Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.4

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 4 Sequences and Series Ex 4.4 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.4

Question 1.
Verify whether the following sequences are H.P.
(i) \(\frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \ldots\)
(ii) \(\frac{1}{3}, \frac{1}{6}, \frac{1}{9}, \frac{1}{12}, \ldots \ldots \ldots \ldots\)
(iii) \(\frac{1}{7}, \frac{1}{9}, \frac{1}{11}, \frac{1}{13}, \frac{1}{15}, \ldots\)
Solution:
(i) \(\frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \ldots\)
Here, the reciprocal sequence is 3, 5, 7, 9, …
∴ t1 = 3, t2 = 5, t3 = 7, …..
∵ t2 – t1 = t3 – t2 = t4 – t3 = 2, constant
∴ The reciprocal sequence is an A.P.
∴ the given sequence is H.P.

(ii) \(\frac{1}{3}, \frac{1}{6}, \frac{1}{9}, \frac{1}{12}, \ldots \ldots \ldots \ldots\)
Here, the reciprocal sequence is 3, 6, 9, 12 …
∴ t1 = 3, t2 = 6, t3 = 9, t4 = 12, …
∵ t2 – t1 = t3 – t2 = t4 – t3 = 3, constant
∴ The reciprocal sequence is an A.P.
∴ The given sequence is H.P.

(iii) \(\frac{1}{7}, \frac{1}{9}, \frac{1}{11}, \frac{1}{13}, \frac{1}{15}, \ldots\)
Here, the reciprocal sequence is 7, 9, 11, 13, 15, ……
∴ t1 = 7, t2 = 9, t3 = 11, t4 = 13, …..
∵ t2 – t1 = t3 – t2 = t4 – t3 = 2, constant
∴ The reciprocal sequence is an A.P.
∴ The given sequence is H.P.

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.4

Question 2.
Find the nth term and hence find the 8th term of the following H.P.s:
(i) \(\frac{1}{2}, \frac{1}{5}, \frac{1}{8}, \frac{1}{11}, \ldots \ldots \ldots\)
(ii) \(\frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \frac{1}{10}, \ldots \ldots \ldots \ldots\)
(iii) \(\frac{1}{5}, \frac{1}{10}, \frac{1}{15}, \frac{1}{20}, \cdots \cdots \cdots\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.4 Q2
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.4 Q2.1

Question 3.
Find A.M. of two positive numbers whose G.M. and H.M. are 4 and \(\frac{16}{5}\).
Solution:
G.M. = 4, H.M. = \(\frac{16}{5}\)
∵ (G.M.)2 = (A.M.) (H.M.)
∴ 16 = A.M. × \(\frac{16}{5}\)
∴ A.M. = 5

Question 4.
Find H.M. of two positive numbers whose A.M. and G.M. are \(\frac{15}{2}\) and 6.
Solution:
A.M. = \(\frac{15}{2}\), G.M. = 6
Now, (G.M.)2 = (A.M.) (H.M.)
∴ 62 = \(\frac{15}{2}\) × H.M.
∴ H.M. = 36 × \(\frac{2}{15}\)
∴ H.M. = \(\frac{24}{5}\)

Question 5.
Find G.M. of two positive numbers whose A.M. and H.M. are 75 and 48.
Solution:
A.M. = 75, H.M. = 48
(G.M.)2 = (A.M.) (H.M.)
∵ (G.M.)2 = 75 × 48
∵ (G.M.)2 = 25 × 3 × 16 × 3
∵ (G.M.)2 = 52 × 42 × 32
∴ G.M. = 5 × 4 × 3
∴ G.M. = 60

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.4

Question 6.
Insert two numbers between \(\frac{1}{7}\) and \(\frac{1}{13}\) so that the resulting sequence is a H.P.
Solution:
Let the required numbers be \(\frac{1}{\mathrm{H}_{1}}\) and \(\frac{1}{\mathrm{H}_{2}}\).
∴ \(\frac{1}{7}, \frac{1}{\mathrm{H}_{1}}, \frac{1}{\mathrm{H}_{2}}, \frac{1}{13}\) are in H.P.
∴ 7, H1, H2 and 13 are in A.P.
∴ t1 = a = 7 and t4 = a + 3d = 13
∴ 7 + 3d = 13
∴ 3d = 6
∴ d = 2
∴ H1 = t2 = a + d = 7 + 2 = 9
and H2 = t3 = a + 2d = 7 + 2(2) = 11
∴ \(\frac{1}{9}\) and \(\frac{1}{11}\) are the required numbers to be inserted between \(\frac{1}{7}\) and \(\frac{1}{13}\) so that the resulting sequence is a H.P.

Question 7.
Insert two numbers between 1 and -27 so that the resulting sequence is a G.P.
Solution:
Let the required numbers be G1 and G2.
∴ 1, G1, G2, -27 are in G.P.
∴ t1 = 1, t2 = G1, t3 = G2, t4 = -27
∴ t1 = a = 1
tn = arn-1
∴ t4 = (1) r4-1
∴ -27 = r3
∴ r3 = (-3)3
∴ r = -3
∴ G1 = t2 = ar = 1(-3) = -3
∴ G2 = t3 = ar = 1(-3)2 = 9
∴ -3 and 9 are the required numbers to be inserted between 1 and -27 so that the resulting sequence is a G.P.

Question 8.
Find two numbers whose A.M. exceeds their G.M. by \(\frac{1}{2}\) and their H.M. by \(\frac{25}{26}\).
Solution:
Let a, b be the two numbers.
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.4 Q8
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.4 Q8.1
∴ a + b = 13
∴ b = 13 – a …….(iii)
and ab = 36
∴ a(13 – a) = 36 …… [From (iii)]
∴ a2 – 13a + 36 = 0
∴ (a – 4)(a – 9) = 0
∴ a = 4 or a = 9
When a = 4, b = 13 – 4 = 9
When a = 9, b = 13 – 9 = 4
∴ the two numbers are 4 and 9.

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.4

Question 9.
Find two numbers whose A.M. exceeds G.M. bv 7 and their H.M. by \(\frac{63}{5}\).
Solution:
Let a, b be the two numbers.
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.4 Q9
∴ a + b = 70
∴ b = 70 – a …..(ii)
∴ G = A – 7 = 35 – 7 = 28 …….[From (i)]
∴ √ab = 28
∴ ab = 282 = 784
∴ a(70 – a) = 784 ……[From (ii)]
∴ 70a – a2 = 784
∴ a2 – 70a + 784 = 0
∴ a2 – 56a – 14a + 784 = 0
∴ (a – 56) (a – 14) = 0
∴ a = 14 or a = 56
When a = 14, b = 70 – 14 = 56
When a = 56, b = 70 – 56 = 14
∴ the two numbers are 14 and 56.

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 4 Sequences and Series Ex 4.3 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3

Question 1.
Determine whether the sum to infinity of the following G.P’.s exist. If exists, find it.
(i) \(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\)
(ii) \(2, \frac{4}{3}, \frac{8}{9}, \frac{16}{27}, \ldots\)
(iii) \(-3,1, \frac{-1}{3}, \frac{1}{9}, \ldots\)
(iv) \(\frac{1}{5}, \frac{-2}{5}, \frac{4}{5}, \frac{-8}{5}, \frac{16}{5}, \ldots\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3 Q1
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3 Q1.1
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3 Q1.2

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3

Question 2.
Express the following recurring decimals as a rational number.
(i) \(0 . \overline{32}\)
(ii) 3.5
(iii) \(4 . \overline{18}\)
(iv) \(0.3 \overline{45}\)
(v) \(3.4 \overline{56}\)
Solution:
(i) \(0 . \overline{32}\) = 0.323232…..
= 0.32 + 0.0032 + 0.000032 + …..
Here, 0.32, 0.0032, 0.000032, … are in G.P. with a = 0.32 and r = 0.01
Since, |r| = |0.01| < 1
∴ Sum to infinity exists.
∴ Sum to infinity = \(\frac{a}{1-r}\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3 Q2

(ii) 3.5 = 3.555… = 3 + 0.5 + 0.05 + 0.005 + …
Here, 0.5, 0.05, 0.005, … are in G.P. with a = 0.5 and r = 0.1
Since, |r| = |0.1| < 1
∴ Sum to infinity exists.
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3 Q2.1

(iii) \(4 . \overline{18}\) = 4.181818…..
= 4 + 0.18 + 0.0018 + 0.000018 + …..
Here, 0.18, 0.0018, 0.000018, … are in G.P. with a = 0.18 and r = 0.01
Since, |r| = |0.01| < 1
∴ Sum to infinity exists.
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3 Q2.2

(iv) 0.345 = 0.3454545…..
= 0.3 + 0.045 + 0.00045 + 0.0000045 + …..
Here, 0.045, 0.00045, 0.0000045, … are in G.P. with a = 0.045, r = 0.01
Since, |r| = |0.01| < 1
∴ Sum to infinity exists.
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3 Q2.3
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3 Q2.4

