Maharashtra Board 9th Class Maths Part 1 Practice Set 3.5 Solutions Chapter 3 Polynomials

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 3.5 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 3 Polynomials.

Practice Set 3.5 Algebra 9th Std Maths Part 1 Answers Chapter 3 Polynomials

Question 1.
Find the value of the polynomial 2x – 2x3 + 7 using given values for x.
i. x = 3
ii. x = -1
iii. x = 0
Solution:
i. p(x) = 2x – 2x3 + 7
Put x = 3 in the given polynomial.
∴ p(3) = 2(3) – 2(3)3 + 7
= 6 – 2 x 27 + 7
= 6 – 54 + 7
∴ P(3) = – 41

ii. p(x) = 2x – 2x3 + 7
Put x = -1 in the given polynomial.
∴ p(- 1) = 2(- 1) – 2(-1)3 + 7
= – 2 – 2(-1) + 7
= -2 + 2 + 7
∴ p(-1) = 7

iii. p(x) = 2x – 2x3 + 7
Put x = 0 in the given polynomial.
∴ p(0) = 2(0) – 2(0)3 + 7
= 0 – 0 + 7
∴ P(0) = 7

Question 2.
For each of the following polynomial, find p(1), p(0) and p(- 2).
i. p(x) = x3
ii. p(y) = y2 – 2y + 5
ii. p(y) = x4 – 2x2 + x
Solution:
i. p(x) = x3
∴ p(1) = 13 = 1
p(x) = x3
∴ p(0) = 03 = 0
p(x) = x3
∴ p(-2) = (-2)3 = -8

ii. p(y) = y2 – 2y + 5
∴ p(1) = 12 – 2(1) + 5
= 1 – 2 + 5
∴ P(1) = 4
p(y) = y2 – 2y + 5
∴ p(0) = 02 – 2(0) + 5
= 0 – 0 + 5
∴ p(0) = 5
p(y) = y2 – 2y + 5
∴ p(- 2) = (- 2)2 – 2(- 2) + 5
= 4 + 4 + 5
∴ p(-2) = 13

iii. p(x) = x4 – 2x2 – x
∴ p(1) = (1)4 – 2(1)2 – 1
= 1 – 2 – 1
∴ p(1) = -2
∴ p(x) = x4 – 2x2 – x
∴ p(0) = (0)4 – 2(0)2 – 0
= 0 – 0 – 0
∴ p(0) = 0
p(x) = x4 – 2x2 – x
∴ p(-2) = (-2)4 – 2(-2)2 – (-2)
= 16 – 2(4) + 2
= 16 – 8 + 2
∴ p(-2) = 10

Question 3.
If the value of the polynomial m3 + 2m + a is 12 for m = 2, then find the value of a.
Solution:
p(m) = m3 + 2m + a
∴ p(2) = (2)3 + 2(2) + a
∴ 12 = 8 + 4 + a … [∵ p(2)= 12]
∴ 12 = 12 + a
∴ a = 12 – 12
∴ a = 0

Question 4.
For the polynomial mx2 – 2x + 3 if p(-1) = 7, then find m.
Solution:
p(x) = mx2 – 2x + 3
∴ p(- 1) = m (- 1)2 – 2(- 1) + 3
∴ 7 = m(1) + 2 + 3 …[∵ p(-1) = 7]
∴ 7 = m + 5
∴ m = 7 – 5
∴ m = 2

Question 5.
Divide the first polynomial by the second polynomial and find the remainder using remainder theorem.
i. (x2 – 1x + 9); (x + 1)
ii. (2x3 – 2x2 + ax – a); (x – a)
iii. (54m3 + 18m2 – 27m + 5); (m – 3)
Solution:
i. p(x) = x2 – 7x + 9
Divisor = x + 1
∴ take x = – 1
∴ By remainder theorem,
∴ Remainder =p(-1)
p(x) = x2 – 7x + 9
∴ p(-1) = (- 1)2 – 7(- 1) + 9
= 1 + 7 + 9
∴ Remainder =17

ii. p(x) = 2x3 – 2x2 + ax – a
Divisor = x – a
∴ take x = a
By remainder theorem,
Remainder = p(a)
p(x) = 2x3 – 2x2 + ax – a
∴ p(a) = 2a3 – 2a2 + a(a) – a
= 2a3– 2a2 + a2 – a
∴ Remainder = 2a3 – a2 – a

iii. p(m) = 54m3 + 18m2 – 27m + 5
Divisor = m – 3
∴ take m = 3
∴ By remainder theorem,
Remainder = p(3)
p(m) = 54m3 + 18m2 – 27m + 5
∴ p(3) = 54(3)3 +18(3)2 – 27(3) + 5
= 54(27) + 18(9) – 81 + 5
= 1458 + 162 – 81 + 5
∴ Remainder = 1544

Question 6.
If the polynomial y3 – 5y2 + 7y + m is divided by y + 2 and the remainder is 50, then find the value of m.
Solution:
p(y) = y3 – 5y2 + 7y + m
Divisor = y + 2
∴ take y = – 2
∴ By remainder theorem,
Remainder = p(- 2) = 50
P(y) = y3 – 5y2 + 7y + m
∴ P(-2) = (- 2)3 – 5(- 2)2 + 7(- 2) + m
∴ 50 = -8 – 5(4) – 14 + m
∴ 50 = -8 – 20 – 14 + m
∴ 50 = – 42 + m
∴ m = 50 + 42
∴ m = 92

Question 7.
Use factor theorem to determine whether x + 3 is a factor of x2 + 2x – 3 or not.
Solution:
p(x) = x2 + 2x – 3
Divisor = x + 3
∴ take x = – 3
∴ Remainder = p(-3)
p(x) = x2 + 2x – 3
∴ p(-3) = (-3)2 + 2(- 3) – 3
= 9 – 6 – 3
∴ p(-3) = 0
∴ By factor theorem, x + 3 is a factor of x2 + 2x – 3.

Question 8.
If (x – 2) is a factor of x3 – mx2 + 10x – 20, then find the value of m.
Solution:
p(x) = x3 – mx2 + 10x – 20 x – 2 is a factor of x3 – mx2 + lOx – 20.
∴By factor theorem,
Remainder = p(2) = 0
p(x) = x3 – mx2 + 10x – 20
∴ p(2) = (2)3 – m(2)2 + 10(2) – 20
∴ 0 = 8 – 4m + 20 – 20
∴ 0 = 8 – 4m
∴ 4m = 8
∴ m = 2

Question 9.
By using factor theorem in the following examples, determine whether q(x) is a factor of p(x) or not.
i. p(x) = x3 – x2 – x -1 ; q(x) = x – 1
ii. p(x) = 2x3 – x2 – 45 ; q(x) = x – 3
Solution:
i. p(x) = x3 – x2 – x – 1
Divisor = q(x) = x – 1
∴ take x = 1
Remainder = p(1)
p(x) = x3 – x2 – x – 1
∴ P(1) = (1)3 – (1)2 – 1 – 1
= 1 – 1 – 1 – 1
= -2 ≠ 0
∴ By factor theorem, x – 1 is not a factor of x3 – x2 – x – 1.

ii. p(x) = 2x3 – x – 45
Divisor = q(x) = x – 3
take x = 3
Remainder = p(3)
p(x) = 2x3 – x2 – 45
P(3) = 2(3)3 – (3)2 – 45
= 2(27) – 9 – 45
= 54 – 9 – 45
= 0
∴ By factor theorem, x – 3 is a factor of 2x3 – x2 – 45.

Question 10.
If (x31 + 31) is divided by (x + 1), then find the remainder.
Solution:
p(x) = x31 + 31
Divisor = x + 1
∴ take x = – 1
∴ By remainder theorem,
Remainder = p(-1)
p(x) =x31 + 31 …
∴ p(-1) = (-1)31 + 31
= -1 + 31 = 30
∴ Remainder = 30

Question 11.
Show that m – 1 is a factor of m21 – 1 and m22 – 1. [3 Marks]
Solution:
i. p(m) = m21 – 1
Divisor = m – 1
∴ take m = 1
Remainder = p(1)
p(m) = m21 – 1
∴ P(1) = 121 – 1 = 1 – 1 = 0
∴ By factor theorem, m -1 is a factor of m21 -1.

ii. p(m) = m22 – 1
Divisor = m – 1
∴ take m = 1
Remainder = p(1)
p(m) = m22 – 1
∴ P(1) = 122 – 1 = 1 – 1 = 0
∴ By factor theorem, m -1 is a factor of m22 – 1.

Question 12.
If x – 2 and x – \(\frac { 1 }{ 2 }\) both are the factors of the polynomial nx2 – 5x + m, then show that m = n = 2.
Solution:
p(x) = nx2 – 5x + m
(x – 2) is a factor of nx2 – 5x + m.
∴ By factor theorem,
P(2) = 0
∴ p(x) = nx2 – 5x + m
∴ p(2) = n(2)2 – 5(2) + m
∴ 0 = n(4) – 10 + m
∴ 4n – 10 + m = 0 …(i)
Also, ( x = \(\frac { 1 }{ 2 }\) ) is a factor of nx2 – 5x + m.
∴ By factor theorem,
p(\(\frac { 1 }{ 2 }\)) = 0
p(x) = nx2 – 5x + m
∴ p(\(\frac { 1 }{ 2 }\)) = n(\(\frac { 1 }{ 2 }\))2 – 5\(\frac { 1 }{ 2 }\) + m
0 = \(\frac { n }{ 4 }\) – \(\frac { 5 }{ 2 }\) + m
∴ 0 = n- 10 +4m … [Multiplying both sides by 4]
∴ n = 10 – 4m ……(ii)
Substituting n = 10 – 4m in equation (i),
4(10 – 4m) – 10 + m = 0
∴ 40 – 16m – 10 + m = 0
∴ -15m+ 30 = 0
∴ -15m = -30
∴ m = 2
Substituting m = 2 in equation (ii),
n = 10 – 4(2)
= 10 – 8
∴ n = 2
∴ m = n = 2

Question 13.
i. If p(x) = 2 + 5x, then find the value of p(2) + p(- 2) – p(1).
Solution:
p(x) = 2 + 5x
∴ P(2) = 2 + 5(2)
= 2 + 10
= 12
p(x) = 2 + 5x
P(- 2) = 2 + 5(- 2)
= 2 – 10 = – 8
p(x) = 2 + 5x
P(1) = 2 + 5(1)
= 2 + 5 = 7
∴ P(2) + P(- 2) – p(1) = 12 + (- 8) – 7
∴ P(2) + p(- 2) – p(1) = – 3

ii. If p(x) = 2x2 – 5√3 x + 5, then find the value of p(5√3 ).
Solution:
p(x) = 2x2 – 5√3 x + 5
∴ p(5√3) = 2(5√3)2 – 5√3 (5√3 ) + 5
= 2 (25 x 3) – 25 x 3 + 5
= 150-75 + 5
∴ p( 5√3 ) = 80

Question 1.
1. Divide p(x) = 3x2 + x + 7 by x + 2. Find the remainder.
2. Find the value of p(x) = 3x2 + x + 7 when x = – 2.
3. See whether remainder obtained by division is same as the value of p(-2). Take one more example and verify. (Textbook pg. no. 50)
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 3 Polynomials Practice Set 3.5 1
∴ Remainder = 17

2. p(x) = 3x2 + x + 7
Substituting x = – 2, we get
p(-2) = 3(2)2 + (-2) + 7
= 12 – 2 + 7
∴ p(-2) = 17

3. Yes, remainder = p(-2)

Another Example:
If the polynomial t3 – 3t2 + kt + 50 is divided by (t – 3), the remainder is 62. Find the value of k.
Solution:
When given polynomial is divided by (t – 3) the remainder is 62. It means the value of the polynomial when t = 3 is 62.
p(t) = t3 – 3t3 + kt + 50
By remainder theorem,
Remainder = p(3) = 33 – 32 + k x 3 + 50
= 27 – 3 x 9 + 3k + 50
= 27 – 27 + 3k + 50
= 3k + 50
But remainder is 62.
∴ 3k + 50 = 62
∴ 3k = 62 – 50
∴ 3k = 12
∴ k = 4

Question 2.
Verify that (x – 1) is a factor of the polynomial x3 + 4x – 5. (Textbook pg. no. 51)
Solution:
Here, p(x) = x3 + 4x – 5
Substituting x = 1 in p(x), we get
p(1) = (1)3 + 4(1) – 5
= 1 + 4 – 5
P(1) = 0
∴ By remainder theorem,
Remainder = 0
∴ (x -1) is the factor of x3 + 4x – 5.

