials Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Practice Set 3.2 Chapter 3 Polynomials Questions With Answers Maharashtra Board

Question 1.
Use the given letters to write the answer.
i. There are ‘a’ trees in the village Lat. If the number of trees increases every year by ’b‘. then how many trees will there be after ‘x’ years?
ii. For the parade there are y students in each row and x such row are formed. Then, how many students are there for the parade in all ?
iii. The tens and units place of a two digit number is m and n respectively. Write the polynomial which represents the two digit number.
Solution:
i. Number of trees in the village Lat = a
Number of trees increasing each year = b
∴ Number of trees after x years = a + bx
∴ There will be a + bx trees in the village Lat after x years.

ii. Total rows = x
Number of students in each row = y
∴ Total students = Total rows × Number of students in each row
= x × y
= xy
∴ There are in all xy students for the parade.

iii. Digit in units place = n
Digit in tens place = m
∴ The two digit number = 10 x digit in tens place + digit in units place
= 10m + n
∴ The polynomial representing the two digit number is 10m + n.

Question 2.
Add the given polynomials.
i. x3 – 2x2 – 9; 5x3 + 2x + 9
ii. -7m4+ 5m3 + √2 ; 5m4 – 3m3 + 2m2 + 3m – 6
iii. 2y2 + 7y + 5; 3y + 9; 3y2 – 4y – 3
Solution:
i. (x3 – 2x2 – 9) + (5x3 + 2x + 9)
= x3 – 2x2 – 9 + 5x3 + 2x + 9
= x3 + 5x3 – 2x2 + 2x – 9 + 9
= 6x3 – 2x2 + 2x

ii. (-7m4 + 5m3 + √2 ) + (5m4 – 3m3 + 2m2 + 3m – 6)
= -7m4 + 5m3 + √2 + 5m4 – 3m3 + 2m2 + 3m – 6
= -7m4 + 5m4 + 5m3 – 3m3 + 2m2 + 3m +√2 – 6
= -2m4 + 2m3 + 2m2 + 3m + √2 – 6

iii. (2y2 + 7y + 5) + (3y + 9) + (3y2 – 4y – 3)
= 2y2 + 7y + 5 + 3y + 9 + 3y2 – 4y – 3
= 2y2 + 3y2 + 7y + 3y – 4y + 5 + 9 – 3
= 5y2 + 6y + 11

Question 3.
Subtract the second polynomial from the first.
i. x2 – 9x + √3 ; – 19x + √3 + 7x2
ii. 2ab2 + 3a2b – 4ab; 3ab – 8ab2 + 2a2b
Solution:
i. x2 – 9x + √3 -(- 19x + √3 + 7x2)
= x2 – 9x + √3 + 19x – √ 3 – 7x2
= x2 – 7x29x + 19x + √3 – √3
= – 6x2 + 10x

ii. (2ab2 + 3a2b – 4ab) – (3ab – 8ab2 + 2a2b)
= 2ab2 + 3a2b – 4ab – 3ab + 8ab2 – 2a2b
= 2ab2 + 8ab2 + 3a2b – 2a2b 4ab – 3ab
= 10ab2 + a2b – 7ab

Question 4.
Multiply the given polynomials.
i. 2x; x2 – 2x – 1
ii. x5 – 1; x3 + 2x2 + 2
iii. 2y +1; y2 – 2y + 3y
Solution:
i. (2x) x (x2 – 2x – 1) = 2x3 – 4x2 – 2x

ii. (x5 – 1) × (x3 + 2x2 + 2)
= x5 (x3 + 2x2 + 2) -1(x3 + 2x2 + 2)
= x8 + 2x7 + 2x5 – x3 – 2x2 – 2

iii. (2y + 1) × (y2 – 2y3 + 3y)
= 2y(y2 – 2y3 + 3y) + 1(y2 – 2y3 + 3y)
= 2y3 – 4y4 + 6y2 + y2 – 2y3 + 3y
= -4y4 + 2y3 – 2y3 + 6y2 + y2 + 3y
= -4y4 + 7y2 + 3y