(v) \(3.4 \overline{56}\) = 3.4565656 …..
= 3.4 + 0.056 + 0.00056 + 0.0000056 + ….
Here, 0.056, 0.00056, 0.0000056, … are in G.P. with a = 0.056 and r = 0.01
Since, |r| = |0.01| < 1
∴ Sum to infinity exists.
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3 Q2.5
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3 Q2.6

Question 3.
If the common ratio of a G.P. is \(\frac{2}{3}\) and sum of its terms to infinity is 12. Find the first term.
Solution:
r = \(\frac{2}{3}\), sum to infinity = 12 … [Given]
Sum to infinity = \(\frac{a}{1-r}\)
∴ 12 = \(\frac{a}{1-\frac{2}{3}}\)
∴ a = 12 × \(\frac{1}{3}\)
∴ a = 4

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3

Question 4.
If the first term of a G.P. is 16 and sum of its terms to infinity is \(\frac{176}{5}\), find the common ratio.
Solution:
a = 16, sum to infinity = \(\frac{176}{5}\) … [Given]
Sum to infinity = \(\frac{a}{1-r}\)
∴ \(\frac{176}{5}=\frac{16}{1-r}\)
∴ \(\frac{11}{5}=\frac{1}{1-r}\)
∴ 11 – 11r = 5
∴ 11r = 6
∴ r = \(\frac{6}{11}\)

Question 5.
The sum of the terms of an infinite G.P. is 5 and the sum of the squares of those terms is 15. Find the G.P.
Solution:
Let the required G.P. be a, ar, ar2, ar3, …..
Sum to infinity of this G.P. = 5
∴ 5 = \(\frac{a}{1-r}\)
∴ a = 5(1 – r) ……(i)
Also, the sum of the squares of the terms is 15.
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.3 Q5

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 4 Sequences and Series Ex 4.2 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2

Question 1.
For the following G.P.’s, find Sn.
(i) 3, 6, 12, 24, …..
(ii) \(\mathbf{p}, \mathbf{q}, \frac{\mathbf{q}^{2}}{\mathbf{p}}, \frac{\mathbf{q}^{3}}{\mathbf{p}^{2}}, \ldots\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q1
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q1.1

Question 2.
For a G.P., if
(i) a = 2, r = \(-\frac{2}{3}\), find S6.
(ii) S5 = 1023, r = 4, find a.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q2

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2

Question 3.
For a G. P., if
(i) a = 2, r = 3, Sn = 242, find n.
(ii) sum of the first 3 terms is 125 and the sum of the next 3 terms is 27, find the value of r.
Solution:
(i) a = 2, r = 3, Sn = 242
Sn = \(a\left(\frac{r^{n}-1}{r-1}\right)\), for r > 1
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q3
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q3.1

Question 4.
For a G. P.,
(i) if t3 = 20, t6 = 160, find S7.
(ii) if t4 = 16, t9 = 512, find S10.
Solution:
(i) t3 = 20, t6 = 160
tn = arn-1
∴ t3 = ar3-1 = ar2
∴ ar2 = 20
∴ a = \(\frac{20}{\mathrm{r}^{2}}\) ……(i)
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q4
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q4.1

Question 5.
Find the sum to n terms:
(i) 3 + 33 + 333 + 3333 + ……
(ii) 8 + 88 + 888 + 8888 + ……..
Solution:
(i) Sn = 3 + 33 + 333 +….. upto n terms
= 3(1 + 11 + 111 +….. upto n terms)
= \(\frac{3}{9}\)(9 + 99 + 999 + … upto n terms)
= \(\frac{3}{9}\)[(10 – 1) + (100 – 1) + (1000 – 1) +… upto n terms]
= \(\frac{3}{9}\)[(10 + 100 + 1000 + … upto n terms) – (1 + 1 + 1 + … n times)]
But 10, 100, 1000, … n terms are in G.P.
with a = 10, r = \(\frac{100}{10}\) = 10
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q5

(ii) Sn = 8 + 88 + 888 + … upto n terms
= 8(1 + 11 + 111 + … upto n terms)
= \(\frac{8}{9}\) (9 + 99 + 999 + … upto n terms)
= \(\frac{8}{9}\) [(10 – 1) + (100 – 1) + (1000 – 1) +… upto n terms]
= \(\frac{8}{9}\) [(10 + 100 + 1000 + … upto n terms) – (1 + 1 + 1 + … n times)]
But 10, 100, 1000, … n terms are in G.P. with
a = 10, r = \(\frac{100}{10}\) = 10
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q5.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2

Question 6.
Find the sum to n terms:
(i) 0.4 + 0.44 + 0.444 + ……
(ii) 0.7 + 0.77 + 0.777 + …..
Solution:
(i) Sn = 0.4 + 0.44 + 0.444 + ….. upto n terms
= 4(0.1 + 0.11 + 0.111 + …. upto n terms)
= \(\frac{4}{9}\) (0.9 + 0.99 + 0.999 + … upto n terms)
= \(\frac{4}{9}\) [(i – 0.1) + (1 – 0.01) + (1 – 0.001) … upto n terms]
= \(\frac{4}{9}\) [(1 + 1 + 1 + …n times) – (0.1 + 0.01 + 0.001 +… upto n terms)]
But 0.1, 0.01, 0.001, … n terms are in G.P.
with a = 0.1, r = \(\frac{0.01}{0.1}\) = 0.1
∴ Sn = \(\frac{4}{9}\left\{\mathrm{n}-0.1\left[\frac{1-(0.1)^{\mathrm{n}}}{1-0.1}\right]\right\}\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q6

(ii) Sn = 0.7 + 0.77 + 0.777 + … upto n terms
= 7(0.1 + 0.11 + 0.111 + … upto n terms)
= \(\frac{7}{9}\) (0.9 + 0.99 + 0.999 + … upto n terms)
= \(\frac{7}{9}\) [(1 – 0.1) + (1 – 0.01) + (1 – 0.001) +… upto n terms]
= \(\frac{7}{9}\) [(1 + 1 + 1 +… n times) – (0.1 + 0.01 + 0.001 +… upto n terms)]
But 0.1, 0.01, 0.001, … n terms are in G.P.
with a = 0.1, r = \(\frac{0.01}{0.1}\) = 0.1
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q6.1

Question 7.
Find the nth terms of the sequences:
(i) 0.5, 0.55, 0.555,…..
(ii) 0.2, 0.22, 0.222,…..
Solution:
(i) Let t1 = 0.5, t2 = 0.55, t3 = 0.555 and so on.
t1 = 0.5
t2 = 0.55 = 0.5 + 0.05
t3 = 0.555 = 0.5 + 0.05 + 0.005
∴ tn = 0.5 + 0.05 + 0.005 + … upto n terms
But 0.5, 0.05, 0.005, … upto n terms are in G.P. with a = 0.5 and r = 0.1
∴ tn = the sum of first n terms of the G.P.
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q7

(ii) Let t1 = 0.2, t2 = 0.22, t3 = 0.222 and so on
t1 = 0.2
t2 = 0.22 = 0.2 + 0.02
t3 = 0.222 = 0.2 + 0.02 + 0.002
∴ tn = 0.2 + 0.02 + 0.002 + … upto n terms
But 0.2, 0.02, 0.002, … upto n terms are in G.P. with a = 0.2 and r = 0.1
∴ tn = the sum of first n terms of the G.P.
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q7.1

Question 8.
For a sequence, if Sn = 2(3n-1), find the nth term, hence showing that the sequence is a G.P.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q8

Question 9.
If S, P, R are the sum, product and sum of the reciprocals of n terms of a G.P. respectively, then verify that \(\left(\frac{\mathbf{S}}{\mathbf{R}}\right)^{\mathbf{n}}\) = P2.
Solution:
Let a be the 1st term and r be the common ratio of the G.P.
∴ the G.P. is a, ar, ar2, ar3, …, arn-1
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q9
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q9.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2

Question 10.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
Solution:
Let a and r be the 1st term and common ratio of the G.P. respectively.
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q10
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.2 Q10.1

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.1

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 4 Sequences and Series Ex 4.1 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.1

Question 1.
Verify whether the following sequences are G.P. If so, write tn.
(i) 2, 6, 18, 54, ……
(ii) 1, -5, 25, -125, …….
(iii) \(\sqrt{5}, \frac{1}{\sqrt{5}}, \frac{1}{5 \sqrt{5}}, \frac{1}{25 \sqrt{5}}, \ldots\)
(iv) 3, 4, 5, 6, ……
(v) 7, 14, 21, 28, …..
Solution:
(i) 2, 6, 18, 54, …….
t1 = 2, t2 = 6, t3 = 18, t4 = 54, …..
Here, \(\frac{t_{2}}{t_{1}}=\frac{t_{3}}{t_{2}}=\frac{t_{4}}{t_{3}}=3\)
Since, the ratio of any two consecutive terms is a constant, the given sequence is a geometric progression.
Here, a = 2, r = 3
tn= arn-1
∴ tn = 2(3n-1)