Maharashtra Board 8th Class Maths Miscellaneous Exercise 1 Solutions

Balbharti Maharashtra State Board Class 8 Maths Solutions covers the Miscellaneous Exercise 1 8th Std Maths Answers Solutions.

Miscellaneous Exercise 1 8th Std Maths Answers

Question 1.
Choose the correct alternative answer for each of the following questions.
i. In ₹PQRS, m∠P = m∠R = 108°, m∠Q = m∠S = 72°. State which pair of sides of those given below is parallel. [Chapter 8]
(A) side PQ and side QR
(B) side PQ and side SR
(C) side SR and side SP
(D) side PS and side PQ
Solution:
(B) side PQ and side SR

Hint:
Maharashtra Board Class 8 Maths Solutions Miscellaneous Exercise 1 1
In ₹PQRS,
m∠P + m∠S = 108°+ 72
= 180°
Since, interior angles are supplementary.
∴ side PQ || side SR

ii. Read the following statements and choose the correct alternative from those given below them. [Chapter 8]
a. Diagonals of a rectangle are perpendicular bisectors of each other.
b. Diagonals of a rhombus are perpendicular bisectors of each other.
c. Diagonals of a parallelogram are perpendicular bisectors of each other.
d. Diagonals of a kite bisect each other.
(A) Statements (b) and (c) are true
(B) Only statement (b) is true
(C) Statements (b) and (d) are true
(D) Statements (a), (c) and (d) are true.
Solution:
(B) Only statement (b) is true

iii. If 19³ = 6859, find \(\sqrt[3]{0.006859}\). [Chapter 3]
(A) 1.9
(B) 19
(C) 0.019
(D) 0.19
Solution:
(D) 0.19

Hint:
\(\sqrt[3]{0.006859}\)
Maharashtra Board Class 8 Maths Solutions Miscellaneous Exercise 1 2

Question 2.
Find the cube roots of the following numbers. [Chapter 3]
i. 5832
ii. 4096
Solution:
i. 5832 = 2 × 2 × 2 × 3 × 3 × 3 × 3 × 3 × 3
= (2 × 3 × 3) × (2 × 3 × 3) × (2 × 3 × 3)
= (2 × 3 × 3)³
= (18)³
\(\sqrt[3]{5832}=18\)
Maharashtra Board Class 8 Maths Solutions Miscellaneous Exercise 1 3

ii. 4096 = (4 × 4) × (4 × 4) × (4 × 4)
= (4 × 4)
= 16³
\( \sqrt[3]{4096}=16\)
Maharashtra Board Class 8 Maths Solutions Miscellaneous Exercise 1 4

Question 3.
m∝n,n = 15 when m = 25. Hence
i. Find m when n = 87,
ii. Find n when m = 155. [Chapter 7]
Solution:
Given that, m ∝ n
∴ m = kn …(i)
where, k is the constant of variation.
When m = 25, n = 15
∴ Substituting, m = 25 and n = 15 in (i), we get
m = kn
∴ 25 = k × 15
∴ k = \(\frac { 25 }{ 15 }\)
∴ k = \(\frac { 5 }{ 3 }\)
Substituting k = \(\frac { 5 }{ 3 }\) in (i), we get
m = kn
∴ m = \(\frac { 5 }{ 3 }n\) …(ii)

i. When n = 87, m = ?
Substituting n = 87 in (ii), we get
m = \(\frac { 5 }{ 3 }n\)
m = \(\frac { 5 }{ 3 }\) × 87
m = 5 × 29
m = 145

ii. When m = 155, n = ?
∴ Substituting m = 155 in (ii), we get
m = \(\frac { 5 }{ 3 }n\)
∴ 155 = \(\frac { 5 }{ 3 }n\)
∴ \(\frac{155 \times 3}{5}=n\)
∴ n = 31 × 3
∴ n = 93

Question 4.
y varies inversely with x. If y = 30 when x = 12, find [Chapter 7]
i. y when x = 15,
ii. x when y = 18.
Solution:
Given that,
\(y \propto \frac{1}{x}\)
∴ \(y=k \times \frac{1}{x}\)
where, k is the constant of variation.
∴ y × x = k …(i)
When x = 12, y = 30
∴ Substituting, x = 12 and y = 30 in (i), we get
y × x = k
∴ 30 × 12 = k
∴ k = 360
Substituting, k = 360 in (i), we get
y × x = k
∴ y × x = 360 ….(ii)

i. When x = 15,y = ?
∴ Substituting x = 15 in (ii), we get
y × x = 360
∴ y × 15 = 360
∴ y = \(\frac { 360 }{ 15 }\)
∴ y = 24

ii. When y = 18, x = ?
∴ Substituting y = 18 in (ii), we get
y × x = 360
∴18 × x = 360
∴ x = \(\frac { 360 }{ 18 }\)
∴ x = 20

Question 5.
Draw a line l. Draw a line parallel to line l at a distance of 3.5 cm. [Chapter 2]
Solution:
Steps of construction:

  1. Draw a line l and take any two points M and N on the line.
  2. Draw perpendiculars to line l at points M and N.
  3. On the perpendicular lines take points S and T at a distance 3.5 cm from points M and N respectively.
  4. Draw a line through points S and T. Name the line as n.

Maharashtra Board Class 8 Maths Solutions Miscellaneous Exercise 1 5
Line n is parallel to line l at a distance of 3.5 cm from it.

Question 6.
Fill in the blanks in the following statement.
The number \((256)^{\frac{5}{7}}\) is __ of __ power of __. [Chapter 3]
Solution:
The number \((256)^{\frac{5}{7}}\) is 7th root of 5th power of 256.

Question 7.
Expand.
i. (5x – 7) (5x – 9)
ii. (2x – 3y)³
iii. \(\left(a+\frac{1}{2}\right)^{3}\) [Chapter 5]
Solution:
i. (5x – 7) (5x – 9)
= (5x)² + (-7 -9) 5x + (-7) × (-9).
…[∵ (x + a) (x + b) = x² + (a + b)x + ab]
= 25x² + (-16) × 5x + 63
= 25x² – 80x + 63

ii. Here, a = 2x and b = 3y
(2x – 3y)³
= (2x)³ – 3 (2x)² (3y) + 3 (2x) (3y)² – (3y)³
…[∵ (a – b)³ = a³ – 3a²b + 3ab² – b³]
= 8x³ – 3 (4x²) (3y) + 3 (2x) (9y²) – 27y³
= 8x³ – 36x²y + 54xy² – 27p³

iii. Here, A= a and B = \(\frac { 1 }{ 2 }\)
\(\left(a+\frac{1}{2}\right)^{3}=(a)^{3}+3(a)^{2}\left(\frac{1}{2}\right)+3(a)\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}\)
…[(A + B)³ = A³ + 3A²B + 3AB² + B³]
\(=\mathbf{a}^{3}+\frac{3 \mathbf{a}^{2}}{2}+\frac{3 \mathbf{a}}{4}+\frac{1}{8}\)

Question 8.
Draw an obtuse angled triangle. Draw all of its medians and show their point of concurrence. [Chapter 4]
Solution:
Maharashtra Board Class 8 Maths Solutions Miscellaneous Exercise 1 6
The point of concurrence of the medians PS, RU and QV is G.

Question 9.
Draw ∆ABC such that l(BC) = 5.5 cm, m∠ABC = 90°, l(AB) = 4 cm. Show the orthocentre of the triangle. [Chapter 4]
Solution:
Maharashtra Board Class 8 Maths Solutions Miscellaneous Exercise 1 7
Here, point B is the orthocentre of ∆ABC.

Question 10.
Identify the variation and solve.
It takes 5 hours to travel from one town to the other if speed of the bus is 48 km/hr. If the speed of the bus is reduced by 8 km/hr, how much time will it take for the same travel? [Chapter 7]
Solution:
Let, v represent the speed of the bus and t represent the time required to travel from one town to the other.
The speed of the bus varies inversely with the time required to travel from one town to the other.
∴ \(\mathbf{v} \propto \frac{1}{\mathbf{t}}\)
∴ \(\mathbf{v}=\mathbf{k} \times \frac{1}{\mathbf{t}}\)
where, k is the constant of variation.
∴ v × t = k …(i)
It takes 5 hours to travel from one town to the other if speed of the bus is 48 km/hr.
i.e., when v = 48, t = 5
∴ Substituting v = 48 and t = 5 in (i), we get
v × t = k
∴ 48 × 5 = k
∴ k = 240
Substituting k = 240 in (i), we get
v × t = k
∴ v × t = 240 …(ii)
Since, the speed of the bus is reduced by 8 km/hr,
∴ Speed of the bus in second case (v)
= 48 – 8 = 40 km/hr
∴ When v = 40, t = ?
∴ Substituting v = 40 in (ii), we get
v × t = 240
∴ 40 × t = 240
∴ \(t=\frac { 240 }{ 40 }\)
∴ t = 6
∴ The problem is of inverse variation and the bus would take 6 hours to travel the distance if its speed is reduced by 8 km/hr.