Question 5.
Divide first polynomial by second polynomial and write the answer in the form ‘Dividend = Divisor x Quotient + Remainder’.
i. x3 – 64; x – 4
ii. 5x5 + 4x4 – 3x3 + 2x2 + 2 ; x2 – x
Solution:
i. x3 – 64 = x3 + 0x2 + 0x – 64
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.2 1
∴ Quotient = x2 + 4x + 16, Remainder = 0
Now, Dividend = Divisor x Quotient + Remainder
∴ x3 – 64 = (x – 4)(x2 + 4x + 16) + 0

ii. 5x5 + 4x4 – 3x3 + 2x2 + 2 = 5x5 + 4x4 – 3x3 + 2x + 0x + 2
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.2 2
∴ Quotient = 5x3 + 9x2 + 6x + 8,
Remainder = 8x + 2
Now, Dividend = Divisor x Quotient + Remainder
∴ 5x5 + 4x4 – 3x3 + 2x2 + 2 = (x2 – x)(5x3 + 9x2 + 6x + 8) + (8x + 2)

Question 6.
Write down the information in the form of algebraic expression and simplify.
There is a rectangular farm with length (2a2 + 3b2) metre and breadth (a2 + b2) metre. The farmer used a square shaped plot of the farm to build a house. The side of the plot was (a2 – b2) metre. What is the area of the remaining part of the farm? [4 Marks]
Solution:
Length of the rectangular farm = (2a2 + 3b2) m
Breadth of the rectangular farm = (a2 + b2) m
Area of the farm = length x breadth = (2a2 + 3b2) x (a2 + b2)
= 2a2(a2 + b2) + 3b2(a2 + b2)
= 2a2 + 2a2b2 + 3a2b2 + 3b4
= (2a4 + 5a2b2 + 3b4) sq. m … (i)
The farmer used a square shaped plot of the farm to build a house.
Side of the square shaped plot = (a2 – b2) m
∴ Area of the plot = (side)2
= (a2 – b2)2
= (a4 – 2a2b2 + b4) sq m… .(ii)

∴ Area of the remaining farm = Area of the farm – Area of the plot
= (2a4 + 5a2b2 + 3b4) – (a4 – 2a2b2 + b4) … [From (i) and (ii)]
= 2a4 + 5a2b2 + 3b4 – a4 + 2a2b2 – b4
= 2a4 – a4 + 5a2b2 + 2a2b2 + 3b4 – b4
= a4 + 7a2b2 + 2b4
∴ The area of the remaining farm is (a4 + 7a2b2 + 2b4) sq. m.

Class 9 Maths Digest

Practice Set 6.4 Class 8 Answers Chapter 6 Factorisation of Algebraic Expressions Maharashtra Board

Balbharti Maharashtra State Board Class 8 Maths Solutions covers the Practice Set 6.4 8th Std Maths Answers Solutions Chapter 6 Factorisation of Algebraic Expressions.

Factorisation of Algebraic Expressions Class 8 Maths Chapter 6 Practice Set 6.4 Solutions Maharashtra Board

Std 8 Maths Practice Set 6.4 Chapter 6 Solutions Answers

Question 1.
Simplify:
i. \(\frac{m^{2}-n^{2}}{(m+n)^{2}} \times \frac{m^{2}+m n+n^{2}}{m^{3}-n^{3}}\)
ii. \(\frac{a^{2}+10 a+21}{a^{2}+6 a-7} \times \frac{a^{2}-1}{a+3}\)
iii. \(\frac{8 x^{3}-27 y^{3}}{4 x^{2}-9 y^{2}}\)
iv. \(\frac{x^{2}-5 x-24}{(x+3)(x+8)} \times \frac{x^{2}-64}{(x-8)^{2}}\)
v. \(\frac{3 x^{2}-x-2}{x^{2}-7 x+12} \div \frac{3 x^{2}-7 x-6}{x^{2}-4}\)
vi. \(\frac{4 x^{2}-11 x+6}{16 x^{2}-9}\)
vii. \(\frac{a^{3}-27}{5 a^{2}-16 a+3} \div \frac{a^{2}+3 a+9}{25 a^{2}-1}\)
viii. \(\frac{1-2 x+x^{2}}{1-x^{3}} \times \frac{1+x+x^{2}}{1+x}\)
Solution:
i. \(\frac{m^{2}-n^{2}}{(m+n)^{2}} \times \frac{m^{2}+m n+n^{2}}{m^{3}-n^{3}}\)
Maharashtra Board Class 8 Maths Solutions Chapter 6 Factorisation of Algebraic Expressions Practice Set 6.4 1