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.1

(ii) 1, -5, 25, -125, ……
t1 = 1, t2 = -5, t3 = 25, t4 = -125, …..
Here, \(\frac{t_{2}}{t_{1}}=\frac{t_{3}}{t_{2}}=\frac{t_{4}}{t_{3}}=-5\)
Since, the ratio of any two consecutive terms is a constant, the given sequence is a geometric progression.
Here, a = 1, r = -5
tn = arn-1
∴ tn = (-5)n-1

(iii) \(\sqrt{5}, \frac{1}{\sqrt{5}}, \frac{1}{5 \sqrt{5}}, \frac{1}{25 \sqrt{5}}, \ldots\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.1 Q1
Since, the ratio of any two consecutive terms is a constant, the given sequence is a geometric progression.
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.1 Q1.1

(iv) 3, 4, 5, 6,……
t1 = 3, t2 = 4, t3 = 5, t4 = 6, …..
Here, \(\frac{\mathrm{t}_{2}}{\mathrm{t}_{1}}=\frac{4}{3}, \frac{\mathrm{t}_{3}}{\mathrm{t}_{2}}=\frac{5}{4}, \frac{\mathrm{t}_{4}}{\mathrm{t}_{3}}=\frac{6}{5}\)
Since, \(\frac{t_{2}}{t_{1}} \neq \frac{t_{3}}{t_{2}} \neq \frac{t_{4}}{t_{3}}\)
∴ the given sequence is not a geometric progression.

(v) 7, 14, 21, 28, …..
t1 = 7, t2 = 14, t3 = 21, t4 = 28, …..
Here, \(\frac{t_{2}}{t_{1}}=2, \frac{t_{3}}{t_{2}}=\frac{3}{2}, \frac{t_{4}}{t_{3}}=\frac{4}{3}\)
Since, \(\frac{\mathrm{t}_{2}}{\mathrm{t}_{1}} \neq \frac{\mathrm{t}_{3}}{\mathrm{t}_{2}} \neq \frac{\mathrm{t}_{4}}{\mathrm{t}_{3}}\)
∴ the given sequence is not a geometric progression.

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.1

Question 2.
For the G.P.,
(i) if r = \(\frac{1}{3}\), a = 9, find t7.
(ii) if a = \(\frac{7}{243}\), r = \(\frac{1}{3}\), find t3.
(iii) if a = 7, r = -3, find t6.
(iv) if a = \(\frac{2}{3}\), t6 = 162, find r.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.1 Q2
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.1 Q2.1

Question 3.
Which term of the G. P. 5, 25, 125, 625, ….. is 510?
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.1 Q3

Question 4.
For what values of x, \(\frac{4}{3}\), x, \(\frac{4}{27}\) are in G. P.?
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.1 Q4

Question 5.
If for a sequence, \(t_{n}=\frac{5^{n-3}}{2^{n-3}}\), show that the sequence is a G. P. Find its first term and the common ratio.
Solution:
The sequence (tn) is a G.P., if \(\frac{t_{n}}{t_{n-1}}\) = constant, for all n ∈ N
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.1 Q5
∴ the sequence is a G. P. with common ratio \(\frac{5}{2}\)
First term, t1 = \(\frac{5^{\mathrm{l}-3}}{2^{1-3}}=\frac{2^{2}}{5^{2}}=\frac{4}{25}\)

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.1

Question 6.
Find three numbers in G. P. such that their sum is 21 and sum of their squares is 189.
Solution:
Let the three numbers in G. P. be \(\frac{a}{\mathrm{r}}\), a, ar.
According to the first condition,
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.1 Q6
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.1 Q6.1
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.1 Q6.2
∴ the three numbers are 12, 6, 3 or 3, 6, 12.
Check:
First condition:
12, 6, 3 are in G.P. with r = \(\frac{1}{2}\)
12 + 6 + 3 = 21
Second condition:
122 + 62 + 32 = 144 + 36 + 9 = 189
Thus, both the conditions are satisfied.

Question 7.
Find four numbers in G. P. such that sum of the middle two numbers is \(\frac{10}{3}\) and their product is 1.
Solution:
Let the four numbers in G.P. be \(\frac{a}{r^{3}}, \frac{a}{r}, a r, a r^{3}\).
According to the second condition,
\(\frac{\mathrm{a}}{\mathrm{r}^{3}}\left(\frac{\mathrm{a}}{\mathrm{r}}\right)(\mathrm{ar})\left(\mathrm{ar}^{3}\right)=1\)
∴ a4 = 1
∴ a = 1
According to the first condition,
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.1 Q7

Question 8.
Find five numbers in G. P. such that their product is 1024 and the fifth term is square of the third term.
Solution:
Let the five numbers in G. P. be
\(\frac{a}{r^{2}}, \frac{a}{r}, a, a r, a r^{2}\)
According to the given conditions,
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.1 Q8
When a = 4, r = -2
\(\frac{a}{r^{2}}\) = 1, \(\frac{a}{r}\) = -2, a = 4, ar = -8, ar2 = 16
∴ the five numbers in G.P. are 1, 2, 4, 8, 16 or 1, -2, 4, -8, 16.

Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.1

Question 9.
The fifth term of a G. P. is x, eighth term of the G. P. is y and eleventh term of the G. P. is z. Verify whether y2 = xz.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.1 Q9

Question 10.
If p, q, r, s are in G. P., show that p + q, q + r, r + s are also in G.P.
Solution:
p, q, r, s are in G.P.
Maharashtra Board 11th Commerce Maths Solutions Chapter 4 Sequences and Series Ex 4.1 Q10
∴ p + q, q + r, r + s are in G.P.

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 3 Complex Numbers Miscellaneous Exercise 3 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3

Question 1.
Find the value of \(\frac{i^{592}+i^{590}+i^{588}+i^{586}+i^{584}}{i^{582}+i^{580}+i^{578}+i^{576}+i^{574}}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3 Q1

Question 2.
Find the value of √-3 × √-6.
Solution:
√-3 × √-6 = √3 × √-1 + √6 × √-1
= √3i × √6i
= √18i2
= -3√2 ……[∵ i2 = -1]

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3

Question 3.
Simplify the following and express in the form a + ib.
(i) 3 + √-64
(ii) (2i3)2
(iii) (2 + 3i) (1 – 4i)
(iv) \(\frac{5}{2}\) i(-4 – 3i)
(v) (1 + 3i)2 (3 + i)
(vi) \(\frac{4+3 i}{1-i}\)
(vii) \(\left(1+\frac{2}{i}\right)\left(3+\frac{4}{i}\right)(5+i)^{-1}\)
(viii) \(\frac{\sqrt{5}+\sqrt{3} i}{\sqrt{5}-\sqrt{3} i}\)
(ix) \(\frac{3 i^{5}+2 i^{7}+i^{9}}{i^{6}+2 i^{8}+3 i^{18}}\)
(x) \(\frac{5+7 i}{4+3 i}+\frac{5+7 i}{4-3 i}\)
Solution:
(i) 3 + √-64
= 3 + √64 . √-1
= 3 + 8i

(ii) (2i3)2
= 4i6
= 4(i2)3
= 4(-1)3 …..[∵ i2 = -1]
= -4
= -4 + 0i

(iii) (2 + 3i)(1 – 4i) = 2 – 8i + 3i – 12i2
= 2 – 5i – 12(-1) ……[∵ i2 = -1]
= 14 – 5i

(iv) \(\frac{5}{2}\) i(-4 – 3i)
= \(\frac{5}{2}\) (-4i – 3i2)
= \(\frac{5}{2}\) [-4i – 3(-1)] ……[∵ i2 = -1]
= \(\frac{5}{2}\) (3 – 4i)
= \(\frac{15}{2}\) – 10i

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3

(v) (1 + 3i)2 (3 + i)
= (1 + 6i + 9i2) (3 + i)
= (1 + 6i – 9)(3 + i) ……[∵ i2 = -1]
= (-8 + 6i)(3 + i)
= -24 – 8i + 18i + 6i2
= -24 + 10i + 6(-1)
= -24 + 10i – 6
= -30 + 10i

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3 Q3
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3 Q3.1
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3 Q3.2

Question 4.
Solve the following equations for x, y ∈ R:
(i) (4 – 5i) x + (2 + 3i) y = 10 – 7i
(ii) (1 – 3i) x + (2 + 5i) y = 1 + i
(iii) \(\frac{x+i y}{2+3 i}\) = 7 – i
(iv) (x + iy) (5 + 6i) = 2 + 3i
(v) 2x + i9 y (2 + i) = x i7 + 10 i16
Solution:
(i) (4 – 5i) x + (2 + 3i)y = 10 – 7i
∴ (4x + 2y) + (3y – 5x) i = 10 – 7i
Equating real and imaginary parts, we get
4x + 2y = 10
i.e., 2x + y = 5 …….(i)
and 3y – 5x = -7 ……..(ii)
Equation (i) × 3 – equation (ii) gives
11x = 22
∴ x = 2
Putting x = 2 in (i), we get
2(2) + y = 5
∴ y = 1
∴ x = 2 and y = 1