Question 11.
Seg AD and seg BE are medians of ∆ABC and point G is the centroid. If l(AG) = 5 cm, find l(GD). If l(GE) = 2 cm, find l(BE). [Chapter 4]
Solution:
The centroid of a triangle divides each median in the ratio 2:1.
i. Point G is the centroid and seg AD is the median.
Maharashtra Board Class 8 Maths Solutions Miscellaneous Exercise 1 8

ii. Point G is the centroid and seg BE is the median.
Maharashtra Board Class 8 Maths Solutions Miscellaneous Exercise 1 9
∴ l(BG) × 1 = 2 × 2
∴ l(BG) = 4 cm
Now, l(BE) = l(BG) + l(GE)
∴ l(BE) = 4 + 2
∴ l(BE) = 6 cm

Question 12.
Convert the following rational numbers into decimal form. [Chapter 1]
i. \(\frac { 8 }{ 13 }\)
ii. \(\frac { 11 }{ 7 }\)
iii. \(\frac { 5 }{ 16 }\)
iv. \(\frac { 7 }{ 9 }\)
Solution:
i. \(\frac { 8 }{ 13 }\)
Maharashtra Board Class 8 Maths Solutions Miscellaneous Exercise 1 10

ii. \(\frac { 11 }{ 7 }\)
Maharashtra Board Class 8 Maths Solutions Miscellaneous Exercise 1 11

iii. \(\frac { 5 }{ 16 }\)
Maharashtra Board Class 8 Maths Solutions Miscellaneous Exercise 1 12

iv. \(\frac { 7 }{ 9 }\)
Maharashtra Board Class 8 Maths Solutions Miscellaneous Exercise 1 13

Question 13.
Factorize.
i. 2y² – 11y + 5
ii. x² – 2x – 80
iii. 3x² – 4x + 1
Solution:
i. 2y² – 11y + 5
= 2y² – 10y – y + 5
= 2y(y – 5) – 1(y – 5)
= (y – 5)(2y – 1)
Maharashtra Board Class 8 Maths Solutions Miscellaneous Exercise 1 14

ii. x² – 2x – 80
= x² – 10x + 8x – 80
= x (x – 10) + 8 (x – 10)
= (x – 10)(x + 8)
Maharashtra Board Class 8 Maths Solutions Miscellaneous Exercise 1 15

iii. 3x² – 4x + 1
= 3x² – 3x – x + 1
= 3x(x – 1) – 1(x – 1)
= (x – 1) (3x – 1)
Maharashtra Board Class 8 Maths Solutions Miscellaneous Exercise 1 16

Question 14.
The marked price of a T.V. set is Rs 50,000. The shopkeeper sold it at 15% discount. Find the price of it for the customer. [Chapter 9]
Solution:
Here, marked price = Rs 50,000,
discount = 15%
Let the discount percent be x
∴x = 15%
i. Discount
Maharashtra Board Class 8 Maths Solutions Miscellaneous Exercise 1 17
= 500 × 15
= Rs 7,500

ii. Selling price = Marked price – Discount
= 50,000 – 7,500
= Rs 42,500
∴The price of the T.V. set for the customer is Rs 42,500.

Question 15.
Rajabhau sold his flat to Vasantrao for Rs 88,00,000 through an agent. The agent charged 2 % commission for both of them. Find how much commission the agent got. [Chapter 9]
Solution:
Here, selling price of the flat = Rs 88,00,000
Rate of commission = 2%
Commission = 2% of selling price
= \(\frac { 2 }{ 100 }\) × 88,00,000
= 2 × 88,000
= Rs 1,76,000
∴ Total commission = Commission from Rajabhau + Commission from Vasantrao
= Rs 1,76,000 + Rs 1,76,000
= Rs 3,52,000
∴ The agent got a commission of Rs 3,52,000.

Question 16.
Draw a parallelogram ABCD such that l(DC) = 5.5 cm, m∠D = 45°, l(AD) = 4 cm. [Chapter 8]
Solution:
Opposite sides of a parallelogram are congruent.
∴ l(AD) = l(BC) = 4 cm and
l(DC) = l(AB) = 5.5 cm
Maharashtra Board Class 8 Maths Solutions Miscellaneous Exercise 1 18

Question 17.
In the figure, line l || line m and line p || line q. Find the measures of ∠a, ∠b, ∠c and ∠d. [Chapter 2]
Maharashtra Board Class 8 Maths Solutions Miscellaneous Exercise 1 19
Solution:
i. line l|| line m and line p is a transversal.
∴m∠a = 78° …(i) [Corresponding angles]

ii. line p || line q and line m is a transversal.
∴m∠d = m∠a …[Corresponding angles]
∴m∠d = 78° …(ii)[From (i)]

iii. m∠b = m∠d …[Vertically opposite angles]
∴m∠b = 78° …[From (ii)]

iv. line l|| line m and line q is a transversal.
∴m∠c + m∠d = 180° …[Interior angles]
∴m∠c + 78° = 180° … [From (ii)]
∴m∠c =180° – 78°
∴m∠c = 102°
∴m∠a = 78°, m∠b = 78°, m∠c = 102°, m∠d = 78°

Maharashtra Board Class 8 Maths Solutions

Maharashtra Board 9th Class Maths Part 1 Problem Set 2 Solutions Chapter 2 Real Numbers

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Problem Set 2 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 2 Real Numbers.

Problem Set 2 Algebra 9th Std Maths Part 1 Answers Chapter 2 Real Numbers

Question 1.
Choose the correct alternative answer for the questions given below. [1 Mark each]

i. Which one of the following is an irrational number?
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 1
Answer:
√5

ii. Which of the following is an irrational number?
(A) 0.17
(B) \(1.\overline { 513 }\)
(C) \(0.27\overline { 46 }\)
(D) 0.101001000……..
Answer:
(D) 0.101001000……..

iii. Decimal expansion of which of the following is non-terminating recurring?
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 2
Answer:
(C) \(\frac { 3 }{ 11 }\)

iv. Every point on the number line represents which of the following numbers?
(A) Natural numbers
(B) Irrational numbers
(C) Rational numbers
(D) Real numbers
Answer:
(D) Real numbers

v. The number [/latex]0.\dot { 4 }[/latex] in \(\frac { p }{ q }\) form is ……
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 3
Answer:
(A) \(\frac { 4 }{ 9 }\)

vi. What is √n , if n is not a perfect square number ?
(A) Natural number
(B) Rational number
(C) Irrational number
(D) Options A, B, C all are correct.
Answer:
(C) Irrational number

vii. Which of the following is not a surd ?
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 4
Answer:
(C) \(\sqrt [ 3 ]{ \sqrt { 64 } }\)

viii. What is the order of the surd \(\sqrt [ 3 ]{ \sqrt { 5 } }\) ?
(A) 3
(B) 2
(C) 6
(D) 5
Answer:
(C) 6

ix. Which one is the conjugate pair of 2√5 + √3 ?
(A) -2√5 + √3
(B) -2√5 – √3
(C) 2√3 – √5
(D) √3 + 2√5
Answer:
(A) -2√5 + √3

x. The value of |12 – (13 + 7) x 4| is ____ .
(A) – 68
(B) 68
(C) – 32
(D) 32
Answer:
(B) 68

Hints:
ii. Since the decimal expansion is neither terminating nor recurring, 0.101001000…. is an irrational number.

iii. \(\frac { 3 }{ 11 }\)
Denominator =11 = 1 x 11
Since, the denominator is other than prime factors 2 or 5.
∴ the decimal expansion of \(\frac { 3 }{ 11 }\) will be non terminating recurring.

v. Let x = [/latex]0.\dot { 4 }[/latex]
∴10 x = [/latex]0.\dot { 4 }[/latex]
∴10 – x = [/latex]4.\dot { 4 }[/latex] – [/latex]0.\dot { 4 }[/latex]
∴9x = 4
∴ x = \(\frac { 4 }{ 9 }\)

vii. \(\sqrt[3]{61}\) = 4, which is not an irrational number.

viii. \(\sqrt[3]{\sqrt{5}}=\sqrt[3 \times 2]{5}=\sqrt[6]{5}\)
∴ Order = 6

ix. The conjugate of 2√5 + √3 is 2√5 – √3 or -2√5 + √3

x. |12 – (13+7) x 4| = |12 – 20 x 4|
= |12 – 80|
= |-68|
= 68

Question 2.
Write the following numbers in \(\frac { p }{ q }\) form.
i. 0.555
ii. \(29.\overline { 568 }\)
iii. 9.315315…..
iv. 357.417417…..
v . \(30.\overline { 219 }\)
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 5

ii. Let x = \(29.\overline { 568 }\) …(i)
x = 29.568568…
Since, three numbers i.e. 5, 6 and 8 are repeating after the decimal point.
Thus, multiplying both sides by 1000,
1000x = 29568.568568…
1000 x= \(29568.\overline { 568 }\) …(ii)
Subtracting (i) from (ii),
1000x – x = \(29568.\overline { 568 }\) – \(29.\overline { 568 }\)
∴ 999x = 29539
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 6

iii. Let x = 9.315315 … = \(9.\overline { 315 }\) …(i)
Since, three numbers i.e. 3, 1 and 5 are repeating after the decimal point.
Thus, multiplying both sides by 1000,
1000x = 9315.315315…
∴1000x = \(9315.\overline { 315 }\) …(ii)
Subtracting (i) from (ii),
1000x – x = \(9315.\overline { 315 }\) – \(9.\overline { 315 }\)
∴ 999x = 9306
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 7

iv. Let x = 357.417417… = \(357.\overline { 417 }\) …(i)
Since, three numbers i.e. 4, 1 and 7 are repeating after the decimal point.
Thus, multiplying both sides by 1000,
1000x = 357417.417417…
∴ 1000x = 357417.417 …(ii)
Subtracting (i) from (ii),
1000x – x = \(357417.\overline { 417 }\) – \(357.\overline { 417 }\)
∴ 999x = 357060
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 8

v. Let x = \(30.\overline { 219 }\) …(i)
∴ x = 30.219219
Since, three numbers i.e. 2, 1 and 9 are repeating after the decimal point.
Thus, multiplying both sides by 1000,
1000x= 30219.219219…
∴ 1000x = \(30219.\overline { 219 }\) …(ii)
Subtracting (i) from (ii),
1000x – x = \(30219.\overline { 219 }\) – \(30.\overline { 219 }\)
∴ 999x = 30189
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 9

Question 3.
Write the following numbers in its decimal form.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 10
Solution:
i. \(\frac { -5 }{ 7 }\)
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 11

ii. \(\frac { 9 }{ 11 }\)
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 12

iii. √5
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 13

iv. \(\frac { 121 }{ 13 }\)
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 14

v. \(\frac { 29 }{ 8 }\)
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 15

Question 4.
Show that 5 + √7 is an irrational number. [3 Marks]
Solution:
Let us assume that 5 + √7 is a rational number. So, we can find co-prime integers ‘a’ and ‘b’ (b ≠ 0) such that
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 16
Since, ‘a’ and ‘b’ are integers, \(\sqrt [ a ]{ b }\) – 5 is a rational number and so √7 is a rational number.
∴ But this contradicts the fact that √7 is an irrational number.
Our assumption that 5 + √7 is a rational number is wrong.
∴ 5 + √7 is an irrational number.

Question 5.
Write the following surds in simplest form.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 17
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 18

Question 6.
Write the simplest form of rationalising factor for the given surds.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 19
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 20
Now, 4√2 x √2 = 4 x 2 = 8, which is a rational number.
∴ √2 is the simplest form of the rationalising factor of √32 .
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 21
Now, 5√2 x √2 = 5 x 2 = 10, which is a rational number.
∴ √2 is the simplest form of the rationalising factor of √50 .
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 22
Now, 3√3 x √3 = 3 x 3 = 9, which is a rational number.
∴ √ 3 is the simplest form of the rationalising factor of √27 .
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 23
= 6, which is a rational number.
∴ √10 is the simplest form of the rationalising factor of \(\sqrt [ 3 ]{ 5 }\) √10 .
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 24
Now, 18√2 x √2 = 18 x 2 = 36, which is a rational number.
∴ √2 is the simplest form of the rationalising factor of 3√72.

vi. 4√11
4√11 x √11 = 4 x 11 = 44, which is a rational number.
∴ √11 is the simplest form of the rationalising factor of 4√11.