ii. \(\frac{a^{2}+10 a+21}{a^{2}+6 a-7} \times \frac{a^{2}-1}{a+3}\)
Maharashtra Board Class 8 Maths Solutions Chapter 6 Factorisation of Algebraic Expressions Practice Set 6.4 2

iii. \(\frac{8 x^{3}-27 y^{3}}{4 x^{2}-9 y^{2}}\)
Maharashtra Board Class 8 Maths Solutions Chapter 6 Factorisation of Algebraic Expressions Practice Set 6.4 3

iv. \(\frac{x^{2}-5 x-24}{(x+3)(x+8)} \times \frac{x^{2}-64}{(x-8)^{2}}\)
Maharashtra Board Class 8 Maths Solutions Chapter 6 Factorisation of Algebraic Expressions Practice Set 6.4 4

v. \(\frac{3 x^{2}-x-2}{x^{2}-7 x+12} \div \frac{3 x^{2}-7 x-6}{x^{2}-4}\)
Maharashtra Board Class 8 Maths Solutions Chapter 6 Factorisation of Algebraic Expressions Practice Set 6.4 5

vi. \(\frac{4 x^{2}-11 x+6}{16 x^{2}-9}\)
Maharashtra Board Class 8 Maths Solutions Chapter 6 Factorisation of Algebraic Expressions Practice Set 6.4 6

vii. \(\frac{a^{3}-27}{5 a^{2}-16 a+3} \div \frac{a^{2}+3 a+9}{25 a^{2}-1}\)
Maharashtra Board Class 8 Maths Solutions Chapter 6 Factorisation of Algebraic Expressions Practice Set 6.4 7

viii. \(\frac{1-2 x+x^{2}}{1-x^{3}} \times \frac{1+x+x^{2}}{1+x}\)
Maharashtra Board Class 8 Maths Solutions Chapter 6 Factorisation of Algebraic Expressions Practice Set 6.4 8

Std 8 Maths Digest

Practice Set 3.1 Algebra 9th Standard Maths Part 1 Chapter 3 Polynomials Solutions Maharashtra Board

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 3.1 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 3 Polynomials.

9th Standard Maths 1 Practice Set 3.1 Chapter 3 Polynomials Textbook Answers Maharashtra Board

Class 9 Maths Part 1 Practice Set 3.1 Chapter 3 Polynomials Questions With Answers Maharashtra Board

Question 1.
State whether the given algebraic expressions are polynomials? Justify.
i. y + \(\frac { 1 }{ y }\)
ii. 2 – 5√x
iii. x2 + 7x + 9
iv. 2m-2 + 7m – 5
v. 10
Answer:
i. No, because power of v in the term 5√x is -1 (negative number).
ii. No, because the power of x in the term 5√x is
i. e. 0.5 (decimal number).
iii. Yes. All the coefficients are real numbers. Also, the power of each term is a whole number.
iv. No, because the power of m in the term 2m-2 is -2 (negative number).
v. Yes, because 10 is a constant polynomial.

Question 2.
Write the coefficient of m3 in each of the given polynomial.
i. m3
ii. \(\sqrt [ -3 ]{ 2 }\) + m – √3m3
iii. \(\sqrt [ -2 ]{ 3 }\)m3 + 5m2 – 7m -1
Answer:
i. 1
ii. -√3
iii. – \(\frac { 2 }{ 3 }\)

Question 3.
Write the polynomial in x using the given information. [1 Mark each]
i. Monomial with degree 7
ii. Binomial with degree 35
iii. Trinomial with degree 8
Answer:
i. 5x7
ii. x35 – 1
iii. 3x8 + 2x6 + x5