(ii) (1 – 3i) x + (2 + 5i) y = 7 + i
∴ (x + 2y) + (-3x + 5y)i = 7 + i
Equating real and imaginary parts, we get
x + 2y = 7 ……..(i)
and -3x + 5y = 1 ……..(ii)
Equation (i) × 3 + equation (ii) gives
11y = 22
∴ y = 2
Putting y = 2 in (i), we get
x + 2(2) = 7
∴ x = 3
∴ x = 3 and y = 2

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3

(iii) \(\frac{x+i y}{2+3 i}\) = 7 – i
∴ x + iy = (7 – i)(2 + 3i)
∴ x + iy = 14 + 21i – 2i – 3i2
∴ x + iy = 14 + 19i – 3(-1) …..[∵ i2 = -1]
∴ x + iy = 17 + 19i
Equating real and imaginary parts, we get
x = 17 and y = 19

(iv) (x + iy)(5 + 6i) = 2 + 3i
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3 Q4
Equating real and imaginary parts, we get
x = \(\frac{28}{61}\) and y = \(\frac{3}{61}\)

(v) 2x + i9 y (2 + i) = x i7 + 10 i16
∴ 2x + (i4)2 . i . y (2 + i) = x (i2)3 . i + 10 . (i4)4
∴ 2x + (1)2 . iy (2 + i) = x (-1)3 . i + 10 (1)4 ……[∵ i2 = -1, i4 = 1]
∴ 2x + 2yi + yi2 = -xi + 10
∴ 2x + 2yi – y + xi = 10
∴ (2x – y) + (x + 2y)i = 10 + 0.i
Equating real and imaginary parts, we get
2x – y = 10 ……(i)
and x + 2y = 0 ……..(ii)
Equation (i) × 2 + equation (ii) gives
5x = 20
∴ x = 4
Putting x = 4 in (i), we get
2(4) – y = 10
∴ y = 8 – 10
∴ y = -2
∴ x = 4 and y = -2

Question 5.
Find the value of:
(i) x3 + 2x2 – 3x + 21, if x = 1 + 2i
(ii) x3 – 5x2 + 4x + 8, if x = \(\frac{10}{3-i}\)
(iii) x3 – 3x2 + 19x – 20, if x = 1 – 4i
Solution:
(i) x = 1 + 2i
∴ x – 1 = 2i
∴ (x – 1)2 = 4i2
∴ x2 – 2x + 1 = -4 ……[∵ i2 = -1]
∴ x2 – 2x + 5 = 0 ……(i)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3 Q5
∴ x3 + 2x2 – 3x + 21
= (x2 – 2x + 5)(x + 4) + 1
= 0.(x + 4) + 1 ……[From (i)]
= 0 + 1
= 1
∴ x3 + 2x2 – 3x + 21 = 1

(ii) x = \(\frac{10}{3-i}\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3 Q5.1
x3 – 5x2 + 4x + 8
= (x2 – 6x + 10)(x + 1) – 2
= 0 . (x + 1) – 2 ……[From (i)]
= 0 – 2
∴ x3 – 5x2 + 4x + 8 = -2

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3

(iii) x = 1 – 4i
∴ x – 1 = -4i
∴ (x – 1)2 = 16i2
∴ x2 – 2x + 1 = -16 ……[∵ i2 = -1]
∴ x2 – 2x + 17 = 0 ……(i)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3 Q5.2
∴ x3 – 3x2 + 19x – 20
= (x2 – 2x + 17) (x – 1) – 3
= 0 . (x – 1) – 3 ….[From (i)]
= 0 – 3
= -3
∴ x3 – 3x2 + 19x – 20 = -3

Question 6.
Find the square roots of:
(i) -16 + 30i
(ii) 15 – 8i
(iii) 2 + 2√3i
(iv) 18i
(v) 3 – 4i
(vi) 6 + 8i
Solution:
(i) Let \(\sqrt{-16+30 \mathrm{i}}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
-16 + 30i = a2 + b2i2 + 2abi
∴ -16 + 30i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = -16 and 2ab = 30
∴ a2 – b2 = -16 and b = \(\frac{15}{a}\)
∴ a2 – \(\left(\frac{15}{a}\right)^{2}\) = -16
∴ a2 – \(\frac{225}{a^{2}}\) = -16
∴ a4 – 225 = – 16a2
∴ a4 + 16a2 – 225 = 0
∴ (a2 + 25)(a2 – 9) = 0
∴ a2 = -25 or a2 = 9
But a ∈ R, a2 ≠ -25
∴ a2 = 9
∴ a = ±3
When a = 3, b = \(\frac{15}{3}\) = 5
When a = -3, b = \(\frac{15}{-3}\) = -5
∴ \(\sqrt{-16+30 \mathrm{i}}\) = ±(3 + 5i)

(ii) Let \(\sqrt{15-8 i}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
15 – 8i = a2 + b2i2 + 2abi
∴ 15 – 8i = (a2 – b2) + 2abi ……[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 15 and 2ab = -8
∴ a2 – b2 = 15 and b = \(\frac{-4}{a}\)
∴ a2 – (\(\left(\frac{-4}{a}\right)^{2}\)) = 15
∴ a2 – \(\frac{16}{a^{2}}\) = 15
∴ a4 – 16 = 15a2
∴ a4 – 15a2 – 16 = 0
∴ (a2 – 16)(a2 + 1) = 0
∴ a2 = 16 or a2 = -1
But a ∈ R, a2 ≠ -1
∴ a2 = 16
∴ a = ±4
When a = 4, b = \(\frac{-4}{4}\) = -1
When a = -4, b = \(\frac{-4}{-4}\) = 1
\(\sqrt{15-8 i}\) = ±(4 – i)

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3

(iii) Let \(\sqrt{2+2 \sqrt{3} i}\) = a + bi, where a, b ∈ R.
Squaring on both sides, we get
2 – 2√3i = a2 + b2i2 + 2abi
∴ 2 – 2√3i = a2 – b2 + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 2 and 2ab = 2√3
∴ a2 – b2 = 2 and b = \(\frac{\sqrt{3}}{\mathrm{a}}\)
∴ a2 – \(\left(\frac{\sqrt{3}}{a}\right)^{2}\) = 2
∴ a2 – \(\frac{3}{a^{2}}\) = 2
∴ a4 – 3 = 2a2
∴ a4 – 2a2 – 3 = 0
∴ (a2 – 3)(a2 + 1) = 0
∴ a2 = 3 or a2 = -1
But a ∈ R, a2 ≠ -1
∴ a2 = 3
∴ a = ±√3
When a = √3 , b = \(\frac{\sqrt{3}}{\sqrt{3}}\) = 1
When a = -√3 , b = \(\frac{\sqrt{3}}{-\sqrt{3}}\) = -1
∴ \(\sqrt{2+2 \sqrt{3} i}\) = ±(√3 + i)

(iv) Let \(\sqrt{18 \mathrm{i}}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
18i = a2 + b2i2 + 2abi
∴ 0 + 18i = a2 – b2 + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 0 and 2ab = 18
∴ a2 – b2 = 0 and b = \(\frac{9}{\mathrm{a}}\)
∴ a2 – \(\left(\frac{9}{a}\right)^{2}\) = 0
∴ a2 – \(\frac{81}{a^{2}}\) = 0
∴ a4 – 81 = 0
∴ (a2 – 9) (a2 + 9) = 0
∴ a2 = 9 or a2 = -9
But a ∈ R, a2 ≠ -9
∴ a2 = 9
∴ a = ±3
When a = 3, b = \(\frac{9}{3}\) = 3
When a = 3, b = \(\frac{9}{-3}\) = -3
∴ \(\sqrt{18 \mathrm{i}}\) = ±3(1 + i)

(v) Let \(\sqrt{3-4 i}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
3 – 4i = a2 + b2i2 + 2abi
∴ 3 – 4i = a2 – b2 + 2abi ……[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 3 and 2ab = -4
∴ a2 – b2 = 3 and b = \(\frac{-2}{a}\)
∴ a2 – \(\left(-\frac{2}{a}\right)^{2}\) = 3
∴ a2 – \(\frac{4}{a^{2}}\) = 3
∴ a4 – 4 = 3a2
∴ a4 – 3a2 – 4 = 0
∴ (a2 – 4)(a2 + 1) = 0
∴ a2 = 4 or a2 = -1
But, a ∈ R, a2 ≠ -1
∴ a2 = 4
∴ a = ±2
When a = 2, b = \(\frac{-2}{2}\) = -1
When a = -2, b = \(\frac{-2}{-2}\) = 1
∴ \(\sqrt{3-4 i}\) = ±(2 – i)