Question 7.
Simplify.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 25
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 26
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 27
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 28
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 29

Question 8.
Rationalize the denominator.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 30
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 31
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 32
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 33

Question 1.
Draw three or four circles of different radii on a card board. Cut these circles. Take a thread and measure the length of circumference and diameter of each of the circles. Note down the readings in the given table. (Textbook pg.no.23 )
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 34
Solution:
i. 14,44,3.1
ii. 16,50.3,3.1
iii. 11,34.6,3.1
From table, we observe that the ratio \(\sqrt [ c ]{ d }\) is nearly 3.1 which is constant. This ratio is denoted by π (pi).

Question 2.
To find the approximate value of π, take the wire of length 11 cm, 22 cm and 33 cm each. Make a circle from the wire. Measure the diameter and complete the following table.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Problem Set 2 35
Verify that the ratio of circumference to the diameter of a circle is approximately \(\sqrt [ 22 ]{ 7 }\). (Textbook pg. no. 24)
Solution:
i. 3.5, \(\sqrt [ 22 ]{ 7 }\)
ii. 7, \(\sqrt [ 22 ]{ 7 }\)
iii. 10.5, \(\sqrt [ 22 ]{ 7 }\)
∴ The ratio of circumference to the diameter of each circle is \(\sqrt [ 22 ]{ 7 }\).

Maharashtra Board 9th Class Maths Part 1 Practice Set 2.2 Solutions Chapter 2 Real Numbers

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 2.2 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 2 Real Numbers.

Practice Set 2.2 Algebra 9th Std Maths Part 1 Answers Chapter 2 Real Numbers

Question 1.
Show that 4√2 is an irrational number.
Solution:
Let us assume that 4√2 is a rational number .
So, we can find co-prime integers ‘a’ and ‘b’ (b ≠ 0) such that
4√2 = \(\frac { a }{ b }\)
∴ √2 = \(\frac { a }{ 4b }\)
Since, a and b are integers, \(\frac { a }{ 4b }\) is a rational number and so √2 is a rational number.

Alternate Proof:
Let us assume that 4√2 is a rational number.
So, we can find co-prime integers ‘a’ and ‘b’ (b ≠ 0) such that
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.2 1
Since, 32 divides a2, so 32 divides ‘a’ as well.
So, we write a = 32c, where c is an integer.
∴ a2 = (32c)2 … [Squaring both the sides]
∴ 32b2 = 32 x 32c2 …[From(i)]
∴ b2 = 32c2
∴ c2 = \(\frac { { b }^{ 2 } }{ 32 }\)
Since, 32 divides b2, so 32 divides ‘b’.
∴ 32 divides both a and b.
a and b have at least 32 as a common factor.
But this contradicts the fact that a and b have no common factor other than 1.
∴ Our assumption that 4√2 is a rational number is wrong.
∴ 4√2 is an irrational number.

Question 2.
Prove that 3 + √5 is an irrational number.
Solution:
Let us assume that 3 + √5 is a rational number.
So, we can find co-prime integers ‘a’ and ‘b’ (b ≠ 0) such that
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.2 2
Since, a and b are integers, \(\frac { a }{ b }\) – 3 is a rational
number and so √5 is a rational number.
But this contradicts the fact that √5 is an irrational number.
∴ Our assumption that 3 – √5 is a rational number is wrong.
3 + √5 is an irrational number.

Question 3.
Represent the numbers √5 and √10 on a number line.
Solution:
i. Draw a number line and take point A at 2.
Draw AB perpendicular to the number line such that AB = 1 unit.
In ∆OAB, m∠OAB = 90°
∴ (OB)2 = (OA)2 + (AB)2 … [Pythagoras theorem]
= (2)2 + (1)2
∴ (OB)2 = 5
∴ OB = √5 units. … [Taking square root of both sides]
With O as centre and radius equal to OB, draw an arc to intersect the number line at C.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.2 3
The coordinate of the point C is √5 .

ii. Draw a number line and take point Pat 3.
Draw PR perpendicular to the number line such that PR = 1 unit.
In ∆OPR, m∠OPR = 90°
∴ (OR)2 = (OP)2 + (PR)2 … [Pythagoras theorem]
= (3)2 + (1)2
∴ (OR)2 = 10
∴ OR= √10units. … [Taking square root of both sides]
With O as centre and radius equal to OR, draw an arc to intersect the number line at Q.
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.2 4
The coordinate of the point Q is √10 .

Question 4.
Write any three rational numbers between the two numbers given below.
i. 0.3 and – 0.5
ii. – 2.3 and – 2.33
iii. 5.2 and 5.3
iv. – 4.5 and – 4.6
Solution:
i. 0.3 = 0.30 and -0.5 = -0.50
We know that,
0. 30 >0.29 >….. >0.10>.. > – 0.10>…. > -0.30>…> -0.50
∴ the three rational numbers between 0.3 and -0.5 are -0.3, -0.1 and 0.1.

Alternate Method:
A rational number between two rational numbers a and b
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.2 5
Maharashtra Board Class 9 Maths Solutions Chapter 2 Real Numbers Practice Set 2.2 6
∴ the three rational numbers between 0.3 and -0.5 are -0.3, -0.1 and 0.1.

ii. -2.3 = -2.300 and -2.33 = -2.330
We know that,
-2.300 > -2.301>… > -2.310>…> -2.320>…> -2.330
∴ the three rational numbers between -2.3 and -2.33 are -2.310, -2.320 and -2.325.

iii. 5.2 = 5.20 and 5.3 = 5.30
We know that,
5.20 < 5.21 < 5.22 < 5.23 < … < 5.30
∴ the three rational numbers between 5.2 and 5.3 are 5.21, 5.22 and 5.23.

iv. -4.5 = -4.50 and -4.6 = -4.60 We know that,
-4.50 > -4.51 > -4.52 >… > – 4.55 >…>- 4.60
∴ the three rational numbers between -4.5 and -4.6 are -4.51, -4.52 and -4.55.

Maharashtra Board 9th Class Maths Part 1 Problem Set 1 Solutions Chapter 1 Sets

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Problem Set 1 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 1 Sets.

Problem Set 1 Algebra 9th Std Maths Part 1 Answers Chapter 1 Sets

Question 1.
Choose the correct alternative answer for each of the following questions.
i. M= {1, 3, 5}, N= {2, 4, 6}, then M ∩ N = ?
(A) {1, 2, 3, 4, 5, 6}
(B) {1, 3, 5}
(C) φ
(D) {2, 4, 6}
Answer:
(C) φ

ii. P = {x | x is an odd natural number, 1< x ≤ 5}. How to write this set in roster form?
(A) {1, 3, 5}
(B) {1, 2, 3, 4, 5}
(C) {1, 3}
(D) {3, 5}
Answer:
(D) {3, 5}

iii. P= {1, 2, ………. , 10}. What type of set Pis?
(A) Null set
(B) Infinite set
(C) Finite set
(D) None of these
Answer:
(C) Finite set

iv. M ∪ N = {1, 2, 3, 4, 5, 6} and M = {1, 2, 4}, then which of the following represent set N ?
(A) {1, 2, 3}
(B) {3, 4, 5, 6}
(C) {2, 5, 6}
(D) {4, 5, 6}
Answer:
(B) {3, 4, 5, 6}

v. If P ⊆ M, then which of the following set represent P ∩ (P ∪ M)?
(A) P
(B) M
(C) P ∪ M
(D) P’ ∩ M
Answer:
(A) P

vi. Which of the following sets are empty sets?
(A) Set of intersecting points of parallel lines.
(B) Set of even prime numbers.
(C) Month of an english calendar having less than 30 days.
(D) P = {x | x ∈ I , – 1 < x < 1}
Answer:
(A) Set of intersecting points of parallel lines.

Hints:
v. Here, P ⊆ M
∴ P ∪ M = M
∴ P ∩ (P ∪ M) = P ∩ M
= P … [∵ P ⊆M]

Question 2.
Find the correct option for the given question.
i. Which of the following collections is a set ?
(A) Colors of the rainbow
(B) Tall trees in the school campus.
(C) Rich people in the village
(D) Easy examples in the book
Answer:
(A) Colors of the rainbow

ii. Which of the following set represent N ∩W?
(A) {1, 2, 3,….}
(B) {0, 1, 2, 3,….}
(C) {0}
(D) { }
Answer:
(A) {1, 2, 3,….}

iii. P = {x | x is an odd natural number, 1< x < 5}. How to write this set in roster form?
(A) {1, 3, 5}
(B) {1, 2, 3, 4, 5}
(C) {1, 3}
(D) {3, 5}
Answer:
(B) {1, 2, 3, 4, 5}

iv. If T = {1, 2, 3, 4, 5} and M = {3,4, 7, 8}, then T ∪ M = ?
(A) {1, 2, 3, 4, 5,7}
(B) {1, 2, 3, 7, 8}
(C) {1, 2, 3, 4, 5, 7, 8}
(D) {3, 4}
Answer:
(C) {1, 2, 3, 4, 5, 7, 8}

Hints:
i. The elements of options B, C and D cannot be definitely and clearly decided.
ii. The common elements of N and W are 1 2, 3,….

Question 3.
Out of 100 persons in a group, 72 persons speak English and 43 persons speak French. Each one out of 100 persons speak at least one language. Then how many speak only English? How many speak only French ? How many of them speak English and French both?
Solution:
i. Let U be the set of all the persons,
E be the set of persons who speak English and
F be the set of persons who speak French.
∴ n(E) = 72, n(F) = 43
Since, each one out of 100 persons speak at least one language
∴ n(U) = n(E ∪ F)= 100,

ii. n (E ∪ F) = n (E) + n (F) – n(E ∩ F)
100 = 72 + 43 – n (E ∩ F)
n (E ∩ F) = 72 + 43 – 100
∴ n(E ∩ F) = 15
Number of people who speak English and French = 15

iii. Number of people who speak only English = n(E) – n(E ∩ F)
= 72 – 15 = 57

iv. Number of
people who speak only French = n(F) – n(E ∩ F)
= 43 – 15 = 28

Alternate Method:
Let U be the set of all the persons,
E be the set of persons who speak English,
F be the set of persons who speak French and x people speak both the languages.
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Problem Set 1 1
Since, each one out of 100 persons speak at least one language.
∴ n(U) = n(E ∪ F) = 100
∴ 72 – x + x + 43 – x = 100
∴ 115 – x= 100
∴ x = 115 – 100= 15.
Number of people who speak English and French = 15
Number of people who speak only English = 72 – x = 72 – 15 = 57
Number of people who speak only French = 43 – x = 43 – 15 = 28

Question 4.
70 trees were planted by Parth and 90 trees were planted by Pradnya on the occasion of Tree Plantation Week. Out of these 25 trees were planted by both of them together. How many trees were planted by Parth or Pradnya?
Solution:
i. Let P be the trees planted by Parth and Q be the trees planted by Pradnya
∴ n(P) = 70 and n(Q) = 90
Total number of trees planted by Parth and Pradnya = n(P ∩ Q) = 25

ii. Number of trees planted by Parth or Pradnya = n(P ∪ Q)
= n(P) + n(Q) – n(P ∩ Q)
= 70 + 90 – 25 = 135
∴ A total of 135 trees were planted by Parth or Pradnya.