Question 4.
Write the degree of the given polynomials.
i. √5
ii. x°
iii. x2
iv. √2m10 – 7
v. 2p – √7
vi. 7y – y3 + y5
vii. xyz +xy-z
viii. m3n7 – 3m5n + mn
Answer:
i. √5 = √5 x°
∴ Degree of the polynomial = 0

ii. x°
∴Degree of the polynomial = 0

iii. x2
∴Degree of the polynomial = 2

iv. √2m10 – 7
Here, the highest power of m is 10.
∴Degree of the polynomial = 10

v. 2p – √7
Here, the highest power of p is 1.
∴ Degree of the polynomial = 1

vi. 7y – y3 + y5
Here, the highest power of y is 5.
∴Degree of the polynomial = 5

vii. xyz + xy – z
Here, the sum of the powers of x, y and z in the term xyz is 1 + 1 + 1= 3,
which is the highest sum of powers in the given polynomial.
∴Degree of the polynomial = 3

viii. m3n7 – 3m5n + mn
Here, the sum of the powers of m and n in the term m3n7 is 3 + 7 = 10,
which is the highest sum of powers in the given polynomial.
∴ Degree of the polynomial = 10

Question 5.
Classify the following polynomials as linear, quadratic and cubic polynomial. [2 Marks]
i. 2x2 + 3x +1
ii. 5p
iii. √2 – \(\frac { 1 }{ 2 }\)
iv. m3 + 7m2 + \(\sqrt [ 5 ]{ 2 }\)m – √7
v. a2
vi. 3r3
Answer:
Linear polynomials: ii, iii
Quadratic polynomials: i, v
Cubic polynomials: iv, vi

Question 6.
Write the following polynomials in standard form.
i. m3 + 3 + 5m
ii. – 7y + y5 + 3y3 – \(\frac { 1 }{ 2 }\)+ 2y4 – y2
Answer:
i. m3 + 5m + 3
ii. y5 + 2y4 + 3y3 – y2 – 7y – \(\frac { 1 }{ 2 }\)

Question 7.
Write the following polynomials in coefficient form.
i. x3 – 2
ii. 5y
iii. 2m4 – 3m2 + 7
iv. – \(\frac { 2 }{ 3 }\)
Answer:
i. x3 – 2 = x3 + 0x2 + 0x – 2
∴ Coefficient form of the given polynomial = (1, 0, 0, -2)

ii. 5y = 5y + 0
∴Coefficient form of the given polynomial = (5,0)

iii. 2m4 – 3m2 + 7
= 2m4 + Om3 – 3m2 + 0m + 7
∴ Coefficient form of the given polynomial = (2, 0, -3, 0, 7)

iv. – \(\frac { 2 }{ 3 }\)
∴Coefficient form of the given polynomial = (- \(\frac { 2 }{ 3 }\))

Question 8.
Write the polynomials in index form.
i. (1, 2, 3)
ii. (5, 0, 0, 0 ,-1)
iii. (-2, 2, -2, 2)
Answer:
i. Number of coefficients = 3
∴ Degree = 3 – 1 = 2
∴ Taking x as variable, the index form is x2 + 2x + 3

ii. Number of coefficients = 5
∴ Degree = 5 – 1=4
∴ Taking x as variable, the index form is 5x4 + 0x3 + 0x2 + 0x – 1

iii. Number of coefficients = 4
∴Degree = 4 – 1 = 3
∴Taking x as variable, the index form is -2x3 + 2x2 – 2x + 2

Question 9.
Write the appropriate polynomials in the boxes.
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.1 1
Answer:
i. Quadratic polynomial: x2; 2x2 + 5x + 10; 3x2 + 5x
ii. Cubic polynomial: x3 + x2 + x + 5; x3 + 9
iii. Linear polynomial: x + 7
iv. Binomial: x + 7; x3 + 9; 3x2 + 5x
v. Trinomial: 2x2 + 5x + 10
vi. Monomial: x2

Question 1.
Write an example of a monomial, a binomial and a trinomial having variable x and degree 5. ( Textbook pg. no. 3)
Answer:
Monomial: x5
Binomial: x5 + x
Trinomial: 2x5 – x2 + 5

Question 2.
Give example of a binomial in two variables having degree 5. (Textbook pg. no. 38)
Answer:
x3y2 + xy

Class 9 Maths Digest