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Miscellaneous Exercise 3

(vi) Let \(\sqrt{6+8 i}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
6 + 8i = a2 + b2i2 + 2abi
∴ 6 + 8i = a2 – b2 + 2abi ……[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 6 and 2ab = 8
∴ a2 – b2 = 6 and b = \(\frac{4}{\mathrm{a}}\)
∴ a2 – \(\left(\frac{4}{a}\right)^{2}\) = 6
∴ a2 – \(\frac{16}{a^{2}}\) = 6
∴ a4 – 16 = 6a2
∴ a4 – 6a2 – 16 = 0
∴ (a2 – 8)(a2 + 2) = 0
∴ a2 = 8 or a2 = -2
But a ∈ R, a2 ≠ -2
∴ a2 = 8
∴ a = ±2√2
When a = 2√2, b = \(\frac{4}{2 \sqrt{2}}\) = √2
When a = -2√2, b = \(\frac{4}{-2 \sqrt{2}}\) = -√2
∴ \(\sqrt{6+8 i}\) = ±(2√2 + √2i) = ±√2(2 + i)

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.3

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 3 Complex Numbers Ex 3.3 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.3

Question 1.
If ω is a complex cube root of unity, show that
(i) (2 – ω)(2 – ω2) = 7
(ii) (2 + ω + ω2)3 – (1 – 3ω + ω2)3 = 65
(iii) \(\frac{\left(\mathbf{a}+\mathbf{b} \omega+\mathbf{c} \omega^{2}\right)}{\mathbf{c}+\mathbf{a} \omega+\mathbf{b} \omega^{2}}\) = ω2
Solution:
ω is the complex cube root of unity.
∴ ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
(i) L.H.S. = (2 – ω)(2 – ω2)
= 4 – 2ω2 – 2ω + ω3
= 4 – 2(ω2 + ω) + 1
= 4 – 2(-1) + 1
= 4 + 2 + 1
= 7
= R.H.S.

(ii) L.H.S. = (2 + ω + ω2)3 – (1 – 3ω + ω2)3
= [2 + (ω + ω2)]3 – [-3ω + (1 + ω2)]3
= (2 – 1)3 – (-3ω – ω)3
= 13 – (-4ω)3
= 1 + 64ω3
= 1 + 64(1)
= 65
= R.H.S.

(iii) L.H.S. =\(\frac{\left(\mathbf{a}+\mathbf{b} \omega+\mathbf{c} \omega^{2}\right)}{\mathbf{c}+\mathbf{a} \omega+\mathbf{b} \omega^{2}}\)
= \(\frac{a \omega^{3}+b \omega^{4}+c \omega^{2}}{c+a \omega+b \omega^{2}}\) ……[∵ ω3 = 1, ω4 = ω]
= \(\frac{\omega^{2}\left(c+a \omega+b \omega^{2}\right)}{c+a \omega+b \omega^{2}}\)
= ω2
= R.H.S.

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.3

Question 2.
If ω is a complex cube root of unity, find the value of
(i) ω + \(\frac{1}{\omega}\)
(ii) ω2 + ω3 + ω4
(iii) (1 + ω2)3
(iv) (1 – ω – ω2)3 + (1 – ω + ω2)3
(v) (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)
Solution:
ω is the complex cube root of unity.
∴ ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
(i) ω + \(\frac{1}{\omega}\)
= \(\frac{\omega^{2}+1}{\omega}\)
= \(\frac{-\omega}{\omega}\)
= -1

(ii) ω2 + ω3 + ω4
= ω2 (1 + ω + ω2)
= ω2 (0)
= 0

(iii) (1 + ω2)3
= (-ω)3
= -ω3
= -1

(iv) (1 – ω – ω2)3 + (1 – ω + ω2)3
= [1 – (ω + ω2)]3 + [(1 + ω2) – ω]3
= [1 – (-1)]3 + (-ω – ω)3
= 23 + (-2ω)3
= 8 – 8ω3
= 8 – 8(1)
= 0

(v) (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)
= (1 + ω)(1 + ω2)(1 + ω)(1 + ω2) …..[∵ ω3 = 1, ω4 = ω]
= (-ω2)(-ω)(-ω2)(-ω)
= ω6
= (ω3)2
= (1)2
= 1

Question 3.
If α and β are the complex cube roots of unity, show that α2 + β2 + αβ = 0.
Solution:
α and β are the complex cube roots of unity.
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.3 Q3
∴ α – β = -1
L.H.S. = α2 + β2 + αβ
= α2 + 2αβ + β2 + αβ – 2αβ ……[Adding and subtracting 2αβ]
= (α2 + 2αβ + β2) – αβ
= (α + β)2 – αβ
= (-1)2 – 1
= 1 – 1
= 0
= R.H.S.

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.3

Question 4.
If x = a + b, y = αa + βb and z = aβ + bα, where α and β are the complex cube roots of unity, show that xyz = a3 + b3.
Solution:
x = a + b, y = αa + βb, z = aβ + bα
α and β are the complex cube roots of unity.
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.3 Q4
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.3 Q4.1

Question 5.
If ω is a complex cube root of unity, then prove the following:
(i) (ω2 + ω – 1)3 = -8
(ii) (a + b) + (aω + bω2) + (aω2 + bω) = 0
Solution:
ω is the complex cube root of unity.
∴ ω3 = 1 and 1 + ω + ω2 = 0
Also, 1 + ω2 = -ω, 1 + ω = -ω2 and ω + ω2 = -1
(i) L.H.S. = (ω2 + ω – 1)3
= (-1 – 1)3
= (-2)3
= -8
= R.H.S.

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.3

(ii) L.H.S. = (a + b) + (aω + bω2) + (aω2 + bω)
= (a + aω + aω2) + (b + bω + bω2)
= a(1 + ω + ω2) + b(1 + ω + ω2)
= a(0) + b(0)
= 0
= R.H.S.

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 3 Complex Numbers Ex 3.2 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2

Question 1.
Find the square root of the following complex numbers:
(i) -8 – 6i
Solution:
Let \(\sqrt{-8-6 i}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
-8 – 6i = (a + bi)2
-8 – 6i = a2 + b2i2 + 2abi
-8 – 6i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q1 (i)

(ii) 7 + 24i
Solution:
Let \(\sqrt{7+24 i}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
7 + 24i = (a + bi)2
7 + 24i = a2 + b2i2 + 2abi
7 + 24i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q1 (ii)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q1 (ii).1

(iii) 1 + 4√3i
Solution:
Let \(\sqrt{1+4 \sqrt{3} i}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
1 + 4√3i = (a + bi)2
1 + 4√3i = a2 + b2i2 + 2abi
1 +4√3i = (a2 – b2) + 2abi ……[∵ i2 = -1]
Equating real and imaginary parts, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q1 (iii)

(iv) 3 + 2√10i
Solution:
Let \(\sqrt{3+2 \sqrt{10}} i\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
3 + 2√10i = (a + bi)2
3 + 2√10i = a2 + b2i2 + 2abi
3 + 2√10i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
a2 – b2 = 3 and 2ab = 2√10
a2 – b2 = 3 and b = \(\frac{\sqrt{10}}{a}\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q1 (iv)

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2

(v) 2(1 – √3i)
Solution:
Let \(\sqrt{2(1-\sqrt{3} i)}\) = a + bi, where a, b ∈ R
Squaring on both sides, we get
2(1 – √3i) = (a + bi)2
2(1 – √3i) = a2 + b2i2 + 2abi
2 – 2√3i = (a2 – b2) + 2abi …..[∵ i2 = -1]
Equating real and imaginary parts, we get
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q1 (v)

Question 2.
Solve the following quadratic equations.
(i) 8x2 + 2x + 1 = 0
Solution:
Given equation is 8x2 + 2x + 1 = 0
Comparing with ax2 + bx + c = 0, we get
a = 8, b = 2, c = 1
Discriminant = b2 – 4ac
= (2)2 – 4 × 8 × 1
= 4 – 32
= -28 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q2 (i)
∴ the roots of the given equation are \(\frac{-1+\sqrt{7} \mathrm{i}}{8}\) and \(\frac{-1-\sqrt{7} \mathrm{i}}{8}\)

(ii) 2x2 – √3x + 1 = 0
Solution:
Given equation is 2x2 – √3x + 1 = 0
Comparing with ax2 + bx + c = 0, we get
a = 2, b = -√3, c = 1
Discriminant = b2 – 4ac
= (-√3)2 – 4 × 2 × 1
= 3 – 8
= -5 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q2 (ii)
∴ the roots of the given equation are \(\frac{\sqrt{3}+\sqrt{5} i}{4}\) and \(\frac{\sqrt{3}-\sqrt{5} i}{4}\)

(iii) 3x2 – 7x + 5 = 0
Solution:
Given equation is 3x2 – 7x + 5 = 0
Comparing with ax2 + bx + c = 0, we get
a = 3, b = -7, c = 5
Discriminant = b2 – 4ac
= (-7)2 – 4 × 3 × 5
= 49 – 60
= -11 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q2 (iii)
∴ the roots of the given equation are \(\frac{7+\sqrt{11} i}{6}\) and \(\frac{7-\sqrt{11} i}{6}\)

(iv) x2 – 4x + 13 = 0
Solution:
Given equation is x2 – 4x + 13 = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = -4, c = 13
Discriminant = b2 – 4ac
= (-4)2 – 4 × 1 × 13
= 16 – 52
= -36 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q2 (iv)
∴ the roots of the given equation are 2 + 3i and 2 – 3i.