Alternate Method:
Let P be the trees planted by Parth and Q be the trees planted by Pradnya
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Problem Set 1 2
From Venn diagram
∴ Total trees planted by parth or pradnya = n(P ∪ Q)
= 45 + 25 + 65
= 135
A total of 135 trees were planted by Parth or Pradnya.

Question 5.
If n(A) = 20, n(B) = 28 and n(A ∪ B) = 36, then n(A ∩ B) = ?
Solution:
n(A ∪ B) = n(A) + n(B) – n(A ∩ B)
∴ 36 = 20 + 28 – n(A ∩ B)
∴ n(A ∩ B) = 20 + 28 – 36
∴ n(A ∩ B) = 12

Question 6.
In a class, 8 students out of 28 have a dog as their pet animal at home, 6 students have a cat as their pet animal, 10 students have dog and cat both, then how many students do not have dog or cat as their pet animal at home?
Solution:
i. Let U be the set of all the students, then n(U) = 28
Let D be the set of students who have dog as pet and C be the set of students who have cat as pet.
10 students have dog and cat as their pet animal
n(D ∩ C) = 10
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Problem Set 1 3
From venn diagram,

ii. Number of students who have cat or dog as pet
= n(D ∪ C)
= 8 + 10 + 6
= 24

iii. Number of students who do not have dog or cat as pet = n (U) – n(D ∪ C)
= 28 – 24
= 4

Question 7.
Represent the union of two sets by Venn diagram for each of the following.
i. A = {3, 4, 5, 7},B = {1, 4, 8} l Marks
ii. P {a, b, c, e, f, Q = {l, m, n, e, b) I Markj
iii. X = {x x is a prime number between 80 and 100}
Y = { y | y is an odd number between 90 and 100}
Solution:
i. A = {3, 4, 5, 7}, B = {1, 4, 8}
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Problem Set 1 4

ii. P = {a, b, c, e, f}, Q = {l, m, n, e, b}
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Problem Set 1 5

iii. X = {x | x is a prime number between 80 and 100}
∴ X = {83, 89, 97}
Y = {y | y is an odd number between 90 and 100}
∴ Y = {91, 93, 95, 97, 99}
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Problem Set 1 6

Question 8.
Write the subset relations between the following sets.
X = set of all quadrilaterals.
Y = set of all rhombuses.
S = set of all squares.
T = set of all parallelograms.
V = set of all rectangles. [3 Marks]
Solution:
i. Rhombus, square, parallelogram and rectangle all are quadrilaterals.
∴ Y ⊆ X,S ⊆ X,T ⊆ X,V ⊆ X

ii. Every square is a rhombus, parallelogram and rectangle.
∴ S ⊆ Y, S ⊆ T, S ⊆ V

iii. Every rhombus and rectangle is a parallelogram.
∴ Y ⊆ T, V ⊆ T

Question 9.
If M is any set, then write M ∪Φ and M ∩ Φ.
Solution:
Let M = {2, 3, 4, 8} and Φ = { }
∴ M ∪ Φ = {2, 3, 4, 8}
∴ M ∪ Φ = M Also, M ∩ Φ = { }
∴ M ∩ Φ = i(i

Question 10.
Observe the Venn diagram and write the given sets U, A, B, A ∪ B and A ∩ B.
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Problem Set 1 7
U = {1,2, 3,4, 5, 7, 8, 9, 10, 11, 13}
A = {1, 2, 3, 5,7}
B = {1, 5, 8, 9, 10}
A ∪ B = {1,2, 3, 5, 7, 8, 9, 10}
A ∩ B = {1, 5}

Question 11.
If n(A) = 7, n(B) = 13, n(A ∩ B) = 4, then n(A ∪ B) = ?
Solution:
n(A ∪ B) = n(A) + n(B) – n(A ∩ B)
= 7 + 13 – 4
n(A ∪ B) = 16

Question 1.
Set of students in a class and set of students in the same class who can swim, are shown by the Venn diagram.
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Problem Set 1 8
Observe the diagram and draw Venn diagrams for the following subsets.
i. a. Set of students in a class
b. Set of students who can ride bicycles in the same class

ii. A set of fruits is given as follows.
U = {guava, orange, mango, jackfruit, chickoo, jamun, custard apple, papaya, plum}
Show these subsets.
A = fruit with one seed
B = fruit with more than one seed. (Textbook pg. no. 8)
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Problem Set 1 9

ii. A = {mango, jamun, plum}
B = {guava, orange, jackfruit, chickoo, custard apple, papaya}
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Problem Set 1 10

Question 2.
Every student should take 9 triangular sheets of paper and one plate. Numbers from 1 to 9 should, be written on each triangle. Everyone should keep some numbered triangles in the plate. Now the triangles in each plate form a subset of the set of numbers from 1 to 9.
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Problem Set 1 11
Look at the plates of Sujata, Hameed, Mukta, Nandini, Joseph with the numbered triangles. Guess the thinking behind selecting these numbers. Hence write the subsets in set builder form. (Textbook pg, no. 9)
Solution:
Sujata:
S = {x | x = 2n- 1, n ∈ N, x < 9}
Hameed:
f H = {x | x = 2n, n ∈ N, x < 9}
Mukta:
M = {x | x = n2, n ∈ N, x ≤ 9}
Nandini:
N = {x | x ∈ N, x ≤ 9}
Joseph:
J = {x | x is a prime number between 1 and 9}

Question 3.
Collect the following information from 20 families nearby your house.
i. Number of families subscribing for Marathi Newspaper.
ii. Number of families subscribing for English Newspaper.
iii. Number of families subscribing for both English as well as Marathi Newspaper.
Show the collected information using Venn diagram. (Textbook pg.no. 18)
[Students should attempt the above activity on their own.]

Maharashtra Board 9th Class Maths Part 1 Practice Set 1.3 Solutions Chapter 1 Sets

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 1.3 Algebra 9th Class Maths Part 1 Answers Solutions Chapter 1 Sets.

Practice Set 1.3 Algebra 9th Std Maths Part 1 Answers Chapter 1 Sets

Question 1.
If A = {a, b, c, d, e}, B = {c, d, e, f}, C = {b, d}, D = {a, e}, then which of the following statements are true and which are false?
i. C ⊆ 3
ii. A ⊆ D
iii. D ⊆ B
iv. D ⊆ A
V. B ⊆ A
vi. C ⊆ A
Ans:
i. C = {b, d}, B = {c, d, e ,f}
C ⊆ B
False
Since, all the elements of C are not present in B.

ii. A = {a, b, c, d, e}, D = {a, e}
A ⊆ D
False
Since, all the elements of A are not present in D.

iii. D = {a, e}, B = {c, d, e, f}
D ⊆ B
False
Since, all the elements of D are not present in B.

iv. D = {a, e}, A = {a, b, c, d, e}
D ⊆ A
True
Since, all the elements of D are present in A.

v. B = {c, d, e, f}, A = {a, b, c, d, e}
B ⊆ A
False
Since, all the elements of B are not present in A.

vi. C = {b, d}, A= {a, b, c, d, e}
C ⊆A
True
Since, all the elements of C are present in A.

Question 2.
Take the set of natural numbers from 1 to 20 as universal set and show set X and Y using Venn diagram. [2 Marks each]
i. X= {x |x ∈ N, and 7 < x < 15}
ii. Y = { y | y ∈ N, y is a prime number from 1 to 20}
Answer:
i. U = {1, 2, 3, 4, …….., 18, 19, 20}
x = {x | x ∈ N, and 7 < x < 15}
∴ x = {8, 9, 10, 11, 12, 13, 14}
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.3 1

ii. U = {1, 2, 3, 4, …… ,18, 19, 20}
Y = { y | y ∈ N, y is a prime number from 1 to 20}
∴ Y = {2, 3, 5, 7, 11, 13, 17, 19}
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.3 2

Question 3.
U = {1, 2, 3, 7, 8, 9, 10, 11, 12} P = {1, 3, 7,10}, then
i. show the sets U, P and P’ by Venn diagram.
ii. Verify (P’)’ = P
Solution:
i. Here, U = {1,2, 3, 7, 8,9, 10, 11, 12} P = {1, 3, 7, 10}
∴ P’ = {2, 8, 9, 11, 12}
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.3 3

II. Here, U = {1, 2, 3, 7, 8, 9, 10, 11, 12}
P = {1, 3, 7, 10} ….(i)
∴ P’= {2, 8, 9, 11, 12}
Also, (P’)’ = {1,3,7, 10} …(ii)
∴ (P’)’ = P … [From (i) and (ii)]

Question 4.
A = {1, 3, 2, 7}, then write any three subsets of A.
Solution:
Three subsets of A:
i. B = {3}
ii. C = {2, 1}
iii. D= {1, 2, 7}
[Note: The above problem has many solutions. Students may write solutions other than the ones given]

Question 5.
i. Write the subset relation between the sets.
P is the set of all residents in Pune.
M is the set of all residents in Madhya Pradesh.
I is the set of all residents in Indore.
B is the set of all residents in India.
H is the set of all residents in Maharashtra.

ii. Which set can be the universal set for above sets ?
Solution:
i.
a. The residents of Pune are residents of India.
∴ P ⊆ B
b. The residents of Pune are residents of Maharashtra.
∴ P ⊆ H
c. The residents of Madhya Pradesh are residents of India.
∴ M ⊆ B
d. The residents of Indore are residents of India.
∴ I ⊆ B
e. The residents of Indore are residents of Madhya Pradesh.
∴ I ⊆ M
f. The residents of Maharashtra are residents of India.
∴ H ⊆B

ii. The residents of Pune, Madhya Pradesh, Indore and Maharashtra are all residents of India.
∴ B can be the Universal set for the above sets.

Question 6.
Which set of numbers could be the universal set for the sets given below?
i. A = set of multiples of 5,
B = set of multiples of 7,
C = set of multiples of 12

ii. P = set of integers which are multiples of 4.
T = set of all even square numbers.
Answer:
i. A = set of multiples of 5
∴ A = {5, 10, 15, …}
B = set of multiples of 7
∴ B = {7, 14, 21,…}
C = set of multiples of 12
∴ C = {12, 24, 36, …}
Now, set of natural numbers, whole numbers, integers, rational numbers are as follows:
N = {1, 2, 3, …}, W = {0, 1, 2, 3, …}
I = {…,-3, -2, -1, 0, 1, 2, 3, …}
Q = { \(\frac { p }{ q }\) | p,q ∈ I,q ≠ 0}
Since, set A, B and C are the subsets of sets N, W , I and Q.
∴ For set A, B and C we can take any one of the set from N, W, I or Q as universal set.

ii. P = set of integers which are multiples of 4.
P = {4, 8, 12,…}
T = set of all even square numbers T = {22, 42, 62, …]
Since, set P and T are the subsets of sets N, W, I and Q.
∴ For set P and T we can take any one of the set from N, W, I or Q as universal set.

Question 7.
Let all the students of a class form a Universal set. Let set A be the students who secure 50% or more marks in Maths. Then write the complement of set A.
Answer:
Here, U = all the students of a class.
A = Students who secured 50% or more marks in Maths.
∴ A’= Students who secured less than 50% marks in Maths.

Question 1.
If A = {1, 3, 4, 7, 8}, then write all possible subsets of A.
i. e. P = {1, 3}, T = {4, 7, 8}, V = {1, 4, 8}, S = {1, 4, 7, 8}
In this way many subsets can be written. Write five more subsets of set A. (Textbook pg. no, 8)
Answer:
B = { },
E = {4},
C = {1, 4},
D = {3, 4, 7},
F = {3, 4, 7,8}

Question 2.
Some sets are given below.
A ={…,-4, -2, 0, 2, 4, 6,…}
B = {1, 2, 3,…}
C = {…,-12, -6, 0, 6, 12, 18, }
D = {…, -8, -4, 0, 4, 8,…}
I = {…,-3, -2, -1, 0, 1, 2, 3, 4, }
Discuss and decide which of the following statements are true.
a. A is a subset of sets B, C and D.
b. B is a subset of all the sets which are given above. (Textbook pg. no. 9)
Solution:
a. All elements of set A are not present in set B, C and D.
∴ A ⊆ B,
∴ A ⊆ C,
∴ A ⊆ D
∴ Statement (a) is false.

b. All elements of set B are not present in set A, C and D.
∴ B ⊆ A,
∴ B ⊆ C,
∴ B ⊆ D
∴ Statement (b) is false.

Question 3.
Suppose U = {1, 3, 9, 11, 13, 18, 19}, and B = {3, 9, 11, 13}. Find (B’)’ and draw the inference. (Textbook pg. no. 10)
Maharashtra Board Class 9 Maths Solutions Chapter 1 Sets Practice Set 1.3 4
Solution:
U = {1, 3, 9, 11, 13, 18, 19},
B= {3, 9, 11, 13} ….(i)
∴ B’= {1, 18, 19}
(B’)’= {3, 9, 11, 13} ….(ii)
∴ (B’)’ = B … [From (i) and (ii)]
∴ Complement of a complement is the given set itself.

Maharashtra Board 9th Class Maths Part 2 Practice Set 9.2 Solutions Chapter 9 Surface Area and Volume

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 9.2 Geometry 9th Class Maths Part 2 Answers Solutions Chapter 9 Surface Area and Volume.

Practice Set 9.2 Geometry 9th Std Maths Part 2 Answers Chapter 9 Surface Area and Volume

Question 1.
Perpendicular height of a cone is 12 cm and its slant height is 13 cm. Find the radius of the base of the cone.
Given: Height (h) = 12 cm, length (l) = 13 cm
To find: Radius of the base of the cone (r)
Solution:
l2 = r2 + h2
∴ 132 = r2 + 122
∴ 169 = r2 + 144
∴169 – 144 = r2
∴ r2 = 25
∴ r = √25 … [Taking square root on both sides]
= 5 cm
∴ The radius of base of the cone is 5 cm.

Question 2.
Find the volume of a cone, if its total surface area is 7128 sq.cm and radius of base is 28 cm. ( π = \(\frac { 22 }{ 7 }\))
Given: Radius (r) = 28 cm,
Total surface area of cone = 7128 sq.cm
To find: Volume of the cone
Solution:
i. Total surface area of cone = πr (l + r)
∴ 7128= y x 28 x (l + 28)
∴ 7128 = 22 x 4 x(l +28)
∴ l + 28 = \(\frac { 7128 }{ 22\times 4 }\)
∴ l + 28 = 81
∴ l = 81 – 28
∴ l = 53cm

ii. Now, l2 = r2 + h2
∴ 532 = 282+ h2
∴ 2809 = 784 + h2
∴ 2809 – 784 = h2
∴ h2 = 2025
∴ h = \(\sqrt { 2025 }\) …… [Taking square root on both sides]
= 45 cm
Maharashtra Board Class 9 Maths Solutions Chapter 9 Surface Area and Volume Practice Set 9.2 1
= 22 x 4 x 28 x 15
= 36960 cubic.cm
∴ The volume of the cone is 36960 cubic.cm.

Question 3.
Curved surface area of a cone is 251.2 cm2 and radius of its base is 8 cm. Find its slant height and perpendicular height, (π = 3.14)
Given: Radius (r) = 8 cm, curved surface area
of cone = 251.2 cm2
To find: Slant height (l) and the perpendicular height (h) of the cone
Solution:
i. Curved surface area of cone = πrl
∴ 251.2 = 3.14 x 8 x l
Maharashtra Board Class 9 Maths Solutions Chapter 9 Surface Area and Volume Practice Set 9.2 2
∴ l= 10 cm

ii. Now, l2 = r2 + h2
∴ 102 = 82 + h2
∴ 100 = 64 + h2
∴ 100 – 64 = h2
∴ h2 = 36
∴ h = √36 … [Taking square root on both sides]
= 6 cm
∴ The slant height and the perpendicular height of the cone are 10 cm and 6 cm respectively.

Question 4.
What will be the cost of making a closed cone of tin sheet having radius of base 6 m and slant height 8 m if the rate of making is ₹ 10 per sq.m?
Given: Radius (r) = 6 m, length (l) = 8 m
To find: Total cost of making the cone
Solution:
i. To find the total cost of making the cone of tin sheet, first we need to find the total surface area of the cone.
Total surface area of the cone = πr (l + r)
= \(\frac { 22 }{ 7 }\) x 6 x (8 + 6)
= \(\frac { 22 }{ 7 }\) x 6 x 14
= 22 x 6 x 2 = 264 sq.m

ii. Rate of making the cone = ₹ 10 per sq.m
∴ Total cost = Total surface area x Rate of making the cone
= 264 x 10
= ₹ 2640
∴ A The total cost of making the cone of tin sheet is ₹ 2640.

Question 5.
Volume of a cone is 6280 cubic cm and base radius of the cone is 20 cm. Find its perpendicular height, (π = 3.14)
Given: Radius (r) = 20 cm,
Volume of cone = 6280 cubic cm
To find: Perpendicular height (h) of the cone
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 9 Surface Area and Volume Practice Set 9.2 3
∴ The perpendicular height of the cone is 15 cm.

Question 6.
Surface area of a cone is 188.4 sq.cm and its slant height is 10 cm. Find its perpendicular height (π = 3.14).
Given: Length (l) =10 cm, curved surface area of the cone = 188.4 sq.cm
To find: Perpendicular height (h) of the cone
Solution:
i. Curved surface area of the cone = πrl
∴ 188.4 = 3.14 x r x 10
Maharashtra Board Class 9 Maths Solutions Chapter 9 Surface Area and Volume Practice Set 9.2 4

ii. Now, l2 = r2 + h2
∴ 102 = 62 + h2
∴ 100 = 36 + h2
∴ 100 – 36 = h2
∴ h2 = 64
∴ h = \(\sqrt { 64 }\) … [Taking square root on both sides]
= 8 cm
∴ The perpendicular height of the cone is 8 cm.

Question 7.
Volume of a cone is 1232 cm3 and its height is 24 cm. Find the surface area of the cone. (π = \(\frac { 22 }{ 7 }\))
Given: Height (h) = 24 cm,
Volume of cone = 1232 cm3
To find: Surface area of the cone
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 9 Surface Area and Volume Practice Set 9.2 5
∴ r2 = 49
∴ r = \(\sqrt { 49 }\) … [Taking square root on both sides]
= 7 cm

ii. Now, l2 = r2 + h2
∴ l2 = 72 + 242
= 49 + 576 = 625
∴ l = \(\sqrt { 625 }\) … [Taking square root on both sides]
= 25

iii. Curved surface area of cone = πrl
= \(\frac { 22 }{ 7 }\) x 7 x 25
= 22 x 25
= 550 sq.cm
∴The surface area of the cone is 550 sq.cm.

Question 8.
The curved surface area of a cone is 2200 sq.cm and its slant height is 50 cm. Find the total surface area of cone. (π = \(\frac { 22 }{ 7 }\))
Given: Length (l) = 50 cm, curved surface area of cone = 2200 sq.cm
To find: Total surface area of the cone
Solution:
i. Curved surface area of cone = πrl
Maharashtra Board Class 9 Maths Solutions Chapter 9 Surface Area and Volume Practice Set 9.2 6

ii. Total surface area of cone = πr (l + r)
= \(\frac { 22 }{ 7 }\) x 14 x (50 + 14)
= \(\frac { 22 }{ 7 }\) x 14 x 64
= 22 x 2 x 64
= 2816 sq.cm
∴ The total surface area of the cone is 2816 sq.cm.

Question 9.
There are 25 persons in a tent which is conical in shape. Every person needs an area of 4 sq.m, of the ground inside the tent. If height of the tent is 18 m, find the volume of the tent.
Given: For the tent,
height (h) = 18m,
number of people in the tent = 25,
area required for each person = 4 sq.m
To find: Volume of the tent
Solution:
i. Every person needs an area of 4 sq.m, of the ground inside the tent.
Surface area of the base of the tent = number of people in the tent × area required for each person
= 25 × 4
= 100 sq.m

ii. Surface area of the base of the tent = πr2
∴ 100 = πr2
∴ πr2 = 100

iii. Volume of the tent= \(\frac { 1 }{ 3 }\) πr2h
= \(\frac { 1 }{ 3 }\) x 100 x 18 …….[∵ πr2 = 100]
= 100 x 6
= 600 cubic metre
∴ The volume of the tent is 600 cubic metre.

Question 10.
In a field, dry fodder for the cattle is heaped in a conical shape. The height of the cone is 2.1 m and diameter of base is 7.2 m. Find the volume of the heap of the fodder. If it is to be covered by polythene in rainy se&son then how much minimum polythene
sheet is needed? (π = \(\frac { 22 }{ 7 }\) and \(\sqrt { 17.37 }\) = 4.17 ]
Given: Height of the heap (h) = 2.1 m.
diameter of the base (d) = 7.2 m
∴Radius of the base (r) = \(\frac { d }{ 2 }\) = \(\frac { 7.2 }{ 2 }\) = 3.6 m
To find: Volume of the heap of the fodder and polythene sheet required
Solution:
i. Volume of the heap of fodder = \(\frac { 1 }{ 3 }\)πr2h
= \(\frac { 1 }{ 3 }\) x \(\frac { 22 }{ 7 }\) x (3.6)2 x 2.1
= \(\frac { 1 }{ 3 }\) x \(\frac { 22 }{ 7 }\) x 3.6 x 3.6 x 2.1
= 1 x 22 x 1.2 x 3.6 x 0.3
= 28.51 cubic metre

ii. Now, l2 = r2 + h2
= (3.6)2 + (2.1)2
= 12.96 + 4.41
∴ l2 =17.37
∴ l2 = \(\sqrt { 17.37 }\) .. .[Taking square root on both sides]
= 4.17 m

iii. Area of the polythene sheet needed to cover the heap of the fodder = Curved surface area of the conical heap
= πrl
= \(\frac { 22 }{ 7 }\) x 3.6 x 4.17
= 47.18 sq.m
∴ The volume of the heap of the fodder is 28.51 cubic metre and a polythene sheet of 47.18 sq.m will be required to cover it.