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2

Question 3.
Solve the following quadratic equations.
(i) x2 + 3ix + 10 = 0
Solution:
Given equation is x2 + 3ix + 10 = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = 3i, c = 10
Discriminant = b2 – 4ac
= (3i)2 – 4 × 1 × 10
= 9i2 – 40
= -9 – 40 …..[∵ i2 = -1]
= -49
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q3 (i)
∴ x = 2i or x = -5i
∴ the roots of the given equation are 2i and -5i.
Check:
If x = 2i and x = -5i satisfy the given equation, then our answer is correct.
L.H.S. = x2 + 3ix + 10
= (2i)2 + 3i(2i) + 10i
= 4i2 + 6i2 + 10
= 10i2 + 10
= -10 + 10 ……[∵ i2 = -1]
= 0
= R.H.S.
L.H.S. = x2 + 3ix + 10
= (-5i)2 + 3i(-5i) + 10
= 25i2 – 15i2 + 10
= 10i2 + 10
= -10 + 10 …..[∵ i2 = -1]
= 0
= R.H.S.
Thus, our answer is correct.

(ii) 2x2 + 3ix + 2 = 0
Solution:
Given equation is 2x2 + 3ix + 2 = 0
Comparing with ax2 + bx + c = 0, we get
a = 2, b = 3i, c = 2
Discriminant = b2 – 4ac
= (3i)2 – 4 × 2 × 2
= 9i2 – 16
= -9 – 16
= -25 < 0
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q3 (ii)
∴ the roots of the given equation are \(\frac{1}{2}\)i and -2i.

(iii) x2 + 4ix – 4 = 0
Solution:
Given equation is x2 + 4ix – 4 = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = 4i, c = -4
Discriminant = b2 – 4ac
= (4i)2 – 4 × 1 × -4
= 16i2 + 16
= -16 + 16 …..[∵ i2 = -1]
= 0
So, the given equation has equal roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q3 (iii)
∴ the roots of the given equation are -2i and -2i.

(iv) ix2 – 4x – 4i = 0
Solution:
ix2 – 4x – 4i = 0
Multiplying throughout by i, we get
i2x2 – 4ix – 4i2 = 0
∴ -x2 – 4ix + 4 = 0 ……[∵ i2 = -1]
∴ x2 + 4ix – 4 = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = 4i, c = -4
Discriminant = b2 – 4ac
= (4i)2 – 4 × 1 × -4
= 16i2 + 16
= -16 + 16 …..[∵ i2 = -1]
= 0
So, the given equation has equal roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q3 (iv)
∴ the roots of the given equation are -2i and -2i.

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2

Question 4.
Solve the following quadratic equations.
(i) x2 – (2 + i) x – (1 – 7i) = 0
Solution:
Given equation is x2 – (2 + i)x – (1 – 7i) = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = -(2 + i), c = -(1 – 7i)
Discriminant = b2 – 4ac
= [-(2 + i)]2 – 4 × 1 × -(1 – 7i)
= 4 + 4i + i2 + 4 – 28i
= 4 + 4i – 1 + 4 – 28i …….[∵ i2 = -1]
= 7 – 24i
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q4 (i)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q4 (i).1
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q4 (i).2

(ii) x2 – (3√2 + 2i) x + 6√2i = 0
Solution:
Given equation is x2 – (3√2 + 2i) x + 6√2i = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = -(3√2 + 2i), c = 6√2i
Discriminant = b2 – 4ac
= [-(3√2 + 2i)]2 – 4 × 1 × 6√2i
= 18 + 12√2i + 4i2 – 24√2i
= 18 – 12√2i – 4 …..[∵ i2 = -1]
= 14 – 12√2i
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q4 (ii)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q4 (ii).1
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q4 (ii).2

(iii) x2 – (5 – i) x + (18 + i) = 0
Solution:
Given equation is x2 – (5 – i)x + (18 + i) = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = -(5 – i), c = 18 + i
Discriminant = b2 – 4ac
= [-(5 – i)]2 – 4 × 1 × (18 + i)
= 25 – 10i + i2 – 72 – 4i
= 25 – 10i – 1 – 72 – 4i …..[∵ i2 = -1]
= -48 – 14i
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q4 (iii)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q4 (iii).1

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2

(iv) (2 + i) x2 – (5 – i) x + 2(1 – i) = 0
Solution:
Given equation is
(2 + i) x2 – (5 – i) x + 2(1 – i) = 0
Comparing with ax2 + bx + c = 0, we get
a = 2 + i, b = -(5 – i), c = 2(1 – i)
Discriminant = b2 – 4ac
= [-(5 – i)]2 – 4 × (2 + i) × 2(1 – i)
= 25 – 10i + i2 – 8(2 + i)(1 – i)
= 25 – 10i + i2 – 8(2 – 2i + i – i2)
= 25 – 10i – 1 – 8(2 – i + 1) …..[∵ i2 = -1]
= 25 – 10i – 1 – 16 + 8i – 8
= -2i
So, the given equation has complex roots.
These roots are given by
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q4 (iv)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q4 (iv).1
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.2 Q4 (iv).2

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 3 Complex Numbers Ex 3.1 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1

Question 1.
Write the conjugates of the following complex numbers:
(i) 3 + i
(ii) 3 – i
(iii) -√5 – √7i
(iv) -√-5
(v) 5i
(vi) √5 – i
(vii) √2 + √3i
Solution:
(i) Conjugate of (3 + i) is (3 – i)
(ii) Conjugate of (3 – i) is (3 + i)
(iii) Conjugate of (-√5 – √7i) is (-√5 + √7i)
(iv) -√-5 = -√5 × √-1 = -√5i
Conjugate of -√-5 is √5i
(v) Conjugate of 5i is -5i
(vi) Conjugate of √5 – i is √5 + i
(vii) Conjugate of √2 + √3i is √2 – √3i

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1

Question 2.
Express the following in the form of a + ib, a, b ∈ R, i = √-1. State the values of a and b:
(i) (1 + 2i)(-2 + i)
(ii) \(\frac{\mathrm{i}(4+3 \mathrm{i})}{(1-\mathrm{i})}\)
(iii) \(\frac{(2+i)}{(3-i)(1+2 i)}\)
(iv) \(\frac{3+2 i}{2-5 i}+\frac{3-2 i}{2+5 i}\)
(v) \(\frac{2+\sqrt{-3}}{4+\sqrt{-3}}\)
(vi) (2 + 3i)(2 – 3i)
(vii) \(\frac{4 i^{8}-3 i^{9}+3}{3 i^{11}-4 i^{10}-2}\)
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q2
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q2.1
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q2.2
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q2.3
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q2.4
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q2.5

Question 3.
Show that (-1 + √3i)3 is a real number.
Solution:
(-1 + √3i)3
= (-1)3 + 3(-1)2 (√3i) + 3(-1)(√3i)2 +(√3i)3 [∵ (a + b)3 = a3 + 3a2b + 3ab2 + b3]
= -1 + 3√3i – 3(3i2) + 3√3 i3
= -1 + 3√3i – 3(-3) – 3√3i [∵ i2 = -1, i3 = -1]
= -1 + 9
= 8, which is a real number.

Question 4.
Evaluate the following:
(i) i35
(ii) i888
(iii) i93
(iv) i116
(v) i403
(vi) \(\frac{1}{i^{58}}\)
(vii) i30 + i40 + i50 + i60
Solution:
We know that, i2 = -1, i3 = -i, i4 = 1
(i) i35 = (i4)8 (i2) i = (1)8 (-1) i = -i
(ii) i888 = (i4)222 = (1)222 = 1
(iii) i93 = (i4)23 . i = (1)23 . i = i
(iv) i116 = (i4)29 = (1)29 = 1
(v) i403 = (i4)100 (i2) i = (1)100 (-1) i = -i
(vi) \(\frac{1}{i^{88}}=\frac{1}{\left(i^{4}\right)^{14} \cdot i^{2}}=\frac{1}{(1)^{14}(-1)}=-1\)
(vii) i30 + i40 + i50 + i60
= (i4)7 i2 + (i4)10 + (i4)12 i2 + (i4)15
= (1)7 (-1) + (1)10 + (1)12 (-1) + (1)15
= -1 + 1 – 1 + 1
= 0

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1

Question 5.
Show that 1 + i10 + i20 + i30 is a real number.
Solution:
1 + i10 + i20 + i30
= 1 + (i4)2 . i2 + (i4)5 + (i4)7 . i2
= 1 + (1)2 (-1) + (1)5 + (1)7 (-1) [∵ i4 = 1, i2 = -1]
= 1 – 1 + 1 – 1
= 0, which is a real number.

Question 6.
Find the value of
(i) i49 + i68 + i89 + i110
(ii) i + i2 + i3 + i4
Solution:
(i) i49 + i68 + i89 + i110
= (i4)12 . i + (i4)17 + (i4)22 . i + (i4)27 . i2
= (1)12 . i + (1)17 + (1)22 . i + (1)27(-1) ……[∵ i4 = 1, i2 = -1]
= i + 1 + i – 1
= 2i

(ii) i + i2 + i3 + i4
= i + i2 + i2 . i + i4
= i – 1 – i + 1 [∵ i2 = -1, i4 = 1]
= 0

Question 7.
Find the value of 1 + i2 + i4 + i6 + i8 + …… + i20.
Solution:
1 + i2 + i4 + i6 + i8 + ….. + i20
= 1 + (i2 + i4) + (i6 + i8) + (i10 + i12) + (i14 + i16) + (i18 + i20)
= 1 + [i2 + (i2)2] + [(i2)3 + (i2)4] + [(i2)5 + (i2)6] + [(i2)7 + (i2)8] + [(i2)9 + (i2)10]
= 1 + [-1 + (- 1)2] + [(-1)3 + (-1)4] + [(-1)5 + (-1)6] + [(-1)7 + (-1)8] + [(-1)9 + (-1)10] [∵ i2 = -1]
= 1 + (-1 + 1) + (-1 + 1) + (-1 + 1) + (-1 + 1) + (-1 + 1)
= 1 + 0 + 0 + 0 + 0 + 0
= 1

Question 8.
Find the values of x and y which satisfy the following equations (x, y ∈ R):
(i) (x + 2y) + (2x – 3y)i + 4i = 5
(ii) \(\frac{x+1}{1+\mathrm{i}}+\frac{y-1}{1-\mathrm{i}}=\mathrm{i}\)
Solution:
(i) (x + 2y) + (2x – 3y)i + 4i = 5
∴ (x + 2y) + (2x – 3y)i = 5 – 4i
Equating real and imaginary parts, we get
x + 2y = 5 ……..(i)
and 2x – 3y = -4 ………(ii)
Equation (i) × 2 – equation (ii) gives
7y = 14
∴ y = 2
Putting y- 2 in (i), we get
x + 2(2) = 5
∴ x + 4 = 5
∴ x = 1
∴ x = 1 and y = 2
Check:
If x = 1 and y = 2 satisfy the given condition, then our answer is correct.
L.H.S. = (x + 2y) + (2x – 3y)i + 4i
= (1 + 4) + (2 – 6)i + 4i
= 5 – 4i + 4i
= 5
= R.H.S.
Thus, our answer is correct.

(ii) \(\frac{x+1}{1+\mathrm{i}}+\frac{y-1}{1-\mathrm{i}}=\mathrm{i}\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q8
(x + y) + (y – x – 2)i = 2i
(x + y) + (y – x – 2)i = 0 + 2i
Equating real and imaginary parts, we get
x + y = 0 and y – x – 2 = 2
∴ x + y = 0 ……(i)
and -x + y = 4 ……..(ii)
Adding (i) and (ii), we get
2y = 4
∴ y = 2
Putting y = 2 in (i), we get
x + 2 = 0
∴ x = -2
∴ x = -2 and y = 2

Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1

Question 9.
Find the value of:
(i) x3 – x2 + x + 46, if x = 2 + 3i
(ii) 2x3 – 11x2 + 44x + 27, if x = \(\frac{25}{3-4 i}\)
Solution:
(i) x = 2 + 3i
∴ x – 2 = 3i
∴ (x – 2)2 = 9i2
∴ x2 – 4x + 4 = 9(-1) …..[∵ i2 = -1]
∴ x2 – 4x + 13 = 0 ……(i)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q9
∴ x3 – x2 + x + 46 = (x2 – 4x + 13)(x + 3) + 7
= 0(x + 3) + 7 ……[From (i)]
= 7

(ii) x = \(\frac{25}{3-4 i}\)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q9.1
∴ x = 3 + 4i
∴ x – 3 = 4i
∴ (x – 3)2 = 16i2
∴ x2 – 6x + 9 = 16(-1) …….[∵ i2 = -1]
∴ x2 – 6x + 25 = 0 …….(i)
Maharashtra Board 11th Commerce Maths Solutions Chapter 3 Complex Numbers Ex 3.1 Q9.2
∴ 2x3 – 11x2 + 44x + 27
= (x2 – 6x + 25) (2x + 1) + 2
= 0 . (2x + 1) + 2 ……[From (i)]
= 0 + 2
= 2

Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Functions Miscellaneous Exercise 2

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 2 Functions Miscellaneous Exercise 2 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 2 Functions Miscellaneous Exercise 2

Question 1.
Which of the following relations are functions? If it is a function determine its domain and range.
(i) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5) (12, 6), (14, 7)}
(ii) {(0, 0), (1, 1), (1, -1), (4, 2), (4, -2), (9, 3), (9, -3), (16, 4), (16, -4)}
(iii) {(1, 1), (3, 1), (5, 2)}
Solution:
(i) {(2, 1), (4, 2), (6, 3), (8, 4), (10, 5) (12, 6), (14, 7)}
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Functions Miscellaneous Exercise 2 Q1
Every element of set A has been assigned a unique element in set B.
∴ Given relation is a function.
Domain = {2, 4, 6, 8, 10, 12, 14},
Range = {1, 2, 3, 4, 5, 6, 7}

(ii) {(0, 0), (1, 1), (1, -1), (4, 2), (4, -2), (9, 3), (9, -3), (16, 4), (16, -4)}
∴ (1, 1), (1, -1) ∈ the relation
∴ Given relation is not a function.
As element 1 of the domain has not been assigned a unique element of co-domain.

(iii) {(1, 1), (3, 1), (5, 2)}
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Functions Miscellaneous Exercise 2 Q1.1
Every element of set A has been assigned a unique element in set B.
∴ Given relation is a function.
Domain = {1, 3, 5}, Range = {1, 2}

Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Functions Miscellaneous Exercise 2

Question 2.
A function f: R → R defined by f(x) = \(\frac{3 x}{5}\) + 2, x ∈ R. Show that f is one-one and onto. Hence, find f-1.
Solution:
f: R → R defined by f(x) = \(\frac{3 x}{5}\) + 2
First we have to prove that f is one-one function for that we have to prove if
f(x1) = f(x2) then x1 = x2
Here f(x) = \(\frac{3 x}{5}\) + 2
Let f(x1) = f(x2)
∴ \(\frac{3 x_{1}}{5}+2=\frac{3 x_{2}}{5}+2\)
∴ \(\frac{3 x_{1}}{5}=\frac{3 x_{2}}{5}\)
∴ x1 = x2
∴ f is a one-one function.
Now, we have to prove that f is an onto function.
Let y ∈ R be such that
y = f(x)
∴ y = \(\frac{3 x}{5}\) + 2
∴ y – 2 = \(\frac{3 x}{5}\)
∴ x = \(\frac{5(y-2)}{3}\) ∈ R
∴ for any y ∈ co-domain R, there exist an element x = \(\frac{5(y-2)}{3}\) ∈ domain R such that f(x) = y
∴ f is an onto function.
∴ f is one-one onto function.
∴ f-1 exists.
∴ \(\mathrm{f}^{-1}(y)=\frac{5(y-2)}{3}\)
∴ \(f^{-1}(x)=\frac{5(x-2)}{3}\)

Question 3.
A function f is defined as follows:
f(x) = 4x + 5, for -4 ≤ x < 0. Find the values of f(-1), f(-2), f(0), if they exist.
Solution:
f(x) = 4x + 5, -4 ≤ x < 0
f(-1) = 4(-1) + 5 = -4 + 5 = 1
f(-2) = 4(-2) + 5 = -8 + 5 = -3
x = 0 ∉ domain of f
∴ f(0) does not exist.

Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Functions Miscellaneous Exercise 2

Question 4.
A function f is defined as follows:
f(x) = 5 – x for 0 ≤ x ≤ 4. Find the value of x such that f(x) = 3.
Solution:
f(x) = 5 – x
f(x) = 3
∴ 5 – x = 3
∴ x = 5 – 3 = 2

Question 5.
If f(x) = 3x2 – 5x + 7, find f(x – 1).
Solution:
f(x) = 3x2 – 5x + 7
∴ f(x – 1) = 3(x – 1)2 – 5(x – 1) + 7
= 3(x2 – 2x + 1) – 5(x – 1) + 7
= 3x2 – 6x + 3 – 5x + 5 + 7
= 3x2 – 11x + 15

Question 6.
If f(x) = 3x + a and f(1) = 7, find a and f(4).
Solution:
f(x) = 3x + a,
f(1) = 7
∴ 3(1) + a = 7
∴ a = 7 – 3 = 4
∴ f(x) = 3x + 4
∴ f(4) = 3(4) + 4
= 12 + 4
= 16

Question 7.
If f(x) = ax2 + bx + 2 and f(1) = 3, f(4) = 42, find a and b.
Solution:
f(x) = ax2 + bx + 2
f(1) = 3
∴ a(1)2 + b(1) + 2 = 3
∴ a + b = 1 …….(i)
f(4) = 42
∴ a(4)2 + b(4) + 2 = 42
∴ 16a + 4b = 40
Dividing by 4, we get
4a + b = 10 ……….(ii)
Solving (i) and (ii), we get
a = 3, b = -2

Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Functions Miscellaneous Exercise 2

Question 8.
If f(x) = \(\frac{2 x-1}{5 x-2}, x \neq \frac{2}{5}\), verify whether (fof)(x) = x
Solution:
(fof)(x) = f(f(x))
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Functions Miscellaneous Exercise 2 Q8

Question 9.
If f(x) = \(\frac{x+3}{4 x-5}\), g(x) = \(\frac{3+5 x}{4 x-1}\), then verify that (fog)(x) = x.
Solution:
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Functions Miscellaneous Exercise 2 Q9

Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Functions Ex 2.1

Balbharati Maharashtra State Board 11th Commerce Maths Solution Book Pdf Chapter 2 Functions Ex 2.1 Questions and Answers.

Maharashtra State Board 11th Commerce Maths Solutions Chapter 2 Functions Ex 2.1

Question 1.
Check if the following relations are functions.
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Functions Ex 2.1 Q1
Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Functions Ex 2.1 Q1.1
Solution:
(a) Yes
Reason: Every element of set A has been assigned a unique element in set B.

(b) No
Reason: An element of set A has been assigned more than one element from set B.

(c) No
Reason: Not every element of set A has been assigned an image from set B.

Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Functions Ex 2.1

Question 2.
Which sets of ordered pairs represent functions from A = {1, 2, 3, 4} to B = {-1, 0, 1, 2, 3}? Justify.
(i) {(1, 0), (3, 3), (2, -1), (4, 1), (2, 2)}
(ii) {(1, 2), (2, -1), (3, 1), (4, 3)}
(iii) {(1, 3), (4, 1), (2, 2)}
(iv) {(1, 1), (2, 1), (3, 1), (4, 1)}
Solution:
(i) {(1, 0), (3, 3), (2, -1), (4, 1), (2, 2)} does not represent a function.
Reason: (2, -1) and (2, 2) show that element 2 ∈ A has been assigned two images -1 and 2 from set B.

(ii) {(1, 2), (2, -1), (3, 1), (4, 3)} represents a function.
Reason: Every element of set A has a unique image in set B.

(iii) {(1, 3), (4, 1), (2, 2)} does not represent a function.
Reason: 3 ∈ A does not have an image in set B.

(iv) {(1, 1), (2, 1), (3, 1), (4, 1)} represents a function
Reason: Every element of set A has been assigned a unique image in set B.

Question 3.
If f(m) = m2 – 3m + 1, find
(i) f(0)
(ii) f(-3)
(iii) f(\(\frac{1}{2}\))
(iv) f(x + 1)
(v) f(-x)
Solution:
f(m) = m2 – 3m + 1
(i) f(0) = 02 – 3(0) + 1 = 1

(ii) f(-3) = (-3)2 – 3(-3) + 1
= 9 + 9 + 1
= 19

(iii) \(f\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{2}-3\left(\frac{1}{2}\right)+1\)
= \(\frac{1}{4}-\frac{3}{2}+1\)
= \(\frac{1-6+4}{4}\)
= \(-\frac{1}{4}\)

(iv) f(x + 1) = (x + 1)2 – 3(x + 1) + 1
= x2 + 2x + 1 – 3x – 3 + 1
= x2 – x – 1

(v) f(-x) = (-x)2 – 3(-x) + 1 = x2 + 3x + 1

Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Functions Ex 2.1

Question 4.
Find x, if g(x) = 0 where
(i) g(x) = \(\frac{5 x-6}{7}\)
(ii) g(x) = \(\frac{18-2 x^{2}}{7}\)
(iii) g(x) = 6x2 + x – 2
Solution:
(i) g(x) = \(\frac{5 x-6}{7}\)
g(x) = 0
∴ \(\frac{5 x-6}{7}\) = 0
∴ 5x – 6 = 0
∴ x = \(\frac{6}{5}\)

(ii) g(x) = \(\frac{18-2 x^{2}}{7}\)
g(x) = 0
∴ \(\frac{18-2 x^{2}}{7}\) = 0
∴ 18 – 2x2 = 0
∴ x2 = 9
∴ x = ±3

(iii) g(x) = 6x2 + x – 2
g(x) = 0
∴ 6x2 + x – 2 = 0
∴ 6x2 + 4x – 3x – 2 = 0
∴ 2x(3x + 2) – 1(3x + 2) = 0
∴ (2x – 1)(3x + 2) = 0
∴ 2x – 1 = 0 or 3x + 2 = 0
∴ x = \(\frac{1}{2}\) or x = \(\frac{-2}{3}\)

Question 5.
Find x, if f(x) = g(x) where f(x) = x4 + 2x2, g(x) = 11x2.
Solution:
f(x) = x4 + 2x2, g(x) = 11x2
f(x) = g(x)
∴ x4 + 2x2 = 11x2
∴ x4 – 9x2 = 0
∴ x2(x2 – 9) = 0
∴ x2 = 0 or x2 – 9 = 0
∴ x = 0 or x2 = 9
∴ x = 0 or x = ±3

Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Functions Ex 2.1

Question 6.
If f(x) = \(\begin{cases}x^{2}+3, & x \leq 2 \\ 5 x+7, & x>2\end{cases}\), then find
(i) f(3)
(ii) f(2)
(iii) f(0)
Solution:
f(x) = x2 + 3, x ≤ 2
= 5x + 7, x > 2
(i) f(3) = 5(3) + 7 = 15 + 7 = 22
(ii) f(2) = 22 + 3 = 4 + 3 = 7
(iii) f(0) = 02 + 3 = 3

Question 7.
If f(x) = \(\left\{\begin{array}{cl}
4 x-2, & x \leq-3 \\
5, & -3<x<3 \\
x^{2}, & x \geq 3
\end{array}\right.\), then fmd
(i) f(-4)
(ii) f(-3)
(iii) f(1)
(iv) f(5)
Solution:
f(x) = 4x – 2, x ≤ -3
= 5, -3 < x < 3
= x2, x ≥ 3
(i) f(-4) = 4(-4) – 2 = -16 – 2 = -18
(ii) f(-3) = 4(-3) – 2 = -12 – 2 = -14
(iii) f(1) = 5
(iv) f(5) = 52 = 25

Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Functions Ex 2.1

Question 8.
If f(x) = 3x + 5, g(x) = 6x – 1, then find
(i) (f + g)(x)
(ii) (f – g)(2)
(iii) (fg)(3)
(iv) \(\left(\frac{\mathbf{f}}{\mathbf{g}}\right)(x)\) and its domain
Solution:
f(x) = 3x + 5, g(x) = 6x – 1
(i) (f + g)(x) = f(x) + g(x)
= 3x + 5 + 6x – 1
= 9x + 4

(ii) (f – g) (2) = f(2) – g(2)
= [3(2) + 5] – [6(2) – 1]
= 6 + 5 – 12 + 1
= 0

(iii) (fg)(3) = f(3) g(3)
= [3(3) + 5] [6(3) – 1]
= (14) (17)
= 238

(iv) \(\left(\frac{\mathrm{f}}{\mathrm{g}}\right) x=\frac{\mathrm{f}(x)}{\mathrm{g}(x)}=\frac{3 x+5}{6 x-1}, x \neq \frac{1}{6}\)
Domain = R – {\(\frac{1}{6}\)}

Question 9.
If f(x) = 2x2 + 3, g(x) = 5x – 2, then find
(i) fog
(ii) gof
(iii) fof
(iv) gog
Solution:
f(x) = 2x2 + 3, g(x) = 5x – 2
(i) (fog)(x) = f(g(x))
= f(5x – 2)
= 2(5x – 2)2 + 3
= 2(25x2 – 20x + 4) + 3
= 50x2 – 40x + 8 + 3
= 50x2 – 40x + 11

(ii) (gof)(x) = g(f(x))
= g(2x2 + 3)
= 5(2x2 + 3) – 2
= 10x2 + 15 – 2
= 10x2 + 13

Maharashtra Board 11th Commerce Maths Solutions Chapter 2 Functions Ex 2.1

(iii) (fof)(x) = f(f(x))
= f(2x2 + 3)
= 2(2x2 + 3)2 + 3
= 2(4x4 + 12x2 + 9) + 3
= 8x4 + 24x2 + 18 + 3
= 8x4 + 24x2 + 21

(iv) (gog)(x) = g(g(x))
= g(5x – 2)
= 5(5x – 2) – 2
= 25x – 10 – 2
= 25x – 12