Maharashtra Board Class 9 Maths Solutions

Maharashtra Board 9th Class Maths Part 2 Practice Set 8.2 Solutions Chapter 8 Trigonometry

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 8.2 Geometry 9th Class Maths Part 2 Answers Solutions Chapter 8 Trigonometry.

Practice Set 8.2 Geometry 9th Std Maths Part 2 Answers Chapter 8 Trigonometry

Question 1.
In the following table, a ratio is given in each column. Find the remaining two ratios in the column and complete the table.
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 1
Solution:
i. cos θ = \(\frac { 35 }{ 37 }\) …(i) )[Given]
In right angled ∆ABC,
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 2
∠C = θ.
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 3
Let the common multiple be k.
∴ BC = 35k and AC = 37k
Now, AC2 = AB2 + BC2 …[Pythagoras theorem]
∴ (37k)2 = AB2+ (35k)2
1369k2 = AB2 + 1225k2
AB2 = 1369k2 – 1225k2
= 144k2
AB = 144k2
AB = \(\sqrt { 2ghK }\)2 … [Taking square root of both sides]
= 12k
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 4

ii. sin θ = \(\frac { 11 }{ 61 }\) …..(i) [Given]
In right angled ∆ABC, ∠C = θ.
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 5
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 6
Let the common multiple be k.
AB = 11k and AC = 61k
Now, AC2 = AB2 + BC2 …[Pythagoras theorem]
∴ (61k)2 = (11k)2 + BC2
∴ 3721k2 = 121k2 + BC2
∴ BC2 = 3721k2 – 121k2 = 3600k2
BC = \(\sqrt { 3600{ k }^{ 2 } }\) .. .[Taking square root of both sides]
= 60k
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 7

iii. tan θ = 1 = \(\frac { 1 }{ 1 }\) ..(i) [Given]
In right angled ∆ABC,
∠C = θ.
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 8
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 9
Let the common multiple be k.
∴ AB = 1k and BC = 1k
Now, AC2 = AB2 + BC2 …[Pythagoras theorem]
= K2 + K2
= 2K2
∴ AC = \(\sqrt { 2{ k }\)
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 10

iv. sin θ = \(\frac { 1 }{ 2 }\) ..(i) [Given]
In right angled ∆ABC,
∠C = θ.
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 11
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 12
Let the common multiple be k.
∴ AB = 1k and BC = 2k
Now, AC2 = AB2 + BC2 …[Pythagoras theorem]
∴ 2K2 = K2 + BC2
∴ 4K2 = K2 + BC2
∴ BC2 = 4K2 – K2 = 3K2
∴ BC = \(\sqrt { 3{ k }^{ 2 } }\) .. .[Taking square root of both sides]
= \(\sqrt { 3{ k }\)
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 13

v. cos θ = \(\frac { 1 }{ \sqrt { 3 } } \) ..(i) [Given]
In right angled ∆ABC,
∠C = θ.
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 14
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 15
Let the common multiple be k.
∴ AB = 1k and BC = √3k
Now, AC2 = AB2 + BC2 …[Pythagoras theorem]
∴ (√3K)2 = AB2 + K2
∴ 3K2 = 3K2 – K2 = 2K2
∴ AB = \(\sqrt { 2{ k }^{ 2 } }\) .. .[Taking square root of both sides]
AB = √2K
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 16

vi. cos θ = \(\frac { 21 }{ \sqrt { 20 } } \) ..(i) [Given]
In right angled ∆ABC,
∠C = θ.
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 17
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 18
Let the common multiple be k.
∴ AB = 21k and BC = 20k
Now, AC2 = AB2 + BC2 …[Pythagoras theorem]
= (21)K2 + (20K)2
= 441K2 – 4002
= 841K2
∴ AB = \(\sqrt { 841{ k }^{ 2 } }\) .. .[Taking square root of both sides]
= 29K
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 19

vii. tan θ = \(\frac { 8 }{ 15 } \) ..(i) [Given]
In right angled ∆ABC,
∠C = θ.
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 20
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 21
Let the common multiple be k.
∴ AB = 8k and BC = 15k
Now, AC2 = AB2 + BC2 …[Pythagoras theorem]
= (8)K2 + (15K)2
= 64K2 – 2252
= 289K2
∴ AC = \(\sqrt { 289{ k }^{ 2 } }\) .. .[Taking square root of both sides]
= 17K
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 22

viii. sin θ = \(\frac { 3 }{ 5 } \) ..(i) [Given]
In right angled ∆ABC,
∠C = θ.
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 23
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 24
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 25
Let the common multiple be k.
∴ AB = 3k and AC = 5k
Now, AC2 = AB2 + BC2 …[Pythagoras theorem]
∴ (5)K2= (3)K2 + BC2
∴ 25K2 = 9K2 – 2252
∴ BC2 = 25K2 – 9K2
∴ BC = \(\sqrt { 16{ k }^{ 2 } }\) .. .[Taking square root of both sides]
= 4K
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 26

ix. tan θ = \(\frac { 1 }{ 2\sqrt { 2 } }\) ..(i) [Given]
In right angled ∆ABC,
∠C = θ.
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 27
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 28
Let the common multiple be k.
∴ AB = 1k and AC = 2√2 k
Now, AC2 = AB2 + BC2 …[Pythagoras theorem]
= K2 + (2√2 k )2
= K2 – 2252
= 25K2 + 8K2
= 9K2
∴ AC = \(\sqrt { 9{ k }^{ 2 } }\) .. .[Taking square root of both sides]
= 3K
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 29
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 30

Question 2.
Find the values of:
i. 5 sin 30° + 3 tan 45°
ii. \(\frac { 4 }{ 5 }\)tan2 60° + 3 sin2 60°
iii. 2 sin 30° + cos 0° + 3 sin 90°
iv. \(\frac{\tan 60^{\circ}}{\sin 60^{\circ}+\cos 60^{\circ}}\)
v. cos2 45° + sin2 30°
vi. cos 60° x cos 30° + sin 60° x sin 30°
Solution:
i. sin 30° = \(\frac { 1 }{ 2 }\) and tan 45° = 1
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 31

ii. \(\frac { 4 }{ 5 }\)tan2 60° + 3 sin2 60°
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 32

iii. 2 sin 30° + cos 0° + 3 sin 90°
2 sin 30° + cos0° + 3 sin 90° = 2 (\(\frac { 1 }{ 2 }\)) + 1 + 3(1)
= 1 + 1 + 3
∴ 2 sin 30° + cos 0° + 3 sin 90° = 5

iv. \(\frac{\tan 60^{\circ}}{\sin 60^{\circ}+\cos 60^{\circ}}\)
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 33

v. cos2 45° + sin2 30°
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 34

vi. cos 60° x cos 30° + sin 60° x sin 30°
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 35
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 36

Question 3.
If sin θ = \(\frac { 4 }{ 5 }\) , then find cos θ.
Solution:
sin θ = \(\frac { 4 }{ 5 }\) .. .(i)[Given]
In right angled ∆ABC,
∠C = θ.
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 37
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 38
Let the common multiple be k.
∴ AB = 4k and AC = 5k
Now, AC2 = AB2 + BC2 … [Pythagoras theorem]
∴ (5 k)2 = (4k)2 + BC2
∴ 25k2 = 16k2 + BC2
∴ BC2 = 25k2 – 16k2 = 9k2
∴ BC = \(\sqrt { 9{ k }^{ 2 } }\) . .[Taking square root of both sides]
= 3k
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 39

Question 4.
If cos θ = \(\frac { 15 }{ 17 }\) , then find sin θ.
Solution:
cos θ = \(\frac { 15 }{ 17 }\) .. .(i)[Given]
In right angled ∆ABC,
∠C = θ.
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 40
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 41
Let the common multiple be k.
∴ BC = 15k and AC = 17k
Now, AC2 = AB2 + BC2 … [Pythagoras theorem]
∴ (17 k)2 = AB2 + (15K)2
∴ 289k2 = AB2 + 2252
∴ AB2 = 289k2 – 225k2
= 64k2
∴ AB = \(\sqrt { 64{ k }^{ 2 } }\) . .[Taking square root of both sides]
= 8k
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 42

Maharashtra Board Class 9 Maths Chapter 8 Trigonometry Practice Set 8.2 Intext Questions and Activities

Question 1.
In right angled ∆PQR, ∠Q = 900. Therefore ∠P and ∠R are complementary angles of each other. Verify the following ratios.
i. sin θ = cos (90 – θ)
ii. cos θ = sin (90 – θ)
iii. sin 30° = cos (90° – 30°) = cos 60°
iv. cos 30° = sin (90° – 30°) = sin 60° (Textbook pg. no. 107)
Solution:
In ∆PQR, ∠Q = 90°, ∠P = θ
∴ ∠R = 90 – θ
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 43
i. sin θ = cos (90 – θ)
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 44
ii. cos θ = sin (90 – θ)
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 45

iii. Let ∠P = θ = 30°
∴ ∠R = 90° – 30°
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 46
sin 30° = cos (90° – 30°) … [From (i) and (ii)]
sin 30° = cos 60°

iv. cos 30° = sin (90° – 30°) = sin 60°
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 47
∴ cos 30° = sin (90° – 30°) .,.[From (i) and (ii)]
∴ cos 30° = sin 60°

Question 2.
In right angled ∆PQR, ∠Q = 90°, ∠R = θ and if sin θ = \(\frac { 5 }{ 13 }\), then find cos θ and tan θ. (Textbook pg. no. 110)
Solution:
i. Take the given trigonometric ratio as 13k equation (i).
sin θ = \(\frac { 5 }{ 13 }\) .. .(i)[Given]
By using the definition write the trigonometric ratio of sin O and take it as equation (ii).
In right angled ∆PQR, ∠R = θ
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 50
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 48
Let the common multiple be k.
∴ PQ = 5k and PR = 13k
Find QR by using Pythagoras theorem.
PR2 = PQ2 + QR2 … [Pythagoras theorem]
∴ (13k)2 = (5k)2 + QR2
∴ 169k2 = 25k2 + QR2
∴ QR2 = 169k2 – 25k2
= 144k2
∴ QR = \(\sqrt { 144{ k }^{ 2 } }\) . . . [Taking square root of both sides]
= 12k
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.2 49

Question 3.
While solving the above Illustrative example, why the lengths of PQ and PR are taken 5k and 13k? (Textbook pg. no. 111)
Solution:
\(\frac { PQ }{ PR }\) = \(\frac { 5 }{ 13 }\) … [Given]
Here, the ratio of the lengths of sides PQ and PR is 5 : 13.
The actual lengths of the sides can be any multiple of the ratio. Hence, we consider the multiple k while solving.

Question 4.
While solving the above illustrative example, can we take the lengths of PQ and PR as 5 and 13? If so, then what changes are needed In the writing of the solution. (Tcxtbook pg. no. 111)
Solution:
Yes, we can take lengths of PQ and PR as 5 and 13.
In that case, we will have to take k = 1 and solve the problem accordingly.

Question 5.
Verify that the equation ‘sin2 θ + cos2 θ = 1’ is true when θ = 0° or θ = 90°.
(Textbook pg. no. 112)
Solution:
sin2 θ + cos2 θ = 1
i. lf θ = 0°,
LH.S. = sin2 θ + cos2 θ
= sin2 0° + cos2
= 0 + 1 …[∵ sin 0° = 0, cos 0° = 1]
= R.H.S.
∴ sin2 θ + cos2 θ = 1

ii. If θ = 90°,
L.H.S.= sin2 θ +cos2 θ
= sin2 90° + cos2 90°
= 1 + 0 … [ ∵ sin 90° = 1, cos 90° = 0]
= 1
= R.H.S.
∴ sin2 θ + cos2 θ = 1

Maharashtra Board 9th Class Maths Part 2 Practice Set 8.1 Solutions Chapter 8 Trigonometry

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 8.1 Geometry 9th Class Maths Part 2 Answers Solutions Chapter 8 Trigonometry.

Practice Set 8.1 Geometry 9th Std Maths Part 2 Answers Chapter 8 Trigonometry

Question 1.
In the given figure, ∠R is the right angle of ∆PQR. Write the following ratios.
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.1 1
i. sin P
ii. cos Q
iii. tan P
iv. tan Q
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.1 2

Question 2.
In the right angled ∆XYZ, ∠XYZ = 90° and a, b, c are the lengths of the sides as shown in the figure. Write the following ratios.
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.1 3
i. sin x
ii. tan z
iii. cos x
iv. tan x.
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.1 4

Question 3.
In right angled ∆LMN, ∠LMN = 90°, ∠L = 50° and ∠N = 40°. Write the following ratios.
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.1 5
i. sin 50°
ii. cos 50°
iii. tan 40°
iv. cos 40°
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.1 6

Question 4.
In the given figure, ∠PQR = 90°, ∠PQS = 90°, ∠PRQ = α and ∠QPS = θ. Write the following trigonometric ratios.
i. sin α, cos α , tan α
ii. sin θ, cos θ, tan θ
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.1 7
Solution:
i. In ∆PQR,
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.1 8

ii. In ∆PQS,
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.1 9

Maharashtra Board Class 9 Maths Chapter 8 Trigonometry Practice Set 8.1 Intext Questions and Activities

Question 1.
In the figure gIven below, ∆PQR is a right angled triangle. Write the names of sides opposite and adjacent to ∠P and ∠R. (Textbook pg no. 102)
Maharashtra Board Class 9 Maths Solutions Chapter 8 Trigonometry Practice Set 8.1 10
Solution:
In right angled ∆PQR,
i. side opposite to ∠P = QR
ii. side opposite to ∠R = PQ
iii. side adjacent to ∠P = PQ
iv. side adjacent to ∠R = QR

Maharashtra Board 9th Class Maths Part 2 Practice Set 7.2 Solutions Chapter 7 Co-ordinate Geometry

Balbharti Maharashtra State Board Class 9 Maths Solutions covers the Practice Set 7.2 Geometry 9th Class Maths Part 2 Answers Solutions Chapter 7 Co-ordinate Geometry.

Practice Set 7.2 Geometry 9th Std Maths Part 2 Answers Chapter 7 Co-ordinate Geometry

Question 1.
On a graph paper plot the points A(3, 0), B(3, 3), C(0, 3). Join A, B and B, C. What is the figure formed?
Soiution:
Maharashtra Board Class 9 Maths Solutions Chapter 7 Co-ordinate Geometry Practice Set 7.2 1
d(O, A) = 3 cm, d(A, B) = 3 cm, d(B, C) = 3 cm, d(O, C) = 3 cm and each angle of □ OABC is 90°
∴ □ OABC is a square.

Question 2.
Write the equation of the line parallel to the Y-axis at a distance of 7 units from it to its left.
Solution:
The equation of a line parallel to the Y-axis is x = a.
Since, the line is at a distance of 7 units to the left of Y-axis,
∴ a = -7
∴ x = -1 is the equation of the required line.

Question 3.
Write the equation of the line parallel to the X-axis at a distance of 5 units from it and below the X-axis.
Solution:
The equation of a line parallel to the X-axis is y = b.
Since, the line is at a distance of 5 units below the X-axis.
∴ b = -5
∴ y = -5 is the equation of the required line.

Question 4.
The point Q( -3, -2) lies on a line parallel to the Y-axis. Write the equation of the line and draw its graph.
Solution:
The equation of a line parallel to the Y-axis is x = a.
Here, a = -3
∴ x = -3 is the equation of the required line.
Maharashtra Board Class 9 Maths Solutions Chapter 7 Co-ordinate Geometry Practice Set 7.2 2

Question 5.
Y-axis and line x = – 4 are parallel lines. What is the distance between them?
Solution:
Equation of Y-axis is x = 0.
Equation of the line parallel to the Y-axis is x = – 4. … [Given]
∴ Distance between the Y-axis and the line x = – 4 is 0 – (- 4) … [0 > -4]
= 0 + 4 = 4 units
∴ The distance between the Y-axis and the line x = – 4 is 4 units.
[Note: The question is modified as X-axis cannot be parallel to the line x = – 4.]

Question 6.
Which of the equations given below have graphs parallel to the X-axis, and which ones have graphs parallel to the Y-axis? [1 Mark each]
i. x = 3
ii. y – 2 = 0
iii. x + 6 = 0
iv. y = -5
Solution:
i. The equation of a line parallel to the Y-axis is x = a.
∴ The line x = 3 is parallel to the Y-axis.

ii. y – 2 = 0
∴ y = 2
The equation of a line parallel to the X-axis is y = b.
∴ The line y – 2 = 0 is parallel to the X-axis.

iii. x + 6 = 0
∴ x = -6
The equation of a line parallel to the Y-axis is x = a.
∴ The line x + 6 = 0 is parallel to the Y-axis.

iv. The equation of a line parallel to the X-axis is y = b.
∴ The line y = – 5 is parallel to the X-axis.

Question 7.
On a graph paper, plot the points A(2, 3), B(6, -1) and C(0, 5). If these points are collinear, then draw the line which includes them. Write the co-ordinates of the points at which the line intersects the X-axis and the Y-axis.
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 7 Co-ordinate Geometry Practice Set 7.2 3
From the graph, the line drawn intersects the X-axis at D(5, 0) and the Y-axis at C(0, 5).

Question 8.
Draw the graphs of the following equations on the same system of co-ordinates. Write the co-ordinates of their points of intersection.
x + 4 = 0,
y – 1 = 0,
2x + 3 = 0,
3y – 15 = 0
Solution:
i. x + 4 = 0
∴ x = – 4

ii. y – 1 = 0
∴ y = 1

iii. 2x + 3 = 0
∴2x = -3
∴ x = \(\frac { -3 }{ 2 }\)
∴ x = -1.5

iv. 3y- 15 = 0
3y = 15
y = \(\frac { 15 }{ 3 }\)
∴ y = 5
Maharashtra Board Class 9 Maths Solutions Chapter 7 Co-ordinate Geometry Practice Set 7.2 4
The co-ordinates of the point of intersection of x + 4 = 0 and y – 1 = 0 are A(-4, 1).
The co-ordinates of the point of intersection ofy – 1 = 0 and 2x + 3 = 0 are B(-1.5, 1).
The co-ordinates of the point of intersection of 3y – 15 = 0 and 2x + 3 = 0 are C(-1.5, 5).
The co-ordinates of the point of intersection of x + 4 = 0 and 3y – 15 = 0 are D(-4, 5).

Question 9.
Draw the graphs of the equations given below.
i. x + y = 2
ii. 3x – y = 0
iii. 2x + y = 1
Solution:
i. x + y = 2
∴ y = 2 – x
When x = 0,
y = 2 – x
= 2 – 0
= 2
When x = 1,
y = 2 – x
= 2 – 1
= 1
When x = 2,
y = 2 – x
= 0
Maharashtra Board Class 9 Maths Solutions Chapter 7 Co-ordinate Geometry Practice Set 7.2 5
Maharashtra Board Class 9 Maths Solutions Chapter 7 Co-ordinate Geometry Practice Set 7.2 6

ii. 3x – y = 0
∴ y = 3x
When x = 0,
y = 3x
= 3(0)
= 0

When x = 1,
y = 3x
= 3(1)
= 3

When x = -1,
y = 3x
= 3(-1)
= -3
Maharashtra Board Class 9 Maths Solutions Chapter 7 Co-ordinate Geometry Practice Set 7.2 7
Maharashtra Board Class 9 Maths Solutions Chapter 7 Co-ordinate Geometry Practice Set 7.2 8

iii. 2x + y = 1
∴ y = 1 – 2x
When x = 0,
y = 1 – 2x
= 1 – 2(0)
= 1 – o
When x = 1,
y = 1 – 2x
= 1- 2(1)
= 1 – 2
= -1
When x = -1,
y = 1 – 2x
= 1 – 2(-1)
= 1 + 2
= 3
Maharashtra Board Class 9 Maths Solutions Chapter 7 Co-ordinate Geometry Practice Set 7.2 9
Maharashtra Board Class 9 Maths Solutions Chapter 7 Co-ordinate Geometry Practice Set 7.2 10

Maharashtra Board Class 9 Maths Chapter 7 Co-ordinate Geometry Practice Set 7.2 Intext Questions and Activities

Question 1.
i. Can we draw a line parallel to the X-axis at a distance of 6 unIts from It and below the X-axis?
ii. Will all of the points (-3,-6), (10,-6), ( \(\frac { 1 }{ 2 }\), -6) be on that line?
iii. What would be the equation of this line?(Textbook pg. no. 94)
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 7 Co-ordinate Geometry Practice Set 7.2 11
i. Yes.
This line will pass through the point (0,-6).

ii. Yes.
Here, y co-ordinate of the points (-3, -6), (10,-6), ( \(\frac { 1 }{ 2 }\), -6) is the same, which is -6.
∴ All the above points lie on the same line.

iii. Since, the line is at a distance of 6 units below the X-axis.
∴ b = -6
∴ Equation of the line is y = -6.

Question 2.
i. Can we draw a line parallel to the Y – axis at a distance of 2 units from ¡t and to its right?
ii. Will all of the points (2, 10), (2, 8), (2, -) be on that line?
iii. What would be the equation of this line? (Textbook pg. no. 95)
Solution:
Maharashtra Board Class 9 Maths Solutions Chapter 7 Co-ordinate Geometry Practice Set 7.2 12
i. Yes.
(2, 10)
This line will pass through the point (2, 0).
(2,8)
ii. Yes.
Here, x co-ordinate of the points (2, 10), (2, 8), (2,-\(\frac { 1 }{ 2 }\) ) is the same, which is 2.
∴ All the above points lie on the same line.

iii. Since, the line is at a distance of 2 units to the right of Y-axis.
a = 2
∴ Equation of the line is x = 2.

Question 3.
On a graph paper, plot the points (0, 1), (1, 3), (2, 5). Are they collinear? If so, draw the line that passes through them.
i. Through which quadrants does this line pass ?
ii. Write the co-ordinates of the point at which it intersects the Y-axis.
iii. Show any point in the third quadrant which lies on this line. Write the co-ordinates of the point. (Textbook pg. no. 96)
Solution:
i. The line passes through the quadrants I, II and III.
ii. The line intersects the Y-axis at (0, 1).
iii. (-1,-1)
Maharashtra Board Class 9 Maths Solutions Chapter 7 Co-ordinate Geometry Practice Set 7.2